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This is part II of my preceding paper [*] and contains chapter III. As
an application of Lemma 15. 10, we consider a regular, compact X-contact
Riemannian manifold M (dim M > 3) and its fibering M —> M/ξ ([21]), where
ξ is an associated vector field with a given contact form. The distribution D
is, in this case, an orthogonal distribution to ξ with respect to an associated
Riemannian metric. Let u be an infinitesimal [ra —l]s-conformal transformation
on M, then it induces an infinitesimal conformal transformation u on M/ξ by
the Lemma, and it is known that any infinitesimal conformal transformation
on a compact almost Kaehlerian manifold is a Killing vector field ([25], [26]).
Thus we see that u is an infinitesimal \m — l]s-isometry.

In §17, generalizing Lemma 15.10, we show the invariance of the coefficient
Ci for g of φ*g on each trajectory of ξ. As a continuation of §15, we study
the structure of $sc in §18. In §§20^23, we discuss the properties of (m —1)-
conformal transformations or infinitesimal (m — l)-conformal transformations in
analogous way to the usual conformal transformations in Riemannian geometry.
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Chapter III

17. A property of a. Every uzty8 generates a local 1-parameter group
φt of local (ra — l)s-conf ormal transformations. In §15 by using Lemma 15. 10
we have seen that the coefficient cίt for g of φt*g is constant on each trajectory
of ξ, if ζπ is a Killing vector field. Generally we prove

LEMMA 17.1. If ζπ and ξ,v are Killing vector fields on each U and V
and φ is an (m — ΐ)s -conf ormal transformation of M to N, then ζoί=Q holds.

PROOF. Taking the Lie derivatives with respect to ζ of the equation
, we have

L(ζ)φ*h = (ζoί)g + (ζβ)w <g> w .

As L(ζ)φ*h = φ*(L(φ£)K) and φξ = μξ, we have

yφ*(dμ) (g) w 4- γτv (g) φ*(dμ!) — (ξoί)g 4- (ξβ) w (g) w .

Therefore ξct=Q holds.

By this Lemma, we get

PROPOSITION 17.2. If εζ is complete, regular and ξπ is a Killing
vector field for each U, then every φ £ IP on M induces a conf ormal trans-
formation on M/ζ.

18. The structure of Lie algebra $sc. In §15 we proved that the subgroup
IPC is a Lie transformation group on a manifold on which εξ is complete,
regular and ζπ is a Killing vector field for each U. In the proof, we made
use of the fact that any infinitesimal [ra — l]s -conf ormal transformation on M
induces an infinitesimal conformal transformation on M/ζ. In this section we
consider the converse. Let a vector field X* on M be the lift of a vector
field X on M/ζ with respect to w, i.e. it is characterized by τrX* = X and
w(X*) = Q. For any vector fields X and Y on M/ξ, the relations

(18.1) [X*,fl = 0,
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(18. 2) [X* Y*] - [X, Y]* - dw(X\ Y*) ξ

hold good. As in §15 h denotes a Riemannian metric on M/ξ which satisfies

LEMMA 18.1. Suppose that εξ is complete, regular and ξV is a Killing
vector field on each U. If X is an infinitesimal conformal transformation

such that L(X)h=Ah, A denoting a scalar function on M/ξ, then X* is
an infinitesimal (m — \)- con formal transformation such that

(18. 3) L(X*) g = ag + w ® z(X*) dw + i(X*) dw

where a = A π is a scalar function on M.

PROOF. Let Y*, Z* be lifts of vector fields Y, Z on M/ξ, then we have

(L(X*)0)(Y* Z*) - X* - g(Y*> Z*) - gdX*, Y*], Z*) - fl<Y* [X* Z*])

Similarly

(L(X*)flr)(r* S) = -g(-dτv(X*, Y*) ξ, ξ)

These three equations imply (18.3), since i(ξ)dτv = 0.

LEMMA 18.2. In Lemma 18.1, X* is special if and only if L(X*)w = Q.

PROOF. By (18. 3) X* is special if and only if i(X*)dw is proportional
to τv, and this is equivalent to i(X*)dw = Q by virtue of i(ζ)dw = 0.

We can prove that if M admits a vector field u such that Wu(u) is
constant in each U and L(u)w = cw for a scalar function c, then c=0. So we
consider the case where Wu(u) is not constant, let εf= [fσ] be a family of
scalar functions fu such that εfεξ is a vector field. Then

(18.4) L(fζ)g= w®df+df®w.
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Thus if X is an infinitesimal conformal transformation on M/ζ, then u = X*+fξ
is an infinitesimal (m — l)-conf ormal transformation :

(18. 5) L(u) g = ag + w ® [i(X*) dw + df - ξf w}

+ {i(X*)dτv + df-ξf w} ® τv + (2ξf-a)w ® w .

And we have

(18. 6) L(u)w = i(X*)dw + df.

Thus, in order that a vector field X*+fξ belongs to $sc, it is necessary and
sufficient that f is a solution of the equation

(18. 7) ί(X*) Jw + J/ - c w = 0

for some constant c. Suppose that D is completely integrable and M— >M/f
has a global section S which is an integral submanifold of D. As in this case
the equation (18. 7) is equivalent to ΐf=c and Y*f = 0 for any vector field Y
on M/f , we can solve ε/ by giving the initial condition (constants) on S.
Notice here that the complete integrability of D is equivalent to the fact that
ξ is a parallel field.

From Lemmas 18.1 and 18.2 the next Proposition follows.

PROPOSITION 18.3. // εξ is parallel, regular and complete, then for
any infinitesimal conformal transformation X on M/ζ, X* is an infinitesimal
[m — l]s-conformal transformation such that L(X?*)w = 0.

Let & be a Lie algebra of all infinitesimal conformal transformations on
M/ζ and &* be one composed of lifts of all ellements of ©-, and we get

THEOREM 18.4. Assume that &ζ is parallel, regular and complete, then
we have the direct decomposition

where $ is one of the fallowings :

(a) // εξ does not define a vector field on M, 'β= {0}, or [rεfεξ rzR}.

(b) If&ζ defines a vector field ζ on M, &={rζ',rzR} or {rζ+sfζ-,
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In (a) or (b), εf is a family of certain functions fu on U, and f is a certain
function on M.

PROOF. This decomposition is exactly given by u = (TTU)* -h w(u) ξ for
u € 5βsc, where we have (TTU)* z &* by Proposition 18.3 and w(u) ξ belongs to
some $).

REMARK. Under the same conditions as in Theorem 18.4, we have the
decomposition 5βs^S/* + K, where & is spanned by vectors εfεξ for any family
{fu} of functions on U which satisfy Y*fu=Q for any vector field Y on M/ξ.
ί£ is generally infinite dimensional.

19. Volume preserving [m—l]s-conformal transformations. Assume that
a compact M has a point x such that the integral curve i.e. leaf l(x) of ξ
passing through x is closed, and let φ be an [m — l]s-conformal transformation.
Then we have φξ=μξ, μ2 φ=a+β. We assume that cί + β is constant and
smaller than 1, then the length of φkl(x) approaches to 0 as k —> oo. As M is
compact this can not happen, so cί+β must be 1. By virtue of (10.1) and
this, we can conclude the following

THEOREM 19.1. Let φ be an [m — l]s-conformal transformation which
preserves the volume element of a compact M. If cί+β is constant and
M has a closed leaf of εξ, then φ is an isometry.

Concerning an infinitesimal transformation we have

THEOREM 19.2. Let u be an infinitesimal [m — l]s-conformal trans-
formation which preserves the volume element of a compact M with
properties (i) and (ii). If c is constant, then u is a Killing vector field.

PROOF. We have 2c = a+b =0 (Theorem 16.2) and as u is volume
preserving, am4-6 = 0 holds, and so u is a Killing vector field.

LEMMA 19.3. Suppose that ζu is a Killing vector field for each U and
M has a closed leaf of εξ. If u satisfies L(u)ζ— —cξ for some constant c,
then c=0.

THEOREM 19.4. Suppose that ξσ is a Killing vector field for each U
and M has a closed leaf of Bξ. If an infinitesimal [m — l]s-conformal trans-
formation preserves the volume element and c is constant, then u is a Killing
vector field.
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PROOFS OF LEMMA 19.3 AND THEOREM 19.4. Let I be a closed leaf
of ξ. We take a tublar neighborhood W of / as in §15. Then, under the
assumption that ξV is a Killing vector field, each leaf of ξ contained in W has
the same length as /. On the other hand, as c is constant, the function
μ?t = (at + βt) φ~[l in φtξ — μtξ is also constant for each small t. And so μ$
must be 1, namely c=Q holds, combining this with am +6 = 0 we have a=b = Q.

20. A characterization of infinitesimal (m— l)s-conformal transforma-
tions on compact Riemannian manifolds. Analogously to the case of infini-
tesimal conformal transformations (see p. 128, [7]), we construct an integral
formula and we get necessary and sufficient conditions for an infinitesimal
transformation to define an infinitesimal (m — l)s-conf ormal transformation on
a compact Riemannian manifold. By the same letter u we also denote the
covariant vector field uί = gίju

j. Now we define a (0, 2)-tensor field S=S(u)
as follows:

(20. 1) Stj = utj + u3Λ — m~l(2u\r-b)gij —

where we have put

b = b(u) = 2(m-ϊ)-1(muiJ<wίu>*-ur,r}.

First we have

(20.2) -W = °>

Differentiating (20. 1) covariantly, we get

(20. 3) St/. - UjJ + Ruu1 + (l-2m-

where we used the Ricci identity: uljt — ul

tij = RtjU1. Let Q be the operator
Q : Ui-* 2Ruu\ then we have

(20. 4) Stj'
1 = \Qu - Δw - (l-2m~1)d^u + m~ldb}5 - (bw'wάt ,

where Δ = Jδ + δJ. As Stj is a symmetric tensor, we obtain

(20. 5) (StjuY = SifW + 2-1Si/*ί '+w' t) .

By (20. 2), the second term of the right hand side is equal to the inner product

of 5, i.e. 2-1(St,S
lO Now we get
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LEMMA 20.1. Let M be a compact orίentable Rίemannian manifold,
then we have the following integral formula

<S(ιi),S(u)> = <u, Δu-Qu + (l-2m-l)d%u - m~ldb

+ ξb w — bΰw w + b \7ξw>

for any I- form u on M.

PROPOSITION 20.2. In order that a vector field u defines an infinitesimal
(m — \)s -con formal transformation on a compact M, it is necessary and
sufficient that u is a solution of the equation

(20.6) Δu-Qu 4- (l-2m~1)Jδw - m~ldb-}-ξb w-b§w w + b^ςw = 0

where b = 2(m-\Y\m(\7ζu)(ζ) + §u) .

PROOF. We may assume that M is oriented, because otherwise we can
consider the double covering manifold. If u defines an infinitesimal (m — l)s-
conformal transformation on M, we have (20. 6) by (20. 4). Conversely if u
satisfies (20.6), by Lemma 20.1 S=0 holds. Equivalently u is an infinitesimal
(m — l)s-conformal transformation.

PROPOSITION 20.3. Let M be a compact Riemannian manifold with
properties (i) and (ii), and suppose that u satisfies L(μ)wv = cwu for some
constant c, then u is an infinitesimal [m — Y\s- con formal transformation if
and only if

(20. 7) Δu - Qu + (m-l)-1{(m-3) dΰu + 2i(ξ)dSu w} = 0 .

PROOF. As M has properties (i) and (ii), c must be zero by Theorem 16.2,
equivalently we see that uίjw

ίwj = 0 holds. Then we have b = 2(m — T)~lΰu,
thus (20.7) is equivalent to (20.6).

THEOREM 20.4. Let M be a compact 3- dimensional Riemannian manifold
such that ζu is a Killing vector field on each U. Then Πsc is a Lie group.

PROOF. Let u € $sc, then we have L(u)w = 0 and L(ιi)ζ=Q. On the other
hand, as ξu is a Killing vector field, we have i(ξ)dSu = L(ζ)δu = SL(ξ)u = 0.
Therefore by Proposition 20.3, any u £ $sc satisfies Δu = Qu. This system of
differential equations is of elliptic type, and 5J3SC is finite dimensional [24].
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21. The case of negative Ricci curvature. Assume that u is an infin-
itesimal [m — l]s-conf ormal transformation which satisfies L(u)w=Q on a compact
and orientable M. Then as the relations uίj

<wίwj = c = 0 hold, by (20.1) we
have

(21. 1) Uij + UJΛ = 2(m-ϊ)-1ur

>rgu - 2(m-ΐ)~1ur

irwiWj .

Contracting (21. 1) with uίj we get

(21. 2) u^uiti = -utju1'* + 2(m-ΓΓ1«r)
2 .

On the other hand, it is known that

9 u) + uiJuJΛ - «r)
2, 1> = 0

in any compact orientable Riemannian manifold. Substituting (21. 2) into the
last equation, we get

<R1(uyu\ 1> =

from which we can conclude the following

THEOREM 21.1. If M is compact and the Ricci curvature is negative,
tJτen any infinitesimal [m — l]s-conf ormal transformation u such that L(u)w
= 0 is a parallel field. If the Ricci curvature is negative definite, then there
is no non-trivial infinitesimal [m — I]8 -con formal transformation satisfying
L(u) w = 0.

22. The relations of scalar curvatures. The Lie derivatives of the scalar
curvature by an infinitesimal (m — l)-conf ormal transformation is written as
(14. 6) and it satisfies (14. 7) which is a simple relation. However the relation
of φR and R for an (m — l)-conf ormal transformation φ is not so simple, so we
impose some assumptions on manifolds M and transformations φ. One of
utilities of the relations of the scalar curvatures φR and R is to obtain the
analogous theorems to Theorems 16.10 and 16.12. Accordingly we take up
two cases (a) and (b) in this section.

(a) ε£, 8η are parallel and φ is an (m — l)s-conformal transformation of M
to N. Under these assumptions, we have ξa=Q by Lemma 17.1. Then from
(4. 6) we have
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(22. 1) Wl

jk = -foδl + fltδJ-a'Λ*) - -

from which one can deduce

(22.2) Wλ = ί _

(22. 3) W3.^ = ̂ rf - ±P +

(22.4) ^tte^«;*= -^-(««+/S') +

Substituting these into (6.4), after calculation we get

(22. S)'R = 'R-φ=-

, da) - {(m-5)a+(m-3)β}(da, dβ)

(dβ' dβ"> + a (a+β)

Now, as φ is an (m — l)s-conf ormal transformation, we have φ*η = yw
where rγ2 = a-\-β. Taking the exterior derivatives, we have dy /\τv = 0, since
w and η are parallel. So dy is proportional to w and we get
Then the next two relations are immediate consequences.

(22. 6) (da, dβ} = - (da, da) ,

(22. 7) (dβ, dβ) = (da, da) +

Also from da+dβ=(ξβ)w, it follows that
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(22.8) ?>da + ϊ>dβ= -ξξβ.

Thus, by substituting (22. 6), (22. 7) and (22. 8) into (22. 5), we can eliminate
β from (22. 5), and we have

PROPOSITION 22.1. If εξ and δη are parallel and φ is an (m-ϊ)s-
conformal transformation, the scalar curvatures satisfy

122.9)

(b) ζπ, k'v are Killing vector fields and φ is an (m — l)s-conformal trans-
formation having constant γ2. In this case, daί+dβ = Q holds. As ξa=Q, we
have also £/β=0. Then (4.6) is

(22. 10) Wjk = -^-toδl + ΛΛ8J - af

+

And by contractions

(22.11)

(22. 12) Wjkg
jk = -(m-3)(2ά)-1ai ,

(22.13) Wίtw*wk = Q.

Then by (6.4) we have

PROPOSITION 22.2. If ζπ and &v are Killing vector field and φ is an
(m — ϊ)s-conformal transformation of M to N such that φ^η'V—Ί'vuVϋu for
some constant y,ru9 then we have

(22. 14) a'R-R = - 0»-3»-7) (da, da) +

Now we study the analogous properties to the results by M. Obata [10].

THEOREM 22.3. If M is compact and of non-positive (non-negative
resp.) scalar curvature and N of non-negative (non-positive resp.) scalar
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curvature, and if εζ is parallel, then there is no (m — l)s- con formal trans-
formation of M to N for which 8η is also parallel, unless both scalar
curvatures vanish. And if both scalar curvatures vanish, every (m — l)s-
conformal transformation of M to N for which 8η is also parallel is an
(m — Ϋ)s-homothety.

PROOF. If we put φ=(l/2)logtf, we obtain

(22. 15) (da, da) = 4a*(dφ, dφ) ,

(22. 16) δ da = 2rtδ dφ - 4a(dφ, dφ} .

And (22. 9) turns to

(22.17) a*R-R = -(m-2)(m-3)(dφ,dφ) + 2(m-2)δdφ.

Assume that M is compact orientable, then integration of (22. 17) gives

<aφR-R,l> = -(m-2)(m-3)<dφ,dφ> ^0,

from which we have the first part and second part (m>3) of the Theorem.
To prove the second part (m=3) we use (22.17) again.

THEOREM 22.4. Let M and N be compact Riemannian manifolds of
non-positive scalar curvatures which are not identically equal to zero and
assume that εζ and δη are parallel field, then the (m — Vf- con formal trans-
formation φ of ' M to N is an (m — ΐ)s-homothety if and only if 'R φ = e~^R
for some constant /*.

PROOF. If φ is an (m-l)s-homothety, we have 'R φ=e~*ΦR by (22.9).
Conversely, assume that 'R φ=e~^R for some constant μ and M compact
orientable, then

(<W-M>_i)# = -(m-2)(m-3)(dφ, dφ) + 2(m-2)δdφ

holds. Contracting the last equation with (^2m(ψ"μ) — 1), and integrating over M
we have

(22. 18) <(<?(*-rt - 1) R9 e
2m(φ-^ - 1> = (m - 2)(m - 3) <dφ, dφ>

Thus φ must be constant.
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THEOREM 22.5. Under the same assumption as in Theorem 22.4, the
(m — T)s- con formal transformation φ is an (m — V)s -isometry if and only if φ
preserves the scalar curvature.

PROOF. This is a special case φ=μ=Q in Theorem 22.4.

23. The case of constant scalar curvature. From Theorems 22.3 and
22.5, one deduces the following

THEOREM 23.1. Suppose that M and N are compact and of non-positive
constant scalar curvature and εξ is parallel field. Then every (m — ΐ)s-
conformal transformation of M to N for which δ£ is parallel is an (m — V)s~
homothety.

COROLLARY 23.2. Suppose that M is compact and of non-positive
constant scalar curvature and εξ is parallel. Then every \m — Y\s- con. formal
transformation of M is an [m — \~\s -isometry.

Corresponding to Theorem 16.12, we prove

THEOREM 23.3. Assume that M is compact, of non-positive constant
scalar curvature and admits a closed leaf of Bξ, and assume that ξπ is a
Killing vector field on each U. Then any [m — l]s- con formal transformation
φ of M onto itself satisfying φ*wv=yvu

ewu for some constant γFD- is an
isometry.

PROOF. By the argument in §19, one get 7^=1 namely oί-\-β=l. Then,
by (22. 15) and (22. 16), (22. 14) can be written as

(23.1) (ct-ΐ)R= -(m-2)(m-3)(dφ,dφ) + 2(m-2)Mφ-a-l(l-d)Rl(ζ, ξ) .

Multiplying (23.1) by am — 1 and integrating over M which is assumed to be
compact orientable, we have

(23.2) <(a-ϊ)R,am-I> = (m-2)(m-3)<dφ,dφ>

+ 3(m + ϊ)(m-2)<emφdφ,emφdφ>

As R^ζ, ζ) is non-negative by Lemma 16.8, φ or oί is constant. By Corollary
10.3, the relations d=l and /δ=0 hold, so φ is an isometry.
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24. Infinitesimal (m— l)s-conformal transformations which leave the
Ricci curvature invariant. Some relations obtained in §14 are referred in
this section. Let u be an infinitesimal (w — l)s-conformal transformation on M.
Transvecting (14. 3) with yίk and wjwk respectively, we have the following
two reations

(24. 1) gίkL(u)Rik = (l-m)ar,r - br,r + ξξb + 2ξb wr,r

4- wrjb
rwj -\- b{(wr

ιrw
j\j + (wj>rwr)j} ,

(24. 2) 2wjwkL(u)Rjk = (2-m)aJίkw
jwk - ar,r - br,r + bjίkw

5wk

+ 2ξb wr

>r + 2wr>kb
rwk + 2b{wr

tkrw
k

THEOREM 24.1. Assume that M is compact, ξV is a Killing vector field
on each U and the scalar curvature R is positive constant. If an infinitesimal
(m — T)s-conformal transformation u leaves the Ricci curvature invariant,
then it is an infinitesimal (m — ΐ)s-isometry.

PROOF. From (24. 1) and (24. 2) it follows that

(24. 3) (m-l)Wα + Mb + ξξb = 0 ,

(24. 4) Ida + Mb + ξξb + 4bwk'rwk,r = 0 .

On the other hand, (14.5) shows that L(u)gjk Rjk= -aR-bT = 0, where
T=Rjkw*wk=w*>kwJik. Then by (24.3) and (24.4), we get (2-m)δda = 4aR.
So if Mis orientable we have —(m—2)<da, da>=4<a2R, 1>. This completes
the proof.

25. Appendices.
(a) Let u be an infinitesimal (m — l)-conformal transformation, transvecting

(13.1) with wiew5 we get 2uίjw
iwί=a+b. If Mis orientable, compact and

has properties (i) and (ii), the integration of 2(uiw
ίwj\j=a+b over M gives

, 1>=0. Thus combining this and (16.1), we have

LEMMA 25.1. Let M be a compact orientable Rίemannian manifold
with properties (i) and (ii), and u be an infinitesimal (rn — V)- con formal
transformation, then

<α, 1> = 0 , <&, 1> =. 0
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hold good. (cf. Theorem 16.2)

COROLLARY 25.2. In a compact M with properties (i) and (ii), every
infinitesimal (m — \)-homothety is an infinitesimal (m — V)-isometry.

(6) The orthogonality of u and a geodesic.

THEOREM 25.3. Assume that u is an infinitesimal (m — T)-isometry and
I is a geodesic which is also an integral curve of the distribution D. Then
the inner product of u and a unit tangent vector field X on I to I is
constant. Particularly, if u is orthogonal to I at one point of I, then u is
orthogonal to I at every point of I.

PROOF. Since X is a unit tangent vector to a geodesic we have V^X|ί
= 0. Difierentiating g(u, X) along / we get

VXflf(«, X)) = g(V*u, X) + g(u, V^X) .

The first term of the right hand side is equal to uijX
iX*. As u is an

infinitesimal (m — l)-isometry and as te^X* = 0 holds, we have uiJX
iXj = 0.

Thus we have \7z(g(u, X)) = 0 on /, so g(u9 X) is constant on / .

(c) The functions at, βt and yt. Let x0 be an arbitrary point of M and
u be infinitesimal [w — l]s-conformal transformation. And take a neighbor-
hoods U and V (VcZT) of XQ, where we consider a local 1-parameter group
of local transformations φt : V -+φtVcU (\t\<q(x0}) generated by u as
in §15. We have seen that every φt is an [m — l]s-conformal transformation:

(25. 1) φt*g = atg + βtw ® w ,

(25. 2) φt*w =

We define functions a, β and γ on (— q(xϋ\ g(^0)) *V by cL(t,x) = at(x), β(t,x)
=βt(x) and γ(ί, x) = yt(x\ t € (—q(xo\q(xQ)\ x^V. Then a and β satisfy the
following differential equations

(25. 3) -(ί, x) = a(t, x}(a φt}(x)-

(25. 4) (t, x) = β(t, x)(a.φt}(x) + b(φtx){a(t, x) + β(t, x)} .
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We give here a proof for (25.4). From (9. 4) we have

β(t + S, X) = Oίs(φtx)βt(x) + βs(φtX)(at(x} + βt(xj) .

Therefore we get

β(t+s, x) - β(t, x) = Θt(x){as(φtx)-l] + βs(φtx){at(x) + βt(x)}.

Then (25. 4) follows.

LEMMA 25.4. Solutions of (25. 3) and (25.4) are

(25.5) cί(ty x) = exp ί I a(φsx) ds\ ,

I f ' \ It1 \
(25. 6) 0(t, x) = exp I (a+b)(φsx)ds\ - exp a(φsx)ds\ .

COROLLARY 25.5. Let u be an infinitesimal [m — l]s-conformal trans-
formation, if a and b are constant, we have

a(t, x) = eat, β(t, x) = e(a+»» - eat, y(t, x) = ect = <^(α+δ)ί.
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