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Introduction. Almost contact manifolds have, as is well known, an aspect
of the odd-dimensional version of almost complex manifolds, and especially normal
contact Riemannian manifolds are looked upon as what correspond to Kihler
manifolds. The purpose of this paper is to develop a theory on a normal
contact Riemannian manifold parallel to that of Kihler manifold through the
researches of complex-valued differential forms on the former.

After introducing several operators in the beginning section, in §2 we shall
see that a trigrade structure, corresponding to the bigrade one in almost complex
manifold, is naturally induced in the algebra of complex-valued forms on a
contact Riemannian manifold. In §3 normal contact Riemannian manifolds are
discussed from our standpoint of view and §4 is devoted to the investigations
of harmonic forms on a compact normal contact Riemannian manifolds. The
main result in this section is Theorem 4.4 which asserts the evenness of the
r-th Betti numbers of the manifold for certain values of r. Some further
researches are pursued in the last section.

I wish to express my sincere gratitude to Professor S. Sasaki for his kind
guidance to this subject and his constant encouragement. My thanks also go
to Mr. S. Tanno who gave me many valuable suggestions in preparing this work.

1. Preliminaries. Given an m-dimensional differentiable manifold M, we
denote by V(M) the space of complex-valued vector fields on M, by A(M)
that of complex-valued forms on M and by II, (»=0,1,-:-,m) the projection
of A(M) onto the subspace A,(M) of r-forms.

Let M be a contact Riemannian manifold with the structure (n, g). We
denote the associated vector field by & and the (1, 1)-tensor field by ¢ as usual.
These are related in the following manner :

g& X)=5X), #E =1 ¢t=0, 5¢X)=0,
29(X,¢Y) = dn(X,Y), ¢ X=—-X+n(X)E,

(1.1
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where X,Y e V(M). For further properties, see [3].
The Riemannian metric ¢ induces in each A,(M) a scalar product ¢( , ):
A.(MYX A, (M) — A(M), which is defined by

1 .
g(a’ B) = ngl]l e gi'j'ail...trﬂjl...j,

for r-forms a and 8. Moreover, since a contact manifold is always orientable,
through the integral over M an (Hermitian) inner product is defined in the
usual way: one of @ and B having compact support,

<a, B> =LaA*§= fﬂg(d,ﬁ)*l,

where % is the star operator by means of the metric g. For a linear operator

T in A(M), we denote by T* the adjoint of T with respect to this inner product.

T* (if it exists) is determined by <Ta, 8> = <a, T*B>>, and the correspondence

T — T¥% is (i) conjugate linear: (aS+bT)* = 2S*+bT* (a and b are complex

numbers), (ii) anti-homomorphic: (ST )*=T*S* and (iii) involutive: T**=T.
Now, we shall introduce several operators in A(M). We define

I=e(p), AN=1I* L=elp), A=0L* <<p= %‘dﬂ),

where e(a) denotes the exterior product by a form a: e(@)B = aAB. The
following identities are almost trivial :

IL-LI=0, dL—-Ld=0, dl+ld=2L,
(1.2) M—AN=0, SA—AS=0, S\+A=2A,
AM—Irn=0, IA—Al=0, I+M=1.

The last three follow from the fact that A is an anti-dervation.
Let us introduce another operator ®, which is defined by

(cI)a)(Xl" "’Xr)= Za(Xl7°°'a¢’Xp,y' "er), Xl" ",XrGV(M)
=1
for an r-form a. First, we shall show that ® is a derivation :

(1.3) DaNB) = PaNB + aNDB.

Clearly it suffices to verify it for the case dega=1. Let B be an 7-form.
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Then, for X,---,X,;, € V(M) we have

DaAB) Xy, oo, X)) = 2 {Z(—l)”“‘a(Xu)B(Xl,...,3\{”, e, Xy, Xo0)

p=1 \vxp

+(_1)ﬂ-1 a(¢Xu) B(Xb A 52#) M) Xr+1)}

r+1

= 3 (=1~ (@a)(X,) B(X, - - - Re oy X

+ Z (—1)')—1 a(Xv) Z B(Xl,' ) 32:»' M) ¢Xu"' ) Xr+1)

)

= ((pa/\ﬁ)(Xl; MRS X7'+1) + (d/\q)ls)(Xl, M >Xr+l) >

N\
where X, means that X, is omitted. The proof for the case deg a=2 is achieved
by induction. We also observe that ® is skew-Hermitian :

(1. 4) Ny

For, we get easily g(a, ®B8) = —g(®a, B) from the local expression, and then
(1.4) follows immediately. As a consequence of (1.3), (1.4) and simple facts
Op=dp=0, we obtain

PROPOSITION 1.1. & commutes with I, N, L and A.

Denote by 6(E) (or briefly 6) the Lie derivation with respect to & In a K-
contact Riemannian manifold (i.e. a contact Riemannian manifold such that £ is
a Killing vector field) this 6, considered as a linear operator in A(M), also
satisfies

(1.5) 6% = —0.

In fact, as we have 6(§)g = O in this case,

(1.6) 6E)(g(a, B)) = g(bat, B) + g(a, 8)

holds for any two forms @ and 8 of the same degree. But, for any function
f with compact support we see

<BE) f,1> = <Ef), 1> = <dfyn> = <f,8p> =10,
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since 87 vanishes in a contact Riemannian manifold (cf. [3], 9-3). Hence, if one
of @ and B is of compact support, integrating (1. 6) over M, we get the required
result : <fa, B> + <a,6B> = 0.

Clearly 6 commutes with d and A because of a formula §=dAN+Ad and
identities d?=A?=0. 6 is also permutable with / and L since p=0p=0 are
satisfied in a contact Riemannian manifold. Moreover, if the manifold is K-
contact, # commutes with 5, A and ®. The commutativities of § with 8 and
A are apparent from (1.5) and those with d and L. To see that § commutes
with ®, we note that ® is defined by means of ¢ and 6¢p=0 holds in a K-contact
Riemannian manifold. So, The Lie derivative of @® vanishes and this implies
our assertion. Summarizing above, we have

PROPOSITION 1.2. In a contact Riemannian manifold, the Lie derivation
0 with respect to &, considered as a linear operator in A(M), commutes with

d,l,n and L. In a K-contact Riemannian manifold, 6 commutes with any
of d,8, [, N, L, A and .

2. The trigrade structure in A(M). Let M be a (2n+1)-dimensional
contact Riemannian manifold with a structure (7, ¢, £ ¢). The tensor field ¢,
regarded as a linear operator in V(M), induces a direct sum decomposition of
VM): VM) =V,+V,+V_,, where V. (¢= 0,7, —i) is the eigenspace of ¢
belonging to its eigenvalue &, and the projections of V(M) onto V,, V; and V_;
are given by

1 . - 1 .
P(X) = n(X)E, P(X)=5 (X—9(X)E—ipX}, PX)=5 (X—n(X)E+ipX])
for X e V(M), respectively (cf. [1]). Clearly they satisfy
P,+P+P=1, P*=P, P*=P, PP=PP=0,

2.1 Pg=0, Pg=0, ¢P=Pp=iP, ¢P=Pp= —iP,
gPX,Y)=g(X,PY) for X, YeV(M).

Now we shall introduce a set of operators I,,, 0 =u=1; 0= p,qg=n)
in A(M). We define II, ,, by

(HO,P,LIa)(Xl st Xp+q)

1 _ —
- P‘q‘ ZSgn(U)a(PX‘T(U’ <o o, PXoiy, PXoany > * 0 PXooroy)

for ac A, (M) and X, -, X,,, € V(M), where the summation on ¢ is taken
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over all substitutions of (1,2,+-+, p+¢q), and II, ,, by
(2.2 II, g = LX0 o -
For the sake of convenience, we put II, ,,a=0 if dega#u+p+q. Then,

the actions of all II, ,, are extended to the whole A(M).
These operators II, ,, are projective; that is, they satisfy

0 if (u,p,q) # (v,7,9)
2.3) L, L, .., = .

Hu,p,q lf (u> P: Q) = ('U, r’ 5) ’
(2.4) S Ih,.=1.

(2. 8) is verified by making use of (2. 1) and (1. 2), while (2. 4) is got by expanding
aX, -+, X,) = aP,X,+PX,+PX,,---,PX,+PX,+PX,).

The complex conjugate and the adjoint of II, ,, are given by
(2. 5) ﬁu,p,q = Hu,q,p ’
(2.6) I 0 = ypg-

Their proofs are quite simple.
If we put Ay, =1L, ,,AM), by virtue of (2.4) we have

AM)= > A, (direct sum).

0=us10=p,qsn

Moreover, it is easy to see
Au,p,q /\ A’U,T,s C Au+v,p+'r,q+s b

where we understand that A,y 4rq:s=(0) if one of indices exceeds its proper
range. Thus, we have

THEOREM 2.1. In a (2n+1)-dimensional contact Riemannian manifold
M, the algebra A(M) of complex-valued forms on M is naturally endowed
with a trigrade structure such that one grade is of dimension 1 and other
two are of dimension n.

A form a of A,,, is said to be of type (u,p,q). It is characterized by
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II, , a=a. In particular,  is clearly of type (1,0,0), while @ is of type (0, 1,1)
since we can show II,,,p=¢ easily.

An operator T' in A(M) is said to be of type (v,r,s) if it maps Ay,
into Aysspsrers for every triple (u, p,q). Clearly T is of type (v, 7,s) if and
only if

THu,p,q = Hu+v,p+r,q+sT
holds for every (u, p,q). Taking its adjoint, we see immediately that if T is
of type (v, 7,s), then T* is of type (—v, —r, —3).

Let us examine the types of our operators. Those of /, A, L and A are
apparent, and thence we have

lHO,p,q - Hl,]),ql 5 lHl,p,q = 0 > ]]O,p,ql = 0 ’
(2. 7) )'HLW,Q = Ho‘p,qx ) )'HO,p,q = O 5 Hl,p,q ): = 0,
LH‘u,p,q = Hu,p+l,q+1 L b AHu,p,q = U, p—1,4—1 A' .

® is of type (0,0,0). This follows from
@.8) Mo ® = (p—q)i Ly pe = Pllypg-
To get (2.8), let a be a (p+gq)-form. Then, we have
(IMo, 5, @A) Xy, + + + , Xy o)

1 2 I =
= P‘ qy Z Sgn("') 12 a(PXU(l)r R ¢PXV<M)’ ] thr(p) > P‘Xa(ml), ] PXo(p+a))
‘1 o p=1

p+q

+ Z a(PXa(l)’ ] PXV(p)r—PXv(ml)’ °t d)l—)Xv(u)’ °t S FXU(P‘HJ))}

b=p+1

1 D . p+a =
WZS@I(G){Za(~ c o, iPXogy, ) + 2 alee, —iPXou, - )}

p=1 p=p+1

= (P—q) i(HO,p,aa)(Xl PR Xp+q)

for X, -+, X+, V(M). Hence we see I, 2=(p—q)i1l,,,, and from (2. 2)
we have a similar relation II,,,®=(p—q)ill,,, Thus the first equality of
(2. 8) is obtained. The second equality is merely the adjoint of the first.

In a K-contact Riemannian manifold, 6 is also of type (0,0,0). This is
verified from the fact that the Lie derivative 6(&)IL,,,, of II,,, which is defined
by means of 7, & and ¢, vanishes in the present case.
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3. Normal contact Riemannian manifolds. A contact Riemannian manifold
M is said to be normal if the so-called torsion tensor field N, which is defined
by

NX,Y) = [X, Y]+ ¢[¢X, Y] + ¢[X, ¢Y] — [$X, ¢Y ] {X(»(Y)) - Y (X))}

vanishes identically on M. This condition can be described in terms of the
decompositions of V(M) and A(M).

THEOREM 3.1. In a contact Riemannian manifold, the following three
conditions are equivalent :

(@) the torsion tensor field N vanishes,
(b) (£, ViICV, and [V, VICV,,
(C) dAO,p,qC Al,p,q @ Ao,p+1,q @ Ao,p,q+1 .

PROOF. The equivalence of (a) and (b) was shown by S. Sasaki and
C. J. Hsu [4], and that of (a) and (¢)y=14-0 Was got by M. Kurita [2]. Though
the analyticity is assumed in both papers, this is not essential so long as the
conditions are stated in these forms. So here we have only to prove (c) under
the assumption (C)y-14-- To do this, notice that any form of A,, (for brevity
we often denote A4,,, by A,,and A,,, by 4, can be expressed locally as
a sum of simple forms a,A ++« Aa,ABA +++ AB, such that a,,---,a,€ A,
and By,++,8,€Ay:. For such a form a,A +-+ Aa,ABA -+ AB, of A,,

making use of (¢),-;4-0 and its complex conjugate (c),-o -1, We have

d(al JARKRYAN? AWAN BiA+--A Bq) € dAI,O/\AIJ-l,q+dA0,1/\Ap,q—1
C (Az,o@ALﬁaA;,o) ANAp1qe+ (A0,2®A1,1@A6, DA Ap g
CApi1,dD AP A,

This completes the proof.

On the other hand, it is known [3] that a contact Riemannian manifold
is normal if and only if

@.1 Vibis = MG — M9
is satisfied, where V, denotes the covariant differentiation by means of the

metric g. Making use of this fact, here we shall give another condition to be
normal in terms of our operators.
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THEOREM 3.2. In a normal contact Riemannian manifold of dimension
2n+1, we have

2n+1
(3.2 dA—Ad = DE—3D—2 > (n+1—7) MI,.

r=0

Conversely, if (3.2) is valid in a contact Riemannian manifold. then the
manifold is normal.

PROOF. We proceed by tensor calculus. Let o be an r-form in a normal
contact Riemannian manifold, then we have

(dAa—Ada),...;,

: 1
= g (_ 1)“Vi”' <7 ¢hk ahki.-u?“«--i,)

1 r
- 7‘#” <Vh Opigent, — Vi pigens, + Z (—1)“Vf”am...5n...i,)

p=2

1 r
= 2 Z(vi ¢ )d’”: lp-rKipaeeoir _d) vhakfx iy
u=

=

o (Eh Sk Eks ) gty iy g vir ¢hk Vn g,

\G]

= (r——l)()\,a)i,...i, - ¢hk vh Oy,
and

(8<I>a — CI)Ba)i,...i,

= — V(" Aniyeot, + Zfﬁ 1y Olkige iy iy %) + Z ¢hiﬂv Oty ety bty

p=2

,
= —(V ") Quiyert, — "V * Qntyecs, — 2, (VFP",) iyt iy,

,

= —2nE" Ay, + P V0 Qityeir — Z (& 8?,, - ﬂinghk) Oyt shiyeeir
p=2

= (—2n+r—1)(7\,a)iz.‘.i, + ¢hk Vnakizmi, .

Combining these two equalities, we get (3.2). Conversely, if (3.2) is valid in
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a contact Riemannian manifold, evaluating (3.2) on 2-forms, we easily attain
to (3.1). Hence the manifold is normal. Q.E.D.
Clearly Theorem 3.2 remains true if we replace (3. 2) by its adjoint

2n+1

(3.3) SL—L3 = do—dd+2 Y (n—r)I1I,.
r=0

Making use of (3.2) and (3.3), we can calculate the commutators of the
Laplacian A and various operators:

PROPOSITION 3.3. In a normal contact Riemannian manifold of
dimension 2n+1, we have

(3.4) AN=NA = 2{®8—8D—23 (n+1—r) ML},
(3.5) AA—AA = =43 (n+1—7)ATL,—2)8,
(3.6) AD—DA = —2(0—Ad+15),

(3.7 Al—IA = 2{dDd—®d+23 (n—7) I11,}
(3.8) AL—LA =43 (n—7) LTI,—21d .

4. Harmonic forms. In this section we concern with harmonic forms on
a compact normal contact Riemannian manifold. About this subject, S. Tachibana
[6] got some fundamental results:

THEOREM 4.1 (S. TACHIBANA). Let a be a harmonic r-form on a com-
pact normal contact Riemannian manifold of dimension 2n+1. Then,
(i) if r=n, Ma=0,
(i) if r=n+l, Aa=0,
(iii) Pa is again harmonic.

These can be verified by using (3.4)~(3. 6) as well. If we use (3.7) and (3. 8)
instead, we get dual results:

COROLLARY 4.2. « being the same as in the above theorem,
(i) if r=n+1,la=0,
@) if r=n, La=0.
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Now we shall show that if @ is harmonic, each II, , & is also harmonic (or
zero). Let a be a harmonic r-form and assume that » =7 for the moment.
Then, every II, , . vanishes because of (2.2) and Theorem 4.1 (i). Apply ®*

(u=0,1,-++,7) on a= )_ II,,,a. Making use of (2.8) repeatedly, we have
ptg=r
a system of linear equations in r+1 variables IL;,.@ (¢=0,1,++,7):

”
a= z Iyt

t=0

q)d = Z (2t—r)iH0,¢',_¢a

t=0

@Ta = z [(2t—r) Z]T Ho,t,r—td~

t=0

The determinant of the coefficients differs from zero, as is easily seen, and so
each Il ,.a is expressed as a linear combination (with constant coefficients)
of harmonic forms a, ®a,---,P’a.  Hence II;, 2 is harmonic. For a
harmonic r-form a such that »=#n+1, by a similar way we see that I, , ,a=0
and II, , .« is harmonic. Summarizing above, we have

THEOREM 4.3. In a compact normal contact Riemannian manifold of
dimension 2n+1, various components of simple type IL,,a of a harmonic
form a are all harmonic (or zero). In particular, 11, ,,a=0 if p+q=n+1
and 11, , =0 if p+qg=n—1.

Denote by H,(M) the space of (complex-valued) harmonic 7-forms on the
manifold M and by H,,, that of harmonic forms of type (u, p,q). If r=n,
from the above theorem we have

HM)= 3. H,,, (direct sum).
p+a=r
Since the complex dimension dim (H,(M) of H,(M) is equal to the r-th Betti

number b.(M) of M, noting that H,,, and H,,, are (conjugate) isomorphic,
for any odd dimension r (=n) we have

(r-1)/2
bT(M) = dim}'Hr(M) = Z dlm L'HO,p,q = 2 Z dim CHO,l,T—t .

ptg=r t=0
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Thus, 6,(M) is necessarily even. Consequently, taking account of the Poincaré
duality, we get

THEOREM 4.4. The r-th Betti number of a compact normal contact
Riemannian manifold of dimension 2n+1 is even, if r is odd and =n or
if r is even and =n+1.

REMARK. For the purpose to prove this result only, the following argument
may be simpler. If we set (¢pa)(X;, -, X,)=a(¢X,,+--,¢X,) for ac A,(M),
we easily see ¢’a = (—1)"a for harmonic 7(=n)-form a. On the other hand,
it is known [5] that if a is harmonic, so is ¢a. Therefore, the ¢ defines a

complex structure in the real vector space HF(M) of real harmonic r-forms
on M, and hence the real dimension of FHF(M), which is equal to &,(M),

must be even.

5. The decomposition of d. Throughout this section we assume that the
manifold M in consideration is always a normal contact one.

The operator d is not of simple type; to clarify this situation, we recall
Theorem 3.1 (c). Differentiating A, ,,=7A Ao, we have a similar relation
dA; ;CAypirg® Arpars D Ao pirgs, and these relations suggest to define

d, = Z Iy 1,4 dHu,p,q s d_l = Z 1L 5,q41 dHu,p,q’

up,q u,n,q

d, = Z IL ,, dHO,p,q P d;= Z o, pr1,041 dHl,p,tr
p.q n.q

Then, we have a decomposition d=d,+d,+d,+d; and each of d,, d,, d, and
d, is of simple type. Clearly d, and d, are complex conjugate with each other,
while both d, and d; are real operators. The last two have another expressions

(5.1) d, =10, dy=2L:.

In fact, d,= Z 1,5, d 1Ly 5= Z Lo, p, N Ty 5 0=1 Z o, 5,00 o, 5,0 =1 Z L, p,o0=16.
The latter is verified in a similar manner.
Denote the adjoints of d,,d,,d, and d; by &, 38,8, and 8, respectively.
They are explicitly given by
3 = Z Hu,p-l,qsnu,p,q s 8_1 = Z Hu,p,q—lsnu,p,q s

82 = ZHO,D,QSHI,P,(I = —07\' ) 83 = ZHLp_.l,q_lsng’p,q = ZZA. .
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Now we shall show a result analoguous to a well-known formula in Kahler
manifolds.

PROPOSITION 5.1. In a normal contact Riemannian manifold, we have
(5.2) dA—Ad, =18, dA—Ad = —i}.
PROOF. With the aid of (3.2) and (2.8) we can proceed as

dlA'_‘A.dl - EHu’p’q_l(dA._Ad)Hu,p’q
= 310, g1 {PE—8P—2(n+1—u—p—gA}L, ,,
= 2{(15_Q+1)iHu,p,a—l’SHu.p,q_Hu,p,q~18'(P_Q)inu.p.u

=9,.
The latter is merely the complex conjugate of the former. Q.ED,

The commutators of d, and d, with A are given by
(5.3 dA—Ad, =0, d,A—Ad;= -2 (n+1—r)AI,.
The first is clear from (5.1), and the second follows from (5.1), and
(5.4) AL — LA =Y (n—r)II, + 2In,

which is obtained by using (3.2) or directly by tensor calculus. Summing up
(6.2) and (5.3), we get

(5.5) dA — Ad = —i(3,—38) — 2> (n+1—r)MI,.
As an application of this formula, we shall show

PROPOSITION 5.2. In a normal contact Riemannian manifold, any
closed form of type (0, p, 0) is harmonic.

PROOF. Let a be a form of type (0, p,0). By considerations on type,
it is easily seen that Aa=0, Aa=0 and 8 a=8,2¢=8,a2=0. Therefore, if a is
closed besides, it follows from (5.5) that §,&¢=0 and hence 8a=0. Consequently
a must be harmonic. Q.E.D.
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Now, assume that M is compact. Then any harmonic r(=n)-form a
satisfies Aa=0, Aa=0 and fa=0. These conditions are perhaps not sufficient
for a to be harmonic. Then —— how far are they from the full condition to
be harmonic ? To answer this, we make use of the following identities

d8,+8,d, = d 8 +8,d +2i(AL—LA)6,
(5. 6) d282 +82d2 = —02 5
dy83+8ds = 4> (n+1—r)INIL,+ LA} .

The last two equalities are immediate from (5.1) and (5.4), while the first is
verified with the aid of (5.2) and

dld—1—+ (Z:dl + dgds + dgdg = 0,

which is one of the identities obtained by comparing various types in the
expansion of (d,+d,+d,;+d;)?=0. From the last two of (5.6) we have two
equivalences

da=3%a=0 & 6a=0,
dia=8a=0&& nva=Aa=0 (dega=n).

On the other hand, obviously a form « is harmonic if and only if it satisfies
da=da=d,a=d,a=0 and §,a=8a=28,a=8,a=0. Hence, taking account of
the first equality of (5.6), we have

PROPOSITION 5.3. In a (2n+1)-dimensional compact normal contact
Riemannian manifold, an r(=n)-form a satisfying Aa1=0, Aa=0 and 6a=0
is harmonic if and only if it satisfies d,a=8a=0 (or d,a=8,a=0).
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