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This is part II of my preceding paper [*] and contains chapter III. As
an application of Lemma 15.10, we consider a regular, compact K-contact
Riemannian manifold M (dim M > 3) and its fibering M — M/¢ ([21]), where
¢ is an associated vector field with a given contact form. The distribution D
is, in this case, an orthogonal distribution to ¢ with respect to an associated
Riemannian metric. Let » be an infinitesimal [72 —1]*-conformal transformation
on M, then it induces an infinitesimal conformal transformation # on M/¢ by
the Lemma, and it is known that any infinitesimal conformal transformation
on a compact almost Kaehlerian manifold is a Killing vector field ([25], [26]).
Thus we see that # is an infinitesimal [# —1]*-isometry.

In §17, generalizing Lemma 15.10, we show the invariance of the coefficient
a for g of @*g on each trajectory of . As a continuation of §15, we study
the structure of P*° in §18. In §820~23, we discuss the properties of (m—1)-
conformal transformations or infinitesimal (7 —1)-conformal transformations in
analogous way to the usual conformal transformations in Riemannian geometry.
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Chapter III

17. A property of . Every u<* generates a local 1-parameter group
@, of local (m—1)’*-conformal transformations. In §15 by using Lemma 15. 10
we have seen that the coefficient a, for g of @,*¢g is constant on each trajectory
of &, if ¢y is a Killing vector field. Generally we prove

LEMMA 17.1. If &y and & are Killing vector fields on each U and V
and @ is an (m—1)*-conformal transformation of M to N, then {a=0 holds.

PROOF. Taking the Lie derivatives with respect to ¢ of the equation
p*h=ag+BwRw, we have

L©p*h = ta)g + ER)w R w.
As L) @*h = p*(L(pt)h) and @ = pE, we have
vp*(dp) @ w + yw @ p*(dp) = Ca)g + ERw R w.
Therefore ¢a=0 holds.
By this Lemma, we get

PROPOSITION 17.2. If °¢ is complete, regular and &y is a Killing
vector field for each U, then every @ <II* on M induces a conformal trans-
formation on M/E.

18. The structure of Lie algebra P*°. In §15 we proved that the subgroup
IT** is a Lie transformation group on a manifold on which ¢ is complete,
regular and ¢y is a Killing vector field for each U. In the proof, we made
use of the fact that any infinitesimal [ —1]*-conformal transformation on M
induces an infinitesimal conformal transformation on M/¢. In this section we
consider the converse. Let a vector field X* on M be the lift of a vector
field X on M/¢ with respect to w, i.e. it is characterized by wX*=X and
w(X¥)=0. For any vector fields X and Y on M/¢, the relations

(18.1) [X*,¢1=0,
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(18.2) [X% Y] = [X, Y]* — dw(X*,Y¥)-¢

hold good. As in §15 & denotes a Riemannian metric on M/¢ which satisfies
g=m"h+wQw.

LEMMA 18.1. Suppose that °¢ is complete, regular and Cy is a Killing
vector field on each U. If X is an infinitesimal conformal transformation
such that L(X)h=Ah, A denoting a scalar function on M/¢, then X* is

an infinitesimal (m—1)-conformal transformation such that
(18.3) L(X*)g = ag+w Q@ i(X*)dw + {(X*)dw Qw +(—a) w R w,
where a=A-m is a scalar function on M.

PROOF. Let Y*, Z* be lifts of vector fields Y, Z on M/¢, then we have

(L(X*)g)(Y*, Z¥%) = X*+ g(V*, Z%) — g(IX*, Y*], Z%) — g(Y*,[ X%, Z*))
= (LW, Z) -
= (A-m)g)(¥*, Z%).
Similarly
(L) PT*,§) = —g(—dw(X*, Y*) £, 8)
= (((X¥) dw)(Y¥),
LX) E O = 0.

These three equations imply (18.3), since #(¢)dw=0.
LEMMA 18.2. In Lemma 18.1, X* is special if and only if L(X*)w=0.

PROOF. By (18.3) X* is special if and only if (X*)dw is proportional
to w, and this is equivalent to #(X*)dw=0 by virtue of i({)dw=0.

We can prove that if M admits a vector field «# such that wg(u) is
constant in each U and L(x)w=cw for a scalar function c, then ¢=0. So we
consider the case where wy(x) is not constant, let °f={fs} be a family of
scalar functions fr such that ¢f°¢ is a vector field. Then

(18.4) LifOg=w@df +df @ w.
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Thus if X is an infinitesimal conformal transformation on M/¢, then u= X*+ft
is an infinitesimal (m—1)-conformal transformation :

(18.5) Lw)g=ag+w® {(Xdw + df — ¢ f-w}
+ {{(X*dw +df—tf - w}Qw+ Q2 f—a)w Q@ w.

And we have
(18.6) Lw)w = i{(X*)dw + df.

Thus, in order that a vector field X*+f¢ belongs to %, it is necessary and
sufficient that f is a solution of the equation

(18.7) (Xdw +df —cw=0

for some constant ¢. Suppose that D is completely integrable and M — M/¢
has a global section S which is an integral submanifold of D. As in this case
the equation (18.7) is equivalent to ¢f =c and Y*f = 0 for any vector field Y
on M/¢, we can solve °f by giving the initial condition (constants) on S.
Notice here that the complete integrability of D is equivalent to the fact that
¢ is a parallel field.

From Lemmas 18.1 and 18.2 the next Proposition follows.

PROPOSITION 18.3. If ¢ is parallel, regular and complete, then for
any infinitesimal conformal transformation X on M/¢, X* is an infinitesimal
[m—1]-conformal transformation such that L(X¥*)w = 0.

Let € be a Lie algebra of all infinitesimal conformal transformations on
M/¢ and €* be one composed of lifts of all ellements of €, and we get

THEOREM 18.4. Assume that ¢ is parallel, regular and complete, then
we have the direct decomposition

EB“R@* + R’
where & is one of the followings:
(@) If ¢ does not define a vector field on M, = {0}, or {r°f°¢;r<R}.

() If ¢ defines a vector filld ¢ on M, &= {r¢;r<R} or {r&+sf¢;
r,seR}.
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In (a) or (b), °f is a family of certain functions fv on U, and fis a certain
JSunction on M.

PROOF. This decomposition is exactly given by u = (mu)* + w(u)-¢ for
u € P*°, where we have (mu)* ¢ €* by Proposition 18.3 and w()-¢ belongs to
some 8.

REMARK. Under the same conditions as in Theorem 18.4, we have the
decomposition P'=C*+ K, where R is spanned by vectors °f°¢ for any family
{fv} of functions on U which satisfy Y* f;=0 for any vector field Y on M/¢.

£ is generally infinite dimensional.

19. Volume preserving [m —1]>-conformal transformations. Assume that
a compact M has a point x such that the integral curve i.e. leaf I(x) of &
passing through z is closed, and let @ be an [m—1]°-conformal transformation.
Then we have @¢=p¢, p’-p=a+B. We assume that a+pB is constant and
smaller than 1, then the length of @*/(x) approaches to 0 as 2 —> 0. As M is
compact this can not happen, so @+8 must be 1. By virtue of (10.1) and
this, we can conclude the following

THEOREM 19.1. Let @ be an [m—1)-conformal transformation which
preserves the volume element of a compact M. If a+B is constant and
M has a closed leaf of °¢, then @ is an isometry.

Concerning an infinitesimal transformation we have

THEOREM 19.2. Let u be an infinitesimal [m—1]°-conformal trans-
formation which preserves the volume element of a compact M with
properties (i) and (ii). If c is constant, then u is a Killing vector field.

PROOF. We have 2¢ =a+b =0 (Theorem 16.2) and as u is volume
preserving, am+b=0 holds, and so « is a Killing vector field.

LEMMA 19.3. Suppose that &v is a Killing vector field for each U and
M has a closed leaf of °¢. If u satisfies L(uw)¢=—ct for some constant c,
then ¢=0.

THEOREM 194. Suppose that {v is a Killing vector field for each U
and M has a closed leaf of ¢. If an infinitesimal [m—1)°-conformal trans-
formation preserves the volume element and c is constant, then u is a Killing
vector field.
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PROOFS OF LEMMA 19.3 AND THEOREM 19.4. Let / be a closed leaf
of £&. We take a tublar neighborhood W of [ as in §15. Then, under the
assumption that ¢y is a Killing vector field, each leaf of ¢ contained in W has
the same length as /. On the other hand, as ¢ is constant, the function
pi = (a,+B,)@i* in @, = p,& is also constant for each small 2. And so p}
must be 1, namely ¢=0 holds, combining this with am+b=0 we have a=56=0.

20. A characterization of infinitesimal (m —1)*-conformal transforma-
tions on compact Riemannian manifolds. Analogously to the case of infini-
tesimal conformal transformations (see p. 128, [7]), we construct an integral
formula and we get necessary and sufficient conditions for an infinitesimal
transformation to define an infinitesimal (72 —1)*-conformal transformation on
a compact Riemannian manifold. By the same letter « we also denote the
covariant vector field ;= g;;u’. Now we define a (0, 2)-tensor field S=S(x)
as follows:

(20.1) Sy =uy; +uj, —m'Qu,—b)g; — bw,w;,
where we have put
b=bu)=2m-1)"'mu, ;ww —u",).
First we have
(20.2) S;gv =0, S,;ww =0.
Differentiating (20. 1) covariantly, we get
(20.3) Sipt=u;t + Ryt + A—2m™Du';; + m™b; — bw'wy),,

where we used the Ricci identity: «';; — «*;; = Ru’. Let Q be the operator
Q: u; — 2R, ;u’, then we have

(20.4) St = [Qu — Au — 1—2m™")ddu + m™'db]; — bw'w;) ;,
where A = d8+8d. As S;; is a symmetric tensor, we obtain
(20.5) (Spu?)yt = Sy + 2718, +u??).

By (20. 2), the second term of the right hand side is equal to the inner product
of S, i.e. 271(S,;;S%). Now we get
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LEMMA 20.1. Let M be a compact orientable Riemannian manifold,
then we have the following integral formula

<S@w), Sw)> = <u, Au — Qu + 1—-2m™")ddu — m™'db

+&w—bdw-w + bV, w>

for any 1-form w on M.

PROPOSITION 20.2. In order that a vector field u defines an infinitesimal
(m—1)*-conformal transformation on a compact M, it-is necessary and
sufficient that u is a solution of the equation

(20.6) Au—Qu + (1—2m™)ddu — m'db+¢b-w—bdw-w + bV,w =0
where b = 2(m—1)" (m(V a)(§) +8u) .

PROOF. We may assume that M is oriented, because otherwise we can
consider the double covering manifold. If % defines an infinitesimal (m—1)*-
conformal transformation on M, we have (20.6) by (20.4). Conversely if «
satisfies (20.6), by Lemma 20.1 S=0 holds. Equivalently « is an infinitesimal
(m—1)*-conformal transformation.

PROPOSITION 20.3. Let M be a compact Riemannian manifold with
properties (1) and (i), and suppose that u satisfies L(u)wy = cwy for some
constant ¢, then w is an infinitesimal [m—11*-conformal transformation if
and only if

(20.7) Au — Qu + (m—1)"Y{(m—3)ddu + 2i()ddu-w} = 0.

PROOF. As M has properties (i) and. (i), ¢ must be zero by Theorem 16.2,
equivalently we see that u; ;w'w’ = 0 holds. Then we have b = 2(m—1)""8«,
thus (20.7) is equivalent to (20.6).

THEOREM 204. Let M be a compact 3-dimensional Riemannian manifold
such that &y is a Killing vector field on each U. Then 11 is a Lie group.

PROOF. Let u < P, then we have L(u)w=0 and L(%)¢{=0. On the other
hand, as ¢y is a Killing vector field, we have #({)ddu = L(§)8u = SL(§)u = 0.
‘Therefore by Proposition 20.3, any u < P satisfies Aw = Qu. This system of
differential equations is of elliptic type, and P*° is finite dimensional [24].
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21. The case of negative Ricci curvature. Assume that z is an infin-
itesimal [m —1]*-conformal transformation which satisfies L(x)w =0 on a compact
and orientable M. Then as the relations u; ;w'w’ =c=0 hold, by (20.1) we
have

(21. 1) U+ uj,=2m—=1)"'u" 9, — 2m—1)"'u" ,w,w; .
Contracting (21.1) with #*’ we get
(21.2) u iy, = —uyut + 2m=1)""w,,).
On the other hand, it is known that
<R\(u,u) + u"u;; — @' ,)%1> =0

in any compact orientable Riemannian manifold. Substituting (21.2) into the
last equation, we get

<R\(u,u), 1>I = 2<Vu, Vu> + (m—1)""(m—3)<du, du>,
from which we can conclude the following

THEOREM 21.1. If M is compact and the Ricci curvature is negative,
then any infinitesimal [m—1]°-conformal transformation u such that L(u)w
=0 is a parallel field. If the Ricci curvature is negative definite, then there

is no non-trivial infinitesimal [m—115-conformal transformation satisfying
Lw)w = 0.

22. The relations of scalar curvatures. The Lie derivatives of the scalar
curvature by an infinitesimal (m —1)-conformal transformation is written as
(14.6) and it satisfies (14.7) which is a simple relation. However the relation
of °R and R for an (m —1)-conformal transformation @ is not so simple, so we
impose some assumptions on manifolds M and transformations @. One of
utilities of the relations of the scalar curvatures ?R and R is to obtain the
analogous theorems to Theorems 16.10 and 16.12. Accordingly we take up
two cases (@) and (b) in this section.

(a) °¢, % are parallel and @ is an (m—1)*-conformal transformation of M
to N. Under these assumptions, we have {a=0 by Lemma 17.1. Then from
(4.6) we have
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i 1 i i i 1 i
(22 1) ij = —ZE(a,-Bk +ak8j—a gjlc) — ﬁﬁ W Wy
i
+ atas ) BEB) Wi, — Bl +aw)) +alBrw+ Byw)}

from which one can deduce

L m 1 _
(22.2) Wi=5y%+3 CEY) (aB;—Bay),
gk 2=m 1 2048 5.
@2.3) Wid™ =20 ¥~ 2a B+ 2a(arg) F "
(22.4) Wi w'wt = — —(ai+,3) + A+l

2a(a+B) 68 - !

Substituting these into (6.4), after calculation we get

(22.5) R = 'R-p = & 1 j2 (o =Dm—6)at'+2m* ~Bm +11)a8

a  4da¥(a+B

+ (m—2)on—7) 8°)(dat, det) = 5 s ((m =5)at+(m—3) B} (et )

1

+ Salat gy @R AR+ Gay +B){(’” Da+(m—2)B8} dda

1 1 ) 1
* a@8) B 2aaray Bt qarp B

Now, as @ is an (m—1)*-conformal transformation, we have ¢@*;= yw
where y’=a+8. Taking the exterior derivatives, we have dyAw = 0, since
w and 7 are parallel. So dy is proportional to w and we get da+dB=(¢B)w.
Then the next two relations are immediate consequences.

(22.6) (da,dB) = —(da,da),
(22.7) (B, dp) = (da,da) + (¢B)*.

Also from da+dB=(¢B) w, it follows that
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(22.8) Sda + 8dB = —tt8B.

Thus, by substituting (22.6), (22.7) and (22.8) into (22.5), we can eliminate
B from (22.5), and we have

PROPOSITION 22.1. If ¢ and °) are parallel and @ is an (m—1)*-
conformal transformation, the scalar curvatures satisfy

_ (m—=2)(m—="7)

122.9) @R —R= o

(dat, dat) + mT_—ZB da.

(b) ¢&u, &y are Killing vector fields and ¢ is an (m—1)°-conformal trans-
formation having constant v2. In this case, da+dB8 =0 holds. As {a=0, we
have also {8=0. Then (4.6) is

(22.10) Wi = 5 (@3 + a,8) — agy, + awjw,)

8 . . wt
+ 7(wkw 5+ wwt ) — g(ajwk + a,w;y).

And by contractions

(22.11) Wi = (m-1)2a)a;,
(22.12) Wig* = —(m—3)2a)"a,
(22.13) Whiwwt=0.

Then by (6.4) we have
PROPOSITION 22.2. If &y and & are Killing wvector field and @ is an

(m—1)*-conformal transformation of M to N such that @*np,=v.yywy for
some constant Y.yy, then we have

(22 14) a’R—R =— @%(da’ da) + ﬁla——zsdd — % R, sg) .

Now we study the analogous properties to the results by M. Obata [10].

THEOREM 223. If M is compact and of non-positive (non-negative
resp.) scalar curvature and N of non-negative (non-positive resp.) scalar
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curvature, and if °¢ is parallel, then there is no (m—1)*-conformal trans-
formation of M to N for which % is also parallel, unless both scalar
curvatures vanish. And if both scalar curvatures vanish, every (m—1)'-
conformal transformation of M to N for which %) is also parallel is an
(m—1)*-homothety.

PrROOF. If we put ¢=(1/2)loga, we obtain
(22.15) (da,da) = 4a*(de, dd),
(22. 16) Sda = 2a5d¢ — da(dp, d) .
And (22.9) turns to
(22.17) a’R—R = —(m—2)(m—3)(d¢, dp) + 2(m—2)8d¢ .
Assume that M is compact orientable, then integration of (22.17) gives
<a’R—R,1> = —(m—2)(m—3)<d¢,dp> =0,

from which we have the first part and second part (m>3) of the Theorem.
To prove the second part (m=3) we use (22.17) again.

THEOREM 224. Let M and N be compact Riemannian manifolds of
non-positive scalar curvatures which are not identically equal to zero and
assume that °¢ and °n are parallel field, then the (m—1)*-conformal trans-
formation @ of M to N is an (m—1)*-homothety if and only if 'R-p = e™*R
for some constant p.

PROOF. If @ is an (m—1)*-homothety, we have ‘R.p = ¢ R by (22.9).
Conversely, assume that '‘R-p=e¢ 2R for some constant g and M compact
orientable, then

(@ —1)R = —(m—2)m—3)(dp, dp) + 2m—2)8d

holds. Contracting the last equation with (¢"¢~* —1), and integrating over M
we have

(22.18) <(@4 P —1)R, &™* M —1> = (m—2)(m—3)<dp, dp>
+ 3(m+1)(m—2)<e™ M dp, em P dp>.

Thus ¢ must be constant.
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THEOREM 22.5. Under the same assumption as in Theorem 22.4, the
(m—1)*-conformal transformation @ is an (m—1)*-isometry if and only if @
preserves the scalar curvature.

PROOF. This is a special case ¢=p=0 in Theorem 22.4.

23. The case of constant scalar curvature. From Theorems 22.3 and
22.5, one deduces the following

THEOREM 23.1. Suppose that M and N are compact and of non-positive
constant scalar curvature and ¢ is parallel field. Then every (m—1)*-
conformal transformation of M to N for which % is parallel is an (m—1)*-
homothety.

COROLLARY 23.2. Suppose that M is compact and of non-positive
constant scalar curvature and °¢ is parallel. Then every [m—1)*-conformal
transformation of M is an [m—1]-isometry.

Corresponding to Theorem 16.12, we prove

THEOREM 23.3. Assume that M is compact, of non-positive constant
scalar curvature and admits a closed leaf of °¢, and assume that &y is a
Killing vector field on each U. Then any [m—1]*-conformal transformation

@ of M onto itself satisfying @*wy=yyywuv for some constant vy is an
isometry.

PROOF. By the argument in §19, one get v;-y=1 namely a+B8=1. Then,
by (22.15) and (22.16), (22.14) can be written as

23.1) (@—1)R = —(m—2)(m—3)(dp,dp) + 2m—2)8dp—a~(1—ad) Ry(&, £).

Multiplying (23.1) by a®—1 and integrating over M which is assumed to be
compact orientable, we have

(23.2) <(@—-DR,a™—1> = (m—2)(m—3)<dp,dp>
+ 3(m+1D)(m—2)<e™dp, emdp>

+ <a(@—DR,¢,§),am—1>.

As R,(¢,¢) is non-negative by Lemma 16.8, ¢ or a is constant. By Corollary
10.3, the relations a=1 and 8=0 hold, so @ is an isometry.
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24. Infinitesimal (m —1)*-conformal transformations which leave the
Ricci curvature invariant.  Some relations obtained in §14 are referred in
this section. Let # be an infinitesimal (m —1)*-conformal transformation on M.
Transvecting (14.3) with ¢/* and w/w* respectively, we have the following
two reations

(24.1) 9*Lw)R;, = A—m)a”,, — b7, + £&b + 28b-w" ,

+ w, p"w’ + b{(w,,w),; + (W w,) s},

(24.2) 2w wtL(w) Ry, = 2—m)a; w’w* — a’,, — b7, + b; wwk
+ 28bew” , + 2w, bTwt + 2b{w” Wk

— wy T wk — w; wtw! w'l .

THEOREM 24.1. Assume that M is compact, {v is a Killing vector field
on each U and the scalar curvature R is positive constant. If an infinitesimal
(m—1)*-conformal transformation u leaves the Ricci curvature invariant,
then it is an infinitesimal (m—1)*-isometry.

PROOF. From (24.1) and (24. 2) it follows that
(24.3) (m—1)dda + 8db + &b =0,
(24.4) dda + 8db + &tb + bwt w,,=0.

On the other hand, (14.5) shows that L(u)¢’*-R;, = —aR—bT =0, where
T =Rjw’w*=w"*w;,. Then by (24.3) and (24.4), we get (2—m)dda = 4aR.
So if M is orientable we have —(m—2)<da,da>=4<a®R,1>. This completes
the proof.

25. Appendices.

(@) Let « be an infinitesimal (7 —1)-conformal transformation, transvecting
(13.1) with w'w’ we get 2u; jw'w’=a+b. If M is orientable, compact and
has properties (i) and (ii), the integration of 2(x,w'w’);=a-+b over M gives
<a+b,1>=0. Thus combining this and (16.1), we have

LEMMA 25.1. Let M be a compact orientable Riemannian manifold
with properties (1) and (ii), and u be an infinitesimal (m—1)-conformal
transformation, then

<a,1> =0, <b,1> =0
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hold good. (cf. Theorem 16.2)

COROLLARY 25.2. In a compact M with properties (i) and (ii), every
infinitesimal (m—1)-homothety is an infinitesimal (m—1)-isometry.

() The orthogonality of # and a geodesic.

THEOREM 25.3. Assume that w is an infinitesimal (m—1)-isometry and
! is a geodesic which is also an integral curve of the distribution D. Then
the inner product of u and a wunit tangent wvector field X onl to l is
constant. Particularly, if w is orthogonal to l at one point of I, then u is
orthogonal to | at every point of L.

PROOF. Since X is a unit tangent vector to a geodesic we have V:X|;
=0. Difierentiating ¢(«, X) along / we get

Vx(g(u» X)) = g(VXu, X) =+ g(u’vXX) .

The first term of the right hand side is equal to %, ;X'X’. As u is an
infinitesimal (m—1)-isometry and as w,X*= 0 holds, we have %, ;X'X’ =0.
Thus we have Vg, X)) =0 on [, so gu, X) is constant on I.

(¢) The functions a,, B; and v,. Let z, be an arbitrary point of M and
u be infinitesimal [m —1]*-conformal transformation. And take a neighbor-
hoods U and V (VCU) of x,, where we consider a local 1-parameter group

of local transformations @,: V—@ VcCU (|t|<q(x,) generated by u as
in §15. We have seen that every @, is an [m —1]*-conformal transformation :

(25.1) PFXg=a9+BwQw,
(25.2) prw=vw, vi=a, + 8.

We define functions @, 8 and v on (—gq(x,), g(x,)) XV by alt, x)=a,(x), B(¢, x)
=B,(x) and v(t, x)=",(x), t € (—q(x,), q(x,)), x€V. Then a and B satisfy the
following differential equations

25.3) %2 (6,2 = alt, Da-9)@)

@B.4) L2 =8 2Na-p)) + b@)ak 2) + B D)}
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We give here a proof for (25.4). From (9.4) we have

B(t+s, ) = a(p.x) Bi(x) + Bulpex) (@) + Bi(2)) -
Therefore we get
B(t+s, x) — B(t, x) = Bz){a(px)—1} + Bupiz){a(x) + B2)} .
Then (25.4) follows.

LEMMA 25.4. Solutions of (25.3) and (25.4) are
13
(25.5) a(t, ) = exp ( f a(psx) ds) ,
0

(25. 6) B(t, x) = exp ( f t(a +b)(psx) ds) — exp ( f ta(%x) ds) .

COROLLARY 25.5. Let u be an infinitesimal [m—1]*-conformal trans-
formation, if a and b are constant, we have

__ at __ _(a+b)t __ at _ et _ a(ato)
alt,x) = e, B, x)=-¢ e, yt,x)=¢e"=¢ .
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