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1. Introduction. In [6], Stampfli proved that if 7" is a hyponormal
operator (i.e. T¥T = T7T*) and if the spectrum of 7 lies on a rectifiable
smooth Jordan curve and does not separate the plane, then 7 is normal, by
using the localization technique of Dunford.

The purpose of this note is to extend this result as follows by constructing
the resolution of the identity directly :

If T is hyponormal and if the spectrum of 7T lies on a Jordan curve
which consists of a finite number of rectifiable smooth arcs (it may well be
the case that the spectrum seperates the plane), then 7" is normal.

It is known that a hyponormal operator satisfies a certain growth condition
on the resolvent (as Def. 1). This growth condition guarantees the single-
valued maximal analytic continuations of resolvents under some spectral
conditions. Then, in section 3, extending the method of J. Schwartz [4], we
shall show the existence of proper invariant subspaces. Next, in section 4,
we shall prove that for a hyponormal operator, these subspaces are reducing
subspaces, in particular, spectral subspaces. By piecing these subspaces together
to form a resolution of the identity, we conclude our theorem.

2. Some preliminaries. Throughout this note, an operator means a
bounded linear operator on a Hilbert space H. o(T), o(T), a(T) and o, (T)
denote the spectrum, the point spectrum, the continuous spectrum and the
residual spectrum of an operator 7', respectively.

DEFINITION 1. An operator 7' on H satisfies the condition (A) if for
each zep(T), |[(T—=I)?| = {d(z,a(T))}* where p(T) denotes the resolvent
set of T and d(z, o(T)) denotes the distance between 2z and the spectrum o(T').

DEFINITION 2. An operator 7" on H satisfies the condition (B) if its
spectrum o(7") lies on a Jordan curve C which consists of a finite number of

rectifiable smooth arcs (it may well be the case that the spectrum separates
the plane).
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By the statement that ¥ is a smooth arc, we shall understand that vy has
a parametrization ¢ = ¢(s), 0 =s=[(y), in terms of arc length s, and that
g(s), ¢'(s) and ¢“(s) are continuous.

For convenience’ sake, throughout this note, we assume that the curve
C defined as above is positively oriented and, for arbitrary fixed &, on C, C
has a parametrization ¢ = ¢(s), 0=s=1(C), in terms of arc length s from
o, ¢(0) = &o, g(s) = ¢g(s+L(C)), and ¢(s) is continuous on C and ¢'(s), g"(s) are
continuous except the points &, = g(sp), S < Sesr, £ =1,2,-+-,n0on C. It is
clear that the existence of the one-sided limits ¢.(sy), ¢-(sc), 9%(sp) and ¢”(sp),
k=1,2,+++,n by the definition of C (each arc is smooth).

DEFINITION 3. For a bounded closed subset Y of the plane, a point
peY is semi-bare if there is a circle through p such that no points of Y lie
inside this circle.

LEMMA 1. Each point on the curve C defined as above is a semi-bare
point.

PROOF. By the smoothness of each arc, for each ¢ < C, there is the
tangent of C at ¢ (of course, for the case ¢ = {;, we consider the one-sided
limits). And hence, by the simpleness of the curve C, there is a circle
tangent to C at ¢ such that no points of C lie inside this circle. This
completes the proof.

THEOREM 1. If an operator T on H satisfies the conditions (A) and
B), then o (T)=¢ and o (T*)=¢, and it can be expressed uniquely as a
direct sum T =T ,®T, defined on a product space H= H,®H, where H, is
spanned by all the proper vectors of T such that:

(@) T, is normal and o(T))= the closure of o, (T,)
(b) o(Ty)=0(T>)
(¢) T is normal if and only if T, is normal.

PrOOF. If ¢ <o, (T), then by Lemma 1, there exists a & € p(T") such that
d(&,, o(T)) = |£—¢&,], and so, by the condition (A), we have |[(T— &, I)7!|
=|¢—¢&|'. On the other hand, ¢eco(7T) implies &ec o (T%), then £—F,
e o (T*~E,I) and (E—E)' € o(T¥~EI)™); hence, (E—£0)" € o (T—Eo)™)
Ua,(T—¢&,I)"). However by [3: Theorem 4 ()], o,(T—¢ D)) N {z: |2|
=|(T—=¢& D)} =¢. Therefore (£—¢&)! € o,(T— ¢ I)™"). This implies
¢eo (T). This is a contradiction. ie. o(T) = ¢. o (T*)= ¢ may be proved
in just the same way.

Next, let Tx=¢x, 20, then by Lemma 1 and by the condition (A),
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there exists a &, ¢ p(T) such that [(T—¢ )Y = |&€—&|! and (T—¢& 1) 'x
= (¢—¢&,)'x; hence by [3 : Theorem 3], we have (T*—F,[)'x=(E—&) '
i.e. T*x=Fx. This means the proper subspace N(7T) of T belonging to ¢
(i.e. R(T)={x: Tx=¢x}) is a reducing subspace of H. And also this implies
that each proper subspaces of 7" blonging to distinct proper values are mutually
orthogonal ; because let Tx, = ¢ x,, Tx, = x5, 2, #0, 2, #0, & # &, then
&y, x3) = (§12y, ) = (Txy, 25) = (2, THx5) = (21, E225) = §o(y, 5) and hence
(z1, 2,) = 0.

Let H, be the direct sum_ @® )Eﬁg(T) of all the proper subspaces of T

cop(T
belonging to the point spectrum, then H, is a reducing subspace of H, and
clearly, the restriction 7', of 7" on H, is normal. Hence o (7T) = o,(7,) and
o, (T)) is empty.
Consider any complex number ¢ which is not in the colsure of o,(7)).
Let d > 0 be such that |{—=2|=d for all z ¢ the closure of o,(T;). Then, for
any 2 H, |(T,—¢) 2l*= [(T,~¢1) @ nl* =I, ® (T\—¢D) ml= 5 (h—¢:

Aeay(T)
B2V} Z}LZ;JQ]I x|? = d2|]ME{’I‘2(T3:c;\HZ = d?-||z||>. Therefore the bounded inverse
of (Tl—ﬁ() )exists for every such ¢ i.e. £ep(T)). This means o(7))C the
closure of o(T)).
Next 0(T)=¢ and o (T*)=¢ imply o, (7T) = o,(T%). And this means
o(T)=¢ and o (T,)=¢, because o,(1:)Co,(T) and o,(T%,)C o (T*). Therefore
o(Ty)=0aT,).

The last assertion of this theorem is clear by the above discussion.

REMARK. In [1], C. H.Meng proved the same result as Theorem 1 under
the following conditions instead of the conditions (A) and (B);

(1) the closure of the numerical range of T is exactly convex hull 3(7T)
of the spectrum of 7.

(2) the spectrum of T lies on a convex curve.

It is known that the condition (1) is equivalent to (T —¢&I)!| = {d(¢,
(1))}~ for all ¢ &3(T) where 3(T) denotes the convex hull of o(T) (see [2]).
It is easy to see that by the condition (2), each ¢ < o(T) is a semi-bare point.
Therefore we can prove thit result by the same method as in Theorem 1.

LEMMA 2. Let C be as Lemma 1. Then for each pairs of the points
ga = g(sa)’ S; LS < Si+1s gﬁ = 9(5,8), S < Sg < Sk+1> Sa < Sg on C and any
sufficiently small positive number & we have a closed simple connected
domain D(s,, sg) containing the subarc (¢(s.), g(ss)) of C in its interior such
that :

(@)  ©D(sa, sg) (boundary of D(s., sg)) is a rectifiable Jordan curve which
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intersects with C at ¢, and &g only.

(b) for each §eOD(sa,s)N{E: |E—9g(sa)| < &/4}, d(&, C)=[E—g(s.)| and
also for each e 0D(s., s5)N{E: |E—yg(se)| <E/4}, d(E, C) = |E—y(se)l.

(©), max, (¢, arelg(s), ys»)) < &

PROOF. The smoothness guarantees the existence of ¢'(s) at s, and
sg, and that for each smooth arc[g(sy), g(sks1)], £=1,2, ¢+, n, the minimum
p. of the radii of curvature is non-zero; hence p, = min p, is non-zero.

1=sk=n

Let d, = d(g(s.), C—arc[g(s,), g(s;«1))), and dy=d(g(ss), C—arc[g(si), 9(se+1)])
and let & be so small that & < min(p,, d,/2,d,/2). Then we can construct the
simple closed rectifiable curve indicated in the following figure (*) which
contains the segments ¢(s.) =759 (s.), 0=5=8&/2 and g(sg) =759 (sp),
0=s5=¢&/2 as its subarcs and which for each ¢ on this curve, max d(¢,

& e this corve
arc[g(sa), 9(sp)]) <é&.
Let D(s., s;) be the domain surrounded by this curve.

gspt isgisy, 08s s &

C - !‘—‘QD(SMSP)

FICRE A TEPVRE L3R -,%
Figure(*)

THEOREM 2. Let T be an operator on H which satisfies the conditions
(A) and (B). If for each x< H and D(s,., ss) being given in Lemma 2, we
define the vector-valued function f,(§) on 0D(S., ss) as follows ;

(€= gl € =gl (T—=ED" z,
Ja(8) = if £ g(so) and & g(se),
0, if §=g(ss) or &= y(s),
then f,(£) is strongly continuous on 9D(s,, sg).

PROOF. Clearly we have only to show the continuity at ¢(s.) and g(se).
But this is also clear by the condition (A) and by Lemma 2 (b).

3. Existence of invariant subspaces. For fixed ze H, (T—¢I) 'z is
an analytic vector-valued function on p(7). In this section we consider the
analytic continuation of (T'—¢I)~'x defined as follows ;
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DEFINITION 4. A vector-valued functicn x({) is an analytic continuation
of (T—¢I)'x if () is defined on an open set D{x) containing p(7), analytic
on D(x) and x(§)=(T—¢I)'x whenever &< p(T).

LEMMA 3. Let T be an operator which satisfies the condition (B) and
let o(T) = o(T). Then for fixed x< H, (T—¢I)'x has the single-valued
maximal analytic continuation x,&) on DSx) if it has an analytic con-
tinuation, and then x,§) = (T—¢I)'x for all &< D(x).

Since, in this case, o{T*)=o(T*), (T*—EI)'x has also the single-valued
maximal analytic continuation if it has an analytic continuation.

PROOF. Let x(¢) be an analytic continuation of (T'—¢I)~'x on D(x).
By the condition (B), for each ¢<D(x), we can choose a sequence {{.},
¢. <€ p(T) such that ¢, — ¢ Then we have (T—¢.0)x(¢,) =z for all ¢, by the
definition 4.  Hence, |z — (T—¢ 2@ = (T — ) x(€e) — (T — £ 1) 2(D)]
= [(T=8D)| - | 2(&e) — 2O + W(T—Ead) — (T=ED)]i - |2 = 1T =Ll - [ 2(Ea)
2O + 1&a—&| |2 =0 as & — & for each & e D(x). Because ¢<o(T)
= o(T), (T'—¢I) is one to one and x({)=(T—¢I) 'z for all Le D(x)++-- - .

Next, let x,(¢) and x,(§) be two analytic continuations of (T'—¢I)~'x on
D(x,) and D(x,) respectively, then for each ¢ e D(x,)ND(x,), (T—¢&D)(x,(&)
— (&) = (T—¢Dxy () — (T—¢Day(f)=x—2=0 by (1). On the other
hand, ¢ &0 (T). Hence, x;(8) = x,(£) on D(x;))ND(ay)« =+« - 2).

We consider the family {x.({); @< N} of all the analytic continuations
x8) of (T—¢I)' = on D(x,), respectively. And we define x,(¢) = z.(§) if
¢ e D(x,), then z,(¢) is analytic on D,(x) = UD(xa); hence x,(¢) is clearly

the maximal analytic continuation of (T'—¢I)~'x. And by (2), () is single-
valued. By (1), 2 ()=(T—¢I)"'x for all ¢ € D(x).

DEFINITION 5. R(¢:T,z), p(T:x) and o(T:x) denote the maximal
single-valued analytic continuation of (7—¢I) 'z, the set {£:R(&:T,x) is
analytic at ¢} and its complenent, respectively.

LEMMA 4. Let T be an operator which satisfies the condition (B) and
let o(T)= 0o T). If o(T:2)Na(T*:y)= Q& (the bar indicates the complex
conjugate), then (x,y) = 0.

PROOF. By Lemma 3, R(¢: T, x) = (T—¢I) 'z on p(T: x) and R(& : T*, x)
= (T*—EI)'x on p(T*: x).

Let fi)= (T —¢I) ' x,y) = (2, (T* — §I)'y) = (T*—¢I) 'y, x), then
(&) is analytic at ¢ &o(T:x) and also at &&o(T*:y). And hence f(§) is
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analytic everywhere. On the other hand, it is known that |[(T—¢I)!|
= {d(¢, V[;?T))}‘1 whenever ¢ QW,?’T), where V[’/'\(I’) denotes the closure of the
numerical range of T (i.e. W(T)= {(Ix,x): x< H, |x| = 1} ; see [8]), and
hence f(¢) vanishes at infinity. Therefore f(¢) must be identically zero.
However f(¢) = > — (T"z,y)&~™*", hence all coefficients of ¢” must be zero,

n=0

in particular (z,y) = 0.
Using the same method as in [4], we have the following two therems.

THEOREM 3. Suppose T be an operator which satisfies the conditions
(A) and (B), and suppose o(T) = oT). For each pair of the points
Cu= 9(s2), Ea=9(s8); Su <S5 on C, let

H(s,, s5) = {xe H:0(T: x)Carc (¢(s.), 9(sp)l} , and let
H*(s,, 55) = {2 e H:o(T*: x)Carc (¢(sa), g(sa)1} -

Then H(s,,sg) and H*(s.,ss) are closed linear subspaces of H, invariant
under T and T* respectively; moreover, H(s,,ss) and H¥*(ss, s,+IC)), and
also H*(s,, sg) and H(sg, 5.+L(C)) are mutually orthogonal.

PROOF. Because both of the invariantness under T and the linearity of
H(s., sg) are clear, we have only to prove the closedness of H(s,, sg).

Let z, — x, x, € H(s., sg) and let R( : T, x,) be the maximal single-valued
analytic continuation of (T'—¢I)™'x,, then

R¢:T,x,)=(T-¢I) ' ', > (T—tI) 'z for all &ep(T).

For any sufficiently small positive number &, let D(sg + &, s. + I(C) + &)
be a closed simple connected domain containing the subarc (g(sz + &),
9(se + UC)+E&)) of C as given in Lemma 2. Then R(¢: T, x,) are analytic in
Int (D(sg + &, s, + I(C) + &)).

Next we define the vector-valued function ¢,(§) on D(sg+€&, s.+I(C)+¢&)
as follows;

(€ —9(se+&)(E—9(se + UC) + E))'RE : T, z)

0.(0) = if £#g(ss+€) and £g(s. + LC) + &)
0 if E=g(ss+&) or {=g(s. +UC) + &)
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Then ¢,(¢) are analytic in Int(D(sg+&, s. + {(C)+&)) and strongly continuous
on 9D(sg+€&, 54 +1L(C)+&) by Theorem 2. By the maximum modulus principle,
{g,(©)} is a uniform Cauchy sequence with respect to ¢; hence its limit
function ¢,(¢) is analytic in Int(D{sg+€&, s.+{C)+&)) and (& — g(se+&))2-
(&= g(sa+UC)+E)) 2 go(&) is also analytic in Int(D(sz+&, s+ U(C)+E)). Clearly
this is an analytic continuation of (T—¢I)"'x onto the arc(¢(ss+&), 9(s+4(C)
+ &), ie. oT:x)C arc[g(s. + &), g(ss + &)]. Because we can choose &
arbitrarily small, we have o(T': x) Carc(¢(s.), 9(Ss)]; hence x e H(s,, sg).

The closedness of H*(s,, ss) may be proved in just the same way, and the
last statement is a consequence of Lemma 4.

THEOREM 4. Suppose T be an operator which satisfies the conditions
(A) and (B) and suppose o(T)= o(T). Let H(s.,ss), H(sg, s« + LC)) and
D(sg+€&, 5. + I(C) + &) be as same as in Theorem 3, and for arbitrary fixed
x € H, define as

(& —g(sa+&)*(E—g(sa + UC)+ENNT—LI) 'z,
z(§) = if £€OD(ss+€, sa+UC)+E&)— {g(s5+€), g(sa +UC) + &},
0, if E=g(sp+&) or E=g(s.+UC)+E).

Then, if b(2) is any numerical-valued function, analytic in the interior of
the unit disk and continuous on its boundary T' and if T is the conformal
mapping from D(sg+&, s,+UC)+&) to the unit disk (the simple connectedness
of D(sg+&,5.+UC)+&) guarantees the existence of this mapping), the contour
integral

y= f b(2) 2(r-(2)) dz (1)

belongs to the space H(sg, s.+I(C)). Moreover, unless x belongs to the space
H((s., $g), there exists a numerical-valued function b(z) analytic in the interior
of the unit disk and continuous on T' such that the vector y defined by (1)
is different from zero.

PROOF. By Theorem 2 and by the definition of the conformal mapping,
x(7'(2)) is continuous on I. And by the resolvent equation, for any we< p(T)
NExt(D(sg+&, s.+1(C)+&)),

(T—pD) ' 2(&) = E—p) ' x(£) .
= =€ —glss+ENE—g(sa+UCO)+ENV(T—pI) ' .
Then, by Cauchy’s theorem,
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@-ply'y = [ HEED g

_ f b(z) (1~} (2) —g(se+EN*(T- ’(z() ; 9Ge+ UOY+EN(T—p)'z .
r TH2)—p

_ [ Mo g, (2)

T (2)—w

Since the final expression of (2) is plainly analytic in Ext(D(sg+¢&, s.+{(C)+¢&)),
it follows at once o(T: y)Carc[g(sg+E&), g(s.+UC)+&)]. Because & is arbitrary,
o(T: y)Carc(g(sp), gsa+UC))). i.e. ye H(sg s.+UC)).

Next, we assume that the vector y defined by (1) is zero for each b(2)
which is analytic in the interior of the unit disk and continuous on its
boundary I Then,

f b(2)x(77(2))dz = 0 for all such b(2).

Hence the vector-valued function x(v~'(2)) defined on I' must be the boundary
value of a vector-valued function analytic in the interior of the unit disk and
continuous on I'. Therefore x({) must be continuable in Int(D(sz+&, s, + {(C)
+ &)). And hence (T'—¢I)"'x must be continuable onto the arc(¢(sz+¢&),
9(se + UC) + &)). Since & is arbitrary small, o(T: x) C arc(g(s.), g(sg)]. i.e.
x € H(s,, Sp).

As a consequence of above two theorem we have

THEOREM 5. If an operator T on H with o(T) = o(T) satisfies the
conditions (A) and (B), then there exist non-trivial closed linear subspaces
which are invariant under T.

PrROOF. By Theorem 3, we have only to prove that H(s.,ss) and
H(sg, s.+1(C)) are non-trivial. We may assume o(7") lies on both arcs (¢(s,),
9(sa)] and (¢(sg), g(s«+L(C))], because we can choose the pairs of points &,=g(s.)
and &g=(¢(ss) arbitrary on C. This implies that H(s,, ss)H and H(ss, s.+(C))
#+ H.

Thus it only remains for us to prove that H(s,, sg)7(0) and H(sg, 5. +I(C))
# (0). By Theorem 4, H(s.,sg)#H and H(sg, s.+{(C))#=H imply that (s,
Sa+UC)#(0) and H(s., s5)7(0) respectively.

4. Main results. In this section, we shall treat with the hyponormal
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operators only. It is known that a hyponormal operator satisfies the condition
(A) (see [8: Theorem 1] and [6]).
The following two lemmas were proved by Stampfli in [7].

LEMMA 5. Let T be hyponormal and let z,c o T). If x<Domain((T
—20I)"Y) then x < Domain(T*—%,I)"") and |[(T*—%I)" x| = (T —=z.I)"x|.

PROOF. We may assume, without loss of generality, that z, = 0. Let
x € Domain(7-!), then |T*T-'x| = |TT 'z| = jz|. Thus T*T-' may be
extended to a bound linear operator on 1. Let x;, x, € Domain(7-") and set
T 'z,=y, for i=1,2. Then L(x,) = (T* 'x,, x,) = (1, T 'ax))=Ty,, T 'x,)
= (y,, T*T " z,) so |L(xy)| = |yl « [|xel|. Hence L(x,) is a bounded linear
functional on Domain(7-!) and can be extended to all of H. By the Riesz’s
representation theorem, there exists a vector w on H such that L(x,)=(w, x,)
ie. w=T*%'2,c¢H.

Now, [(T*~'zy, )| = 1]l « llzll = [Tl - || thus, [T 'z, |=[T""z,|
which completes the proof.

LEMMA 6. If an operator T on H with o(T)=0c/T) is hyponormal and
satisfies the condition (B), then for each &< p(T:x),(T*—EI)"'x exists and

is weakly continuous on p(T: x) for fizxzed x < H.

PROOF. By Lemma 5, xe Domain((T*—¢£1)7!). Thus (IT*—-EI)'x is
well-defined for ¢ e p(T:x). Let &, € p(T: x) and let R(¢: T, x) be the maximal
single-valued analytic continuation of (T'—¢I)'x. Then R(¢: 7T, x) is analytic
in J={z:|z—&|<8 and continuous strongly on J = {z:|z—&| =8} for
some 8> 0; and hence bounded on J by the maximum modulus principle.
Therefore |[(T—¢I)'z||=M for all ¢ < J and for some M > 0. By Lemma 5, we
have |[(T*—EI1)'z| = M for all ¢ € J and hence, |(T*—E&1)'x—(T*—E,I) x|
= 2M for all ¢eJ. Given y<c H choose ve H such that |y—(T—¢&I)v| <é&
which is possible since Range((T'—¢,1)) is dense in H. Then for each ¢eJ,
we have,

(((T*=C1)" = (T*=E )7} , )]
=2M-lly — (T=tDol + [((T*=E1)"' =(T* =&, D)z, (T—=E ) v) |
=AM - e+ |E—bl - |(T*=E D) (T —ED) 'z, (T—t])o)|
=2M-&+ (88| - [(T*=E D)~z - ||o]
=2M-&+|E—&] - M- ||
=3M-¢& for |¢—¢,| sufficiently small.



SPECTRAL RESOLUTION OF A HYPONORMAL OPERATOR 95

By this and by the Painlevé’s theorem, we have the following theorem.

THEOREM 6. If a hyponormal operator T with o(T)=a/T) satisfies
the condition (B), then o(T: x)Do(1T*: x).

PROOF. (T*—%I)"'x is analytic for z € p(T) and continuous weakly for
zep(T:x) by Lemma 6. Hence by the Painlevé’s theorem, (7% —ZI)~'x may
be continuable analytically across the subarc of C, which implies that p(7*: x)
Sp(T: x) ie. o(T: x)2o(T*: x).

This proof is similar to one by Stampfli in [7].
THEOREM 7. If T is a hyponormal operator with o(T)= o(T) and

satisfies the condition (B), then for H(s.,ss) and H(sg s.+I(C)) being given
in Theorem 3,

H = H(Son s/j) @ H(S/:b stx + l(C)) ;
and H(ss, sg), H(sp, s« + (C)) reduce T.
PROOF. By Theorem 6, H(s,, s5)C H*(s4, 55) and H(sg, s, + {(C))C H*(sg,
s«+I(C)); and by Theorem 3, we have H(s,,sp) | H*(sg 5. + I(C)) and
H(sg, s.+1U(C)) | H*(s4, 55), in particular, H(s.,sg) | H(ss, s, + L(C)). And this

implies that

H(s,, ss) € HS H*(sg, 5, + {(C))
and

H(sﬂ> Sa + Z(C)) - H@ }{*(sa’ 313). ( 1 )
Conversely, suppose for any fixed non-zero vector
xe HO H¥*(sg, 5, +1(C)), o(T: x)Narc(g(ss), 9(s.+UC)]# O .

Since H O H*(sg, s,+4C)) is invariant under T, T|(H & H*(ss, s.+I(C))) is
hyponormal (see [5]). Hence, by Theorem 3, we have

{x € HES H¥(sg, 5. +1(C)): o(T|(H S H*(s5, 5. +1(C))) : x)
C arc(g(sp), 9(s+UCHT} # (0)

because o(T|(H © H*(sg, s.+1(C)))) Narc(g(ss), 9(s.+1(C))]1#~ & by the hypothesis.
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Therefore there exists a non-zero vector x,< H & H*(sg, s, + {(C)) such that
o(T': zo)Carc(g(sp), g(s« + L(C))]. This implies that x, e H(sg, s.+UC))C H*(sg,
S« + I(C)). This is a contradiction. Therefore

H O H*(Sg, 5« + I(C)) C H(sus S)
and also
H QS H¥(sa, 55) C H(sg, s« + U(C)). (2)
By (1) and (2), we have H © H*(sg, 5o +U(C)) = H(sa, s5) and HOH*(sa, 5g)
= H(sg, s.+1(C)); hence,
H = H(S,, $g) ® H(sg, Sa+1LC)) @ (H*(sg, 5. +1(C)) © H(sg, s +1(C)))

= H(sm SB) @ H(S/J, Sa +l(®> @ (H*(sa’ sﬂ) @ H(Sa’ SB))

and
H O (H(sa, 58) ® H(sg, 5. +1(C)))
= (H*(sg Sa+UC)) © Hsg, 5« +UC))) N(H* (505 55) © HSas 5))
C H*(sg, 5. +1(C)) N H¥*(s,, sg) = (0).
Therefore H = H(s,, s5) ® H(sg, s.+1(C)). It is clear that H(s,,sg) and H(sg,
S« +U(C)) reduce T by Theorem 3.

It is known that a hyponormal operator is normaloid (i.e. |7 = max{|A][:
Meo(T)}; see [6]). Therefore we have the following theorem.

THEOREM 8. If an operator T on H with o(T) = o(T") is hyponormal
and satisfies the condition (B), then T is normal.

PROOF. Let A:0 =35, <s, <+++ <s¢y; = (C) be any partition of /(C)
such that fnaxk(s,-ﬂ—sj) = 2-UC)/k, and let I; = arc(y(s;), 9(s;+1)], then we can
sis

construct, by Theorem 3, H; = {xc H:o(T:x)CI;} and by Theorem 7, we
have H = @H; where each H; reduces T and o(T'|H;)CI;. Clearly, T'|H;

J
is also hyponormal and hence for any x = @x;c H, x;< H; and for any
Nj€ I; we have ’

|Tx— EJB NP = Z (Tx; —Njz)l|®
= g 1T H=N* - s

= ({Iélg [max {{N[: N € o(T | H;— MDD - 20 s

J=1
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= {max (s;5, — s)}° - [z|*
1=j=<k

= 4-UCY/R -

z|?—>0 as k— oo,

And also we have |T*z — @ Anz;] — 0. Therefore,
j

Tzl — 1Tl = [ T=] — 1| @ Ml |+ ll@imll — [ T*=|||

= Tz— & Myl + | T2 @'ij,-n —0. ie |[Tz| = |T*x| .

By Theorem 1 and Theorem 8, we have the following theorem.

THEOREM 9. If a hyponormal operator T satisfies the condition (B),
then T is normal.
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