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1.1. Introduction. The theory of curves in the differential geometry of
3-dimensional Euclidean space is not properly treated in books on elementary
differential geometry. Firstly, the relationship between the two parts of the
fundamental theorem is not clearly explained [Nomizu, 7]. Secondly, a number
of theorems on special curves are often loosely or incorrectly stated or
proved; for example,



2 Y. WONG AND H. LAI

( i ) the condition for a curve to be a plane curve [Gifford, 3],
(ii) the condition for a curve to be a helix,
(iii) the condition for a curve to lie on a sphere [Wong, 10].

All these defects can be traced to one common cause:— The difficulty of
studying the properties of a curve when one or more functions intrinsically
associated with the curve vanish at some of its points.

The purpose of this paper is two-fold: To give a more detailed study of
the Frenet curves as defined by K. Nomizu [7] and to present what we
believe to be a unified and correct treatment of the special curves mentioned
in the last paragraph. The main tools used are a lemma on the nature of
subsets of a topological space on which one or more continuous functions
vanish (§ 1.3), and a method to construct on the real line R a C°° function
whose set of zeros is an arbitrarily given closed subset of R (§ 1.4).

It is easy to see that the techniques we develop in this paper can also
be used to refine some of the results in the theory of curves in affine and
projective differential geometries, and in fact, in the differential geometry of
any kind of one-parameter family of geometric figures.

§ 1.2—§ 1.5 are preliminary in nature. In § 2.1—§ 2.3, we consider the
Frenet curves and determine how far such a curve determines its curvature
and pseudo-torsion (Theoίem 2.1); a direct consequence of our result is that
for a closed Frenet curve, the total pseudo-torsion, modulo 2τr, is an intrinsic
quantity of the curve (Theorem 2.4). In § 3.1—§ 5.2, we study in some detail
the conditions usually given for a curve to be a plane curve, a helix or a
spherical curve. We prove that in general a curve satisfying any of these
conditions contains a dense subset which is the union of a countable number of
arcs of different types. In each case, we shall show by an example that such
curves actually exist. In § 6.1, we prove that C°° regular helices, as well as
C°° regular plane curves and spherical curves, are Frenet curves, and in §6.2,
we obtain necessary and sufficient conditions for a Frenet curve to be a plane
curve, helix or a spherical curve in terms of its curvature and pseudo-torsion.

1.2. Open and closed subsets of the real line or of a proper interval.
We state here without proof some known properties of the real line R
and proper intervals on it which are used or helpful in this paper (see, for
example, Hobson [5], p. 116). (By a proper interval we mean an interval with
non-empty interior.) We assume that R has the usual topology.

(a) Any open set of R is the union of a countable family of disjoint
open intervals.

(b) Any closed set of R consists of (i) the end-points of a countable
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family of disjoint intervals, (ii) the limit points of the set of such
end-points and (iii) a countable number of proper (closed) intervals,

(c) Any open subset of a proper interval L, being the intersection of
an open subset of R with L, is the union of a countable number of
disjoint intervals which are all open in L and all of which except
at most two are open intervals of R.

1.3. A lemma on certain subsets of a proper interval. In this section
we prove the main lemma of the paper. Although it is in effect a theorem
on coverings of a topological space by the closures of open sets, we shall
formulate it in terms of the sets of zeros of some continuous functions, for
convenience of application. The motivation of this lemma will be clear later
when it is used to study the global structure of some types of curves which
are characterized by the vanishing or non-vanishing of functions intrinsically
associated with the curves.

Throughout this paper, if / is a function denned on a set, we mean by
f = 0 that f is everywhere zero, and by f Φ 0 that f is nowhere zero. If L
is a proper interval which is closed at one end or at both ends, we mean by
a Ck function on L a function which can be extended to a Ck function on
an open interval containing L.

LEMMA 1.1. Let f, ,fn be continuous (real-valued) functions of
which fx is defined on a proper interval L of the real line, and ft (2fgz'rgn)
is defined on the set Gi-λ= [s z L : f^s) Φ 0, •,./*_ 1(5) Φ 0}. Then there exist
n + l open sets Bl9 B2, , Bn, Gn of L with the following properties:

fλ = 0 on Bl9

fxΦO and f2 = 0 on B2,

/i=5 t0,/ s^0,-..,/n_1^0, and fn = 0 on Bn,

/i Φ 0, / 2 Φ 0, , and fnφ0 on Gn;

and

where the closure operation is taken in R. Thus the component intervals of
Bu 5 2 , , Bn, Gn, taken together, form a countable family of disjoint proper
intervals each of which is open in L, and the union of these component
intervals is a dense subset of L.
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This lemma is easily seen to be a particular case of the following

LEMMA 1.2. Let Gu ,GW be open sets of a topological space X such
that G^GzD — DGn. Let fl9 , / n be continuous real-valued functions
defined on Go (=X), Gίy , Gn_ t, respectively, such that

Gt = {x e G , . ! : fix) Φ 0} for £ = 1 , 2 , , Λ .

Furthermore, let

A, = [x € G,.! :/t(Λ:) = 0} for £ = 1, 2, , Λ .

where A? denotes the interior of At.

We first prove lemma 1.2. If ?z=l, we have

G, = X\A,,

where the set on the right consists of those elements of X which do not
belong to Aλ. Therefore

(1.1) X=AluG1.

If n > 1, let us apply the above result for Al9 Gx and X to Ar+l9 Gr+1

and Gr for any r : 1 ^ r < n. Then we have

G r = A°r+i U G r + 1 (relative to Gr).

Therefore,

G r = A?+1 U (G r + 1 Π Gr) (relative to X).

Hence we have

(1. 2) Gr c A°r+1 u G r + 1 = A?+1 u G r + 1

which holds for any r:l^r <n.
Induction using (1.1) and (1. 2) then completes the proof of Lemma 1.2.

Lemma 1.1 follows immediately from Lemma 1.2 and the properties of open
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subsets of a proper interval given in §1.2.

1. 4. Two C°° real functions. We know that the set of zeros of a con-
tinuous function defined on the real line R is a closed subset of R and that
the zeros of an analytic function defined on R and not identically zero are
(countably many) isolated points. Here we shall construct an example to
show that

Given any closed subset F of R, there exists a C°°, non-negative, function
whose set of zeros is precisely the given subset F.

This result is already known if the function is required only to be con-
tinuous (see Kelley [6], p. 134, J.). To construct our function, we first note
that the function

i f a<s<b

0 otherwise

is a C°° function the set of whose zeros is R\(a, b) and that the derivatives
of ψ of all orders vanish at the points a, b.

Let F be an arbitrarily given closed subset of R. Then by § 1.2,

j , where G} 0 = 1,2, ) are disjoint open intervals, some of
. 7 = 1

which may be empty sets.
We consider first the case where each Gj = {ah bj) is finite. For each

7 ̂  1 let

if 5 € Gj

0 otherwise.

Then for each j there exists a positive number M5 having the property
\ψf\s)\ ^ Mi for all k such that 0 ^ k ^j and for all 5 € R.

We assert that the function f(s) defined on R by

CO _|

/ ω = Σ2- j//*), where fi(s)=-£7γi(s),

has the desired properties. Obviously, the set of zeros of / is precisely the
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given closed set F. We now prove that / is of class C°°. In fact, | ff\s) | ̂  1
for any k and j such that O^k^j and for all s z R. Therefore, for each

oo

fixed k ^ 0, the series Y^2~j ff\s) is a uniformly convergent series of conti-
. 7 = 1

nuous functions. Therefore (from analysis), for each k^l, the series ^22~jff\s)
y-i

represents a continuous function, which in our case is precisely the derivative
oo

of the continuous function Σ 2~j ff~1}(V). It follows from this by induction
i«=i
oo

t h a t / ^ C 0 0 , with f{k\s) = ^ 2~ 7" ff\s) . This completes the proof of our

assertion in the case where each G5 is finite.
oo

If R\F = (α0, oo) (j \^J (μh bj), where the intervals are disjoint and each

(ah b3) is finite, we need only put

where fs (j ^1) are as defined above and

expl —

\ 0 otherwise.

The remaining cases

R\F= (-00, bo) U

or

R\F= (-oo,60) u (α0, 00) u \J(μj9bj)
J=ι

can be treated in a similar way. This completes the construction of our
function.

We note the C°° function / constructed above has the property that not
only f but also its derivatives of all orders vanish at each point of the
closed subset F.

We now construct for later use another C°° function with certain properties.
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Let L be a proper interval which is open on the right, and {sό}, j=l, 2, ,
a strictly monotonic increasing sequence of points in L with no limit point
in L. We require a C°° function φ defined on L and having the following
properties:

(1.3) φ(s)

= 0 if sz {LΠ(-oo, 5 l]} U[s4,s5]u U[s4j,s4j+1]U

> 0 and < 1 if s € (s1? s2)u u(s2ί_ι,s2ί)U

1 if 5 € [s2, 53] U |>β, 57] U U [S4jf_2, S4J-1] U

For each z §Ξ 1 let ψι(t) be the C°° function defined on R by

( ) if t € (52i_!, 521)

o herwise.

Let

(1.4)

Then φi is C°° on i?, and

ψi(t)dt

= 0 if s ^ 52i_!

φi(5) J > 0 and < 1 if s z (s2t_u s2i)

{ = 1 if 5 ir 5 2 i.

Now let {cι}, i = l , 2, , be any sequence of real numbers and

a. 5)

where φt(5) are as defined by (1. 4). Then φ is C°° on L, takes the constant
value 0 on Lπ(—00,sx] and the constant value ct on the interval [s2ί, s2ί+ι]
for z'=l, 2, •••, and is strictly monotonic on each of the intervals (s2i-i> 52i).
Thus taking

1 if ί is odd,

0 if z is even ,
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we obtain a C°° function φ(s) which has the required properties (1. 3).

1.5. Some auxiliary results. The following are some properties of 3-
dimensional vector functions which will be used in the sequel.

LEMMA 1.3. (a) Let \{t) be a C1 vector function defined on a proper
interval I such that \Φθ {nowhere zero). Then the condition

V X -=r- = 0 on I
at

is equivalent to the existence of a constant unit vector a and a positive
scalar function v such that v = va.

(b) Let v(ί) be a C2 vector function defined on I such that V X -j-Φθ.

Then the co?ιditίon

d\ d\
V ' dt ' dt2 = 0

is equivalent to the existence of a constant unit vector b such that

The proof of this lemma which we shall omit is easy and follows the
familiar line.

2.1. Regular curves and Frenet curves. We denote by E* a 3-dimensional
Euclidean space, and by x the position vector in E3. A parametrized curve
x = x(ί), where t runs through a proper interval, is said to be regular if its
tangent vector dx/dt is continuous and nowhere zero. (Thus, a regular curve
can be parametrized by its arc length.) A parametrized curve x = x(ί) is said
to be Ck (where k is a positive integer or oo) if the vector function x(t) is

σ.

We shall hereafter denote by L a proper interval. Let

(2.1) Γ : x = x(s), szL,

be a regular curve in JE3 parametrized by its arc length s. Then the tangent
vector x' is a unit vector. (Here and in what follows, a dash denotes differ-
entiation with respect to the arc length s.)

The regular curve Γ defined by (2.1) has a topology induced from the
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usual topology of the interval L by the parametrization (2.1). This is the
topology on Γ which will be used throughout this paper.

We shall see that in the problems we study, the assumption that a regular
curve is C°° imposes no more restrictions on the curve than the assumption
that it is Ck for suitably large k. Therefore, for convenience, we shall consider
only C°° regular curves.

Following Nomizu [7], we shall define a C°° Frenet curve as a C" regular
curve Γ : x(s), s € L, for which there exist three C°° vector functions e^s), e2(s),
e3(s) and two C°° scalar functions ^(5), k2(s) satisfying the following conditions :

( i ) βjO?) = x (5) ,

(ii) At each point s z L, e^s), e2(s), e3(s) form a right-handed orthonormal
frame of Ez,

(iii) The Frenet equations

(2.2) e 2 = - ^ e x + ^βg,

eί = - £ 2 e 2

hold on L.

For a Frenet curve Γ, the function kλ is uniquely determined (except for
a sign) by the first Frenet equation, and we call kλ(s) the curvature of Γ at
the point s. On any arc of Γ on which kλΦθ (nowhere zero), the unit
vector e2 is uniquely determined except for sign, and consequently k2 is
uniquely determined. In this case, k2(s) is called the torsion of Γ at the point
s. If ki = 0 (everywhere zero) on an arc of Γ, then e2 is not uniquely deter-
mined by (2. 2) and consequently nor is k2. In general, we call k2 a pseudo-
torsion of Γ.

A C°° regular curve with x" Φ 0 is a Frenet curve for which eι = t, e 2=£n,
e3 = £b, kl=8ic and k2 = τ, where £ = ± 1 , t the unit tangent vector, n the unit
principal normal vector, b the unit binormal vector, tc (>0) the curvature
and T the torsion, as defined in standard textbooks. We call such a curve
a special Frenet curve.

It should be noted that not all C°° regular curves are Frenet curves, as
was shown by Nomizu [7] with an example. The problem of finding a
necessary and sufficient condition for a C°° regular curve to be a Frenet curve
has been studied by several authors, including Hartman and Wintner [4],
Nomizu [7], and our colleague Yim-Ming Wong [11], but the problem in its
general form has not been solved.
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2.2. Indeterminateness of kλ and k2 of a Frenet curve. A lemma. It
is well known that given any two C°° functions kλ, k2 defined on L, there
always exists a C°° Frenet curve, uniquely determined except for its position
in E3, with kλ as curvature and k2 as pseudo-torsion. On the other hand,
two different pairs of C°° functions kl9 k2 and kl9 k2 may determine the same
Frenet curve. We shall now find the condition for this to be the case. For
this purpose, we need the following lemma, which, besides being interesting
and important in its own right, will also be used in a decisive way in our
later work (§ 2.3, § 3.2, and § 6.2).

LEMMA 2.1. If f,g are C°° functions on a proper interval L such that

(2. 3) f(sf + g(sf = 1 for all s s L,

then there exists a C°° function θ on L such that

(2. 4) cos θ(s) = f(s), sin θ(s) = g(s) .

Furthermore, if s0 is any point on L and ΘQ is the unique constant satisfying
the conditions

cos θ0 = f(s0), sin θ0 = g(s0), 0 ^ θ0 < 2τr,

then the function θ is given explicitly by

(2.5) θ(s)= f(fg'-gf)ds + θ0.

PROOF. Let C be the unit circle in the plane with rectangular coordinates
{x, y) and origin O. Then the point P(s): (f(s), g(s)) moves continuously on
C as 5 moves continuously on L. Let A be the point on C such that
ZAθP(s0) = θ0, where s0 and ΘQ are as defined in the lemma.

If sι is any point on L, we can reach it by allowing s to increase or
decrease continuously from s0. When s, starting from s0, moves continuously
towards st and finally reaches it, the point P(s), starting from P(s0), moves
continuously along C until it finally stops at the position P(5X). (The point
P(s) may go back and forth or around C one or more times before finally
stopping at the position P($i).) We put θζs^ equal to the sum of θ0 and the
'algebraic' angle described by the radius vector OP(s). This defines a single-
valued continuous function θ on L such that θ(s0) = θ0. (For another proof of
this fact, see Chern [1], Chapter 1, § 3.2.)
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We assert that θ is the function satisfying the required conditions.
Obviously, θ satisfies (2. 4). We now prove that θ is given by (2. 5) so that
it is C°°. Since θ is continuous, we have, on account of (2.4), that

, v v . , M 1 . θ(s 4- As) - θ(s)
f 0) = -s in θ(s) hm - * -rf ^ - ,

Δ0 A5Δs->0

jί (s) = cos 0(s) km
Δ s 0Δs—0

Since sin θ and cos θ cannot be both zero at the same point, the above two
equations show that θ' exists and is continuous.

Let us now put

f (fg'-gf)ds+θ0.

Then it follows from this and (2. 4) that

& = fg - gf = φ'.

This, together with 0(so) = θ0 — φ{s0), proves that θ = φ.

2.3. Indeterminateness of kx and k2 of a Frenet curve, continued.

THEOREM 2.1. Two pairs of C°° functions kl9 k2 and Γ ls F2 on L
determine the same Frenet curve {up to a Euclidean motion) iff there exists
a C°° function θ on L such that

is fV\ I? ^ITΊ Π 0 IP Γ*OQ fj ίp Jp I fj Jp

PROOF. Necessity. Assume that k19 k2 and kl9 k2 determine the same
Frenet curve Γ: x{s), s € L. Then there exist along Γ two C"° families of
Frenet frames {e1? e2, e3} and {el9 e2, e3} such that

'x = βj,

eί = + kλe2,

(2.7) J e ' - - A e

e3 = - k2e2
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x' = e1 ,

β2 — kx Bι + κ2 β3 ,

e 3 = — &2e2.

It follows from (2. 7)ι and (2. 7)i that

(2. 8) ex = e,.

On account of this and Lemma 2.1, there exists a C°° function θ on L such
that

(2.9)
e2 = e2 cos 0 + e3 sin θ ,

e3 = — e2 sin 0 + e3 cos 0 ,

because / = e 2 e2 and gf = e2 e3 are C°° functions satisfying condition (2.3) of
Lemma 2.1.

Now differentiating (2. 9)x and making use of (2.7), (2.8) and (2.9), we
get

(2.10)
e'2 = ( — e2 sin 0 + e3 cos 0) θ" + (—^1e1

= ^(β ' + i&a) — eΊ*i cos 0 .

—k2e2 si

Comparison of this with (2. 7)3 gives (2.6)2 and (2. 6)3.
Similarly, differentiating (2. 9)2 and then making use of (2. 7), (2. 8) and

(2. 9), we get

(2.11) e3 = ( — e2 cos θ—e3 sin 0)0' — (—k1eι-h &2e3) sin 0 — k2e2 cos 0

= —(θ'+kz)^ + £ 1sin0e' 1 .

Comparison of this with (2. 7)4 gives (2. 6)x and (2. 6)3. Hence the necessity
of conditions (2. 6) is completely proved.

Sufficiency. Let [ely e2, e3] be the family of Frenet frames of a Frenet
curve Γ determined by kl9 k2. Then (2. 7) hold. Using this {e1? e2, e3} and
the C°° function 0 on L whose existence is assumed, we define by (2. 8) and
(2. 9) a C°° family of right-handed orthonormal frames (e1? e2, e3} on Γ. We
now prove that (2.7) hold; when this is done, it follows from (2.7X that
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Γ : x(s), s e L, is also a Frenet curve determined by the functions ku k2. To
prove (2. 7), we first differentiate (2. 9) and then make use of (2. 7), (2. 8)
and (2. 9). The result is (2.10) and (2.11) which, because of (2. 6), reduce to
(2.7)3 and (2.7)4. Next, differentiating (2.8) and then making use of (2.9),
we get

e[ = βi = ^xe2 = ^i(e2 cos # — e3 sin θ),

which, because of (2. 6), reduces to (2. 7)2. Lastly, (2. 7)i follows from (2. 7)x

and (2. 8). Thus, the sufficiency of conditions (2. 6) is completely proved.

THEOREM 2.2. Let Γ : x(s), s £ L, be any C°° Frenet curve with curvature
kλ and pseudo-torsion k2, and let G= {s £ L : kλ(s) Φ 0}. TΛen there exist C°°
functions kλ and k2 not equal to ±kx and k2, respectively, and determining
the same Frenet curve iff G^> L.

PROOF. By Theorem 2.1, k{ and k2 determine the same Frenet curve as
kγ and k2 iff there exists a C°° function θ on L such that

(2. 6) k, sin θ = 0, *! cos β = XΊ, ^2 + (9' = k2.

Condition (2. 6X requires that sin<9 = 0 on G, and consequently, by con-
tinuity, also on GnL. Therefore, θ(GθL) c {0, ±τr, ±2τr, }. If G D L ,
then Θ(L) = Θ(GPΪL), SO that cos(9=±l and (9' = 0 on L. This proves the
necessity of the condition.

Assume now that G~lβL. Then the set L\G is non-empty, and consequently,
contains some open interval, say (a, b). Let φ be a C°° function on the real
line i?, constructed as in §1.4, which vanishes exactly on R\(a, b). Then
it is easy to see that the restriction of φ to L is a function θ satisfying
the conditions &! sin 0 = 0 and ff ^ 0 on L. This completes the proof of
Theorem 2.2.

2.4. Some remarks and consequences. It is obvious from (2.2) that,
for a Frenet curve, kx = 0 is a necessary and sufficient condition for it to be
a line-segment, and k2 = 0 is a sufficient but not a necessary condition (in
view of Theorem 2.2) for it to be a plane curve (unless Go>L).

Nomizu [7] defined a normal curve as a regular curve with the property
that, for every sozL, there exists an integer m = m(s0) such that eίm)(s0) Φ 0.
He proved tha,t a normal curve of class C°° is a Frenet curve (but of course
not all Frenet curves are normal curves). He also proved that, for a normal
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curve, kι is uniquely determined except for a sign and k2 is uniquely
determined. This result is a consequence of our Theorem 2.2 because, for a
normal curve, the set L\G= [s € L : £i(s)=0} consists of isolated points so that
the condition GDL is satisfied.

Obviously, if Γ : x(s), s € L, is a regular curve, then any scalar function of
the form F(x, x", ) is an intrinsic quantity of the curve. If Γ is a
Frenet curve, such a scalar function can be expressed in terms of the curvature
kx and the pseudo-torsion k2 and their derivatives, resulting in an expression
which should be invariant under the transformation (2. 6). Conversely, it is
probably true (but we have not been able to prove it) that a function of
kl9 k2 and their derivatives which is invariant under the transformation (2. 6)
can be expressed as a scalar function of x', x", .

We now prove

THEOREM 2.3. // F(u0, ul9 , up; v0, vl9 , vq) is any C°° scalar func-
tion on a suitable open subset of the Euclidean (p + q + 2)-space such that
F(0, 0, , 0 vo,vl9 ,vQ) = 0 and F(-u0, —uly , - up v0, vl9 , vQ)
= F(u09 uu , up v09 vl9 , vg)9 then for any Frenet curve, F(kl9 k'ly ,

k[p) k2, k'2, , k(

2

Q)) is an intrinsic quantity of the curve.

PROOF. Let G={szL: k,(s) Φ 0}. Then since sin θ = 0 on G by (2. 6)ί9

we have Θ(G)C {0, =hτr, =b2τr, •}. Therefore, cos# = £ = ± l and θ' = 0, and
consequently also k{r) = €k[r) and k{

2
r) = Ίz[r) (r ^ 0), all hold on G, and by con-

tinuity also on G Γ)L. Hence

(2. 12) F(ku% , ! ? > X 9 \ , ΆQ)) = F(kl9 k[, , k{* K «,•••, kψ)

holds on GθL. On the other hand, on L\G, k[r) = 0 (r^O) and consequently,

lί r ) = 0 ( r ^ O ) by (2. 6)2. Therefore (2.12) also holds on L\G.

2. 5. Total pseudo-torsion of a closed Frenet curve. For closed regular
curves, W. FencheΓs theorem on the total curvature is well-known [2]. For
regular curves Γ whose torsion T is everywhere defined, there is the following
interesting theorem of W. Scherrer's on total torsion [9]:

If Γ is any regular closed curve on a sphere, then its total torsion

I τds = 0. Conversely, if on a surface S, the total torsion of every closed

curve on it is zero, then S is a sphere or a portion of it.
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More recently, G. Saban [8] showed that Scherrer's theorem remains true

if the total torsion is replaced by the integral I κnτ ds, where K is the curva-
Jr

ture, T the torsion, and n any positive or negative integer.
Of course, if the torsion of a regular curve is not everywhere defined,

we cannot speak of the total torsion, nor of any integral involving the torsion.
However, in the case of Frenet curves, although the pseudo-torsion is not
an intrinsic quantity of the curve, we have the following

THEOREM 2.4. (a) For any closed Frenet curve Γ, the total pseudo-

torsion \ k2ds (mod2τr) is an intrinsic quantity of the curve.

Jv

(b) More generally, if Γ is any Frenet curve, and the curvature of Γ

is not zero at the points x ^ ) , x(s2), where sx < s2, then the integral I k2 ds

(mod 7r) has an intrinsic meaning.

PROOF. If Γ is a closed Frenet curve, it follows from (2. 6)3 that

f (k2-k2)ds = f θ'ds= θ = 0 (mod 2τr) .

Therefore,

ΞΞ ί k2 ds (mod 2π) ,I k2ds= I ]
•/p J Y

which proves (a).
To prove (b), we need only observe that, on account of (2. 6)u 0($i) and

θ(s2) are integral multiples of ΊΓ (one or both of which may bs zero).

3.1. Plane curves and plane arcs.

DEFINITION. A C°° regular curve is called a plane curve if it lies on a
plane. A plane curve is called a plane arc if it contains no line-segments.

It is easy to see that a C°° regular curve x(s), s € L, is a line-segment
iff x" = 0. For a Frenet curve, this condition can be replaced by kx = 0.

A correct statement of the conditions for a regular curve to be a plane
curve usually given in textbooks is as follows:

LEMMA 3.1. For a regular curve Γ : x(s), s e L, with x" Φ 0 {then Γ is
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a special Frenet curve with K > 0), the following conditions are equivalent:

( i ) Γ is a plane arc,

( ϋ ) τ = 0,

(iii) |x',x",x'" | = 0.

The proof of this follows familiar lines and will not be given here.

Now, omitting the condition x" Φ 0, we prove

THEOREM 3.1. A O° regular curve Γ: x(s), sz L, satisfies condition

(3.1) |x',x",x"| = 0

iff it has a dense subset which is the union of a countable number of line-

segments and plane arcs.

PROOF. Sufficiency. This follows immediately from the fact that any

line-segment or plane arc satisfies (3.1).

Necessity. We assume that condition (3.1) holds. Consider the continuous

function f— |x Xx"| (= |x" | ) °n L. Let / be any proper interval of L, and

Γx the arc of Γ corresponding to IΓ\L.

If / = 0 on 7, then by Lemma 1.3 (a), there exists a constant unit vector

a and a scalar C°° function v of s such that x' = t;a. Therefore, x(s) = u(s)a + c,

where u(s) is some scalar C°° function of s and c is some constant vector.

Hence I\ is a line-segment. Conversely, it is obvious that if Γ\ is a line-

segment, then / = 0 on 7.

If fΦ 0 on /, then since (3.1) holds on 7, there exists, by Lemma 1.3 (b),

a constant unit vector b such that b x' = 0. Therefore, b x = constant, and

consequently, Yλ is a plane curve. But since fφO on 7, Γ\ cannot contain

any line-segments. Hence Γ\ is a plane arc.

Now by Lemma 1.1 there exist two open sets B, G of L with the pro-

perties that

/ = 0 on B, fΦO on G

and

(3.2) Z = BuG.

We have shown above that the arcs of Γ corresponding to the intervals of B

are line-segments, and those corresponding to the intervals of G are plane arcs.
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Because of (3. 2), the union of these line-segments and plane arcs is a dense
subset of the curve Γ. This completes the proof of our theorem.

Since a plane curve x(s), s £ L, must satisfy condition (3.1), we have

COROLLARY 3.1. A plane curve has a dense subset which is the union
of a countable number of line-segments and plane arcs.

3.2. An example. We now give an example to show that regular
curves of the type described in Theorem 3.1 actually exist and are not
necessarily plane curves.

EXAMPLE 3.1. Let L be any proper interval and [a, b] a closed interval
lying in the interior of L. Let [Sj}9 j—091, 2, , be any strictly monotonic
increasing sequence of points on L such that a=s0 and b is the limit point
of {sj}. Let

Io = L n ( - o o , α ] , /„,=

J 9 52j+1), B=\J [s2jy

Then L\A and 1? ( = Bl) {b}) are closed subsets of L, and there exist C°°
functions k^s) and k2(s), s e L, constructed as in § 1.4, which vanish precisely
on L\A and B respectively. The Frenet curve Γ determined by k1 and k2

satisfies (3. 1) and consists of a countably infinite number of line-segments
(corresponding to the intervals 70, I^, [su s2], , [s2j-i, %]> * °f L\A) and a
countably infinite number of plane arcs (corresponding to the intervals [s0,5J,
— , Vs2j,s2i+X\, of B).

We now show that if the function k2(s) is suitably chosen, we can ensure
that no two plane arcs of Γ lie on parallel planes.

We first construct a suitable function k2(s). For each j ^ 1, let ψ /s) be
a non-negative C°° function on R vanishing precisely on R\(s2j-l9 s2j) such that
(see §1.4)

|^ f c )(s) | ^ 1 for O^k^j, szR.

Let [cj], j=l, 2, , be a monotonic decreasing sequence of positive numbers

such that, if we denote J Cjψj(t)dt by δ̂  , then

(3. 3) 0 < δ j + 1 ^ δ j < 1 for each j = 1, 2,
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Also let ψ 0(s) be any C°° function on R vanishing precisely on [a, b]. Now
define

oo

(3.4) Us) = ψo(5) + E 2- ' cfais), s e L .
. 7 = 1

Using an argument similar to that used in § 1.4, we easily prove that k2(s) is

a C~ function on L vanishing precisely on Z?.
Let Γ : x(s), 5 € L, be the Frenet curve determined by this function k2(s)

and any C°° function &χ(s) on L which vanishes precisely on L\A. We now
show that no two plane arcs of Γ lie on parallel planes. First fix any j ^ l
and consider the interval I5 — [s2j-i,s2j]. On 7j, we have kx = 0. Therefore
the arc Γ̂  of Γ corresponding to I3 is a line-segment on which ex = constant.
Let (e1? a2, a3] be a constant right-handed orthonormal frame defined on Γj.
Then by Lemma 2.1, there exists a C°° function θ(s) on Ij such that

e2(5) = cos θ(s) a2 + sin θ(s) a 3 ,

e3(5) = —sin θ(s) a2 + cos θ(s) a3

hold on /j. Since e3 = —^2(^)e2(5), it follows from these that 0'(s) = £2(5).
Therefore, using (3.4), we have that

in other words, the angle between the vectors e3(s2j-i) and e3(52j) is

(3.5) Δ0 i = 2- 'δ J .

We note that on the other hand, e3(s) is constant on each plane arc of Γ.
Let us now take any two plane arcs of Γ, say those corresponding to the

intervals [s2p,s2p+ι] and [s2q, s2Q+u] where 0^ρ<q. From (3.3) and (3.5) it
follows that

(3 6) έ Aθj < δp+1 f: 2- = 2-v 8P+1 < -f- .

If Δ(9pg denotes the angle between the vectors e3(s2 p f l) and e3(52g), we have,
by a well-known result in spherical trigonometry, that

j=P+2 j=P+l
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Therefore, by (3. 5) and (3. 6)

O-(p+l) £ _ o-(p+l) £ ^~ A n ^ r>_p £ ^ 7Γ
Δ Op+1 Δ Op+2 <^ £SUPiq < . Δ όp+1 <, „

Using (3. 3), we have

0 < Δ 6 > Λ ί < - | - ,

which proves that e3(52p+1) and e3(s2q) cannot be parallel. But these vectors
are normal vectors to the planes on which the plane arcs of Γ corresponding
to [s2p, s2p+ι] and [s2q,s2q+ι] lie. Hence these plane arcs do not lie on parallel
planes.

REMARK. In this example we have shown that a C°° regular curve defined
on a compact set such as [α, b] and satisfying condition (3.1) can actually
contain an infinite number of plane arcs all lying on different planes. If we
merely want to illustrate this fact for a noncompact set such as [α, b\ the
construction is much simpler, for then we need not use a uniformly convergent
series to define the function k2(s).

4.1. Helices and helical arcs.

DEFINITION. A C°° regular curve is called a helix if there exists a fixed
direction, called the directrix, with which the tangents make a constant angle.
A helix which is not a plane curve and contains no line-segments is called
a helical arc.

Let Γ be a helix and oί the constant angle mentioned in the definition.
Then it is easy to see that Γ is a line-segment if a=0, and Γ is a plane
curve if oί=π/2.

A correct statement and proof of the conditions for a curve to be a helix
usually given in books on elementary differential geometry is as follows:

LEMMA 4.1. For a C°° regular curve Γ: x(s), s z L, with x " ^ 0 (then Γ
is a special Frenet curve with K > 0), the following conditions are equivalent:

( i ) Γ is a plane arc or a helical arc,
(ii) τ/κ is constant,
(iii) |x" ,x ' " ,x ( i v >| = 0 .

PROOF. Assume that (i) is true. There exists a constant unit vector p
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making a constant angle a (0 <a^τr/2) with the unit tangent vectors of Γ,

i.e.

(4.1) t p = cos a .

Differentiation of this gives /cn p = 0, so that

(4.2) n p = 0 .

It follows from (4.1) and (4. 2) that

p = cos at ±sin άb.

Differentiation of this leads to

= ±cot a = finite constant .

This proves that (i) implies (ii).
To prove that (ii) implies (i), let a be the unique constant such that

0 < a < — and — = ±cot a. Then the vector

~~ 2 K

p = cos at ±z sintfb

is a constant vector, and t p = cos a. Therefore Γ is a plane arc or a helical
arc (according as u=-^- or Φ-^-).

Δ Δ

To show that (ii) is equivalent to (iii), we need only observe that for a
special Frenet curve, we have

|x ,x 1 ~ Λ ds

We now prove

THEOREM 4.1. A helix either is a plane curve or has a dense subset
-which is the union of a countable number of helical arcs and line-segments.

PROOF. Let Γ: x(s), s e L be a helix, and p a constant unit vector along
its directrix which makes a constant angle a (O^a^ τr/2), with the unit
tangent vectors of Γ.
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We have observed that if <2=0, then Γ is a line-segment; if <X=τr/2, then
Γ is a plane curve.

We now consider the case that 0 < a < τr/2. By Lemma 1.1, L has a
dense subset which is the union of two countable families 33, © of disjoint
proper intervals such that | x" | = 0 on each interval of S and | x" | Φ 0 on
each interval of ©. The arc of Γ corresponding to an interval of 33 is a
line-segment. Now let T1 be the arc of Γ corresponding to an interval I of
©. Then I x" | Φθ on /, and we see from the proof of Lemma 4.1 that
τ/ιc=±cota on Γ1# But 0 <oί <ττ/2. Therefore τ ^ 0 . Hence I\ is a helical
arc.

The proof of the theorem can now be completed by using Lemma 1.1 as
in the proof of Theorem 3.1.

Concerning condition (iii) in Theorem 4.1, we shall now prove

THEOREM 4.2. A C°° regular curve Γ : x(s), s e L, satisfies

(4.3) |x",x'",x< l v ) | - 0

iff it has a dense subset which is the union of a countable number of helical
arcs, plane arcs and line-segments.

PROOF. Sufficiency. This follows from the fact that any helical arc,
plane arc or line-segment satisfies condition (4. 3).

Necessity. We assume that condition (4.3) is satisfied. Consider the
continuous functions fx— |x" | and f%— |x" xx'" | on L. Let I be any proper
interval of L, and Yλ the arc of Γ corresponding to IC\L.

If y\ = 0 on /, then the arc Γ\ is a line-segment.
If fiΦO and f2 = 0 on /, then by Lemma 1.3 (a), there exists a constant

unit vector a and a (C°°) scalar function v(s) such that x" = va. Therefore

x(s) = u{s) a + 5b + c,

where u(s) is some (C°°) scalar functions of 5, and b, c are some constant
vectors. Hence the arc Yu which cannot contain any line-segments because
x'φO, is a plane arc.

If f2Φθ (and consequently also fiΦO) on /, then since condition (4.3) is
satisfied, we know by Lemma 1.3 (b) that there exists a constant unit vector
b such that b x ' ^ 0 . Therefore, b e1 = b χ/ = constant, and consequently Γx

is a helix. Moreover, because |x"xχ / / y | Φ 0 on /, I\ does not lie on a plane,
nor does it contain any line-segments. Hence I\ is a helical arc.

The proof of the theorem can now be completed by Lemma 1.1.
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REMARK. If the curve Γ in Theorem 4.2 is assumed to be a Frenet
curve, the proof is simpler. In this case, we have

|x",x'",x ( i v ) | = k\{kλk
f

2 - k[k2).

Since on any interval IdL on which kι φ 0, the condition k^—kΊ^ = 0 is
equivalent to k2/k1 = constant, we can apply Lemma 1.1, with n — 2, fx — kλ

and f2 = k2, to obtain the desired results.

4.2. An example. We now give an example to show that the curves
described in Theorem 4.2 actually exist.

EXAMPLE 4.1. Let L and [s3], 70, I^ be as defined in Example 3.1. For
each j ^ 0, let ψ\> be a C°° function on R vanishing precisely on R\(sj9sj+1)
and satisfying the condition

\ψf\s)\ ^1 if O^k^j.

Let &i(s) be defined on L by

Hs) = £ 2-̂  [ψ3j(s) + ψsi+iω], sz L.

Then &i(s) is C°° on L and vanishes precisely on the intervals 70, 1^ [s2, 53],
bδ> ̂ e]># * * and at the points s1? s4, .

Now, let {cjjj ^O, 1, 2, , be an arbitrary bounded sequence of constants.
Then the function

j=Q

is C°° on L and vanishes precisely on the complement of the union of the
intervals (sus2), (54, s5), •••. Moreover, on each interval (s3j+ly s3j+2) (j ^ 0),
we have &2(s) = Cjkx{s).

The Frenet curve determined by kl9 k2 then satisfies the condition
|x", χ//r, x ( i v ) | = 0 , and consists of a countably infinite number of helical arcs
(corresponding to the intervals [su s 2], , [s3j+l9 s3j+2] ,•••)> a countably
infinite number of plane arcs (corresponding to the intervals [s0,Sj],•••,
ls3j> S3j+i]> * * ) and a countably infinite number of line-segments (corresponding
to the intervals 70, L, [s2,53], , [ssj_ly s3j], ).
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4.3. The condition k2: kx = constant. From the proof of Lemma 4.1,
we have the following

THEOREM 4.3 (a). Let Γ: x(s), s e L, be a helix which is not a plane
curve (in particular not a line-segment). Then on each component interval
of the open set G= {s e L : x"(s) Φ 0} of L, the relation τ—8Xιc holds, where
λ ( = cotαε) is a non-zero constant, and £ = ± 1 whose value may be different
for different component intervals of G.

The following converse to this theorem can be easily proved.

THEOREM 4.3 (b). If a C°° regular curve Γ: x(s), s e L, satisfies the
condition that on each component interval of the open subset G — [s £ L :
x"(s) φ 0} of L, the relation τ = Xκ holds, where λ is a non-zero constant
which may be different for different component intervals of G, then Γ has
a dense subset which is the union of a countable number of helical arcs and
line-segments.

The curve in Theorem 4.3 (b), however, is generally not a helix even
when the constant λ is the same for all the component intervals of G. We
illustrate this by

EXAMPLE 4.2. Take L = (-2, 2), and let kλ(s) and f(s)'^0 be C°° functions
on L vanishing precisely on [ — 1, 1] and L\( —1, 1), respectively. Let

M= ί f(s)ds and

if 5 < Ξ L \ ( - 1 , 1 )

2 M / ( s ) if s € ( - 1 , 1 ) .

Then k2 is C°° on L, and the Frenet curve Γ determined by kλ and k2

satisfies the condition that k2 = k1 on each interval component of G= [s € L :
TL"(s)φϋ\.

But Γ is not a helix. In fact, consideration of the rotation of the vector
ea(s) in the interval [ — 1,1] (see Example 3.1) establishes that e2(l) = e3( —1).
Now let us assume that βi(s), s € L, makes a constant angle a with a constant
unit vector p. Then, since cottf = λ = l on the section se( — 2, —1), we have

e3( —l) p = s in^^, by the formulas given in the proof of Lemma 4.1. There-

fore e2(l) p = s i n - ^ - ^ 0 . On the other hand, we must have e2(l) p = 0 at

4
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the end point 5=1 of the section 5 € (1, 2). Therefore p does not exist, and
Γ is not a helix.

In the example just given, we have kx = 0 and k2φ0 on ( — 1, 1), so that
although the condition k2 = 'λk1 is satisfied on G=L\( —1, 1) where kλ Φ 0, it is
not satisfied on ( —1, 1) where £i = 0. We shall consider in §6.1 the case of
a Frenet curve for which there exists a Frenet frame such that k2 = λέx (λ
constant) holds all along the curve.

5.1. Spherical curves and spherical arcs.

DEFINITION. A circular arc is an arc of a circle. A spherical curve

is a C°° regular curve lying on a sphere. A spherical arc is a spherical curve
which contains no circular arcs.

The condition usually given for a curve to be a spherical curve is that

(5.1) [ T - ' C O T + T * - 1 = 0 .

Here it is implicitly assumed that tc Φ 0, τ Φ 0, so that the spherical curve
satisfying the condition (5.1) is actually a spherical arc.

It is known [Wong, 10] that the following is a necessary and sufficient
condition for a C4 regular curve x(s), 5 <= L, to be a spherical curve:

( i ) kx is nowhere zero (so that the torsion k2 of the curve is uniquely
defined)

(ii) there exists a (^-function f on L such that

We note in this result that kλ Φ 0 is a natural part of the condition and that
we do not have to assume that k2 Φ 0.

We now prove

THEOREM 5.1. A spherical curve has a dense subset which is the union

of a countable number of circular arcs and spherical arcs.

PROOF. Let Γ : x(s), s <Ξ L, be a spherical curve. By Lemma 1.1, the
interval L has a dense subset which is the union of two countable families
35 and © of disjoint intervals open in L such that k2 = 0 on each interval of
33 and k2Φθ on each interval of ®. Thus the arc of Γ corresponding to any
component interval of 35 is a circular arc, and that corresponding to any
component interval of © is a spherical arc. Hence our theorem is proved.

If kxΦ 0 and k2 Φ 0, condition (5.1) is equivalent to
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(5. 2) {-hkf; + 2k[2) k2 + kλk[kf

2 + k\k\ = 0 .

By Theorem 2.3, the expression on the left of equation (5. 2) is an intrinsic
quantity of a Frenet curve. In fact, it can easily be verified that condition
(5. 2) is equivalent to

or

(5. 3') I x , x ", x( iv) I + (x x'") I x , x", x'" | = 0 .

These considerations enable us to formulate the usual condition for a C°°
regular curve to be a spherical arc in the following new form:

A C°° regular curve Γ: x(s), s £ L, with |x', x", x'" | ^ 0, zs a spherical
arc iff I x ^ x ^ x ^ l + ί x x ' " ) | x ' , x " , x ' Ί = 0 .

We now prove

THEOREM 5.2. A C°° regular curve Γ: x(s), 5 € L, satisfies condition
(5. 3) or (5. 3') zj/f it has a dense subset which is the union of a countable
number of spherical arcs, plane arcs and line-segments.

PROOF. Sufficiency. For a plane arc or line-segment, the vectors x', x ' ,
x'", x(iv) all lie on the same plane, and so (5. 3) is satisfied.

For a spherical arc ΓΊ corresponding to an interval IdL, we have noted
above that k^O on /, so that I\ is a Frenet curve. The set J— {s e I: ^(V^O}
is open in 7 and also dense in I otherwise, T1 will contain some circular arc.
Since (5.1) holds on each component interval of J, it follows that (5. 3) hold
on J and hence on I (=JπΓ).

Necessity. If x" Φ 0 on an interval 7c L, then the Frenet equations hold.
If moreover, k2Φ§ on 7, then (5.3) is equivalent to (5.1); in this case, the
arc of Γ corresponding to 7 is a spherical arc. The rest then follows on
applying Lemma 1.1 with n — 2 and fλ— |x"|> fi~^^

COROLLARY 5.1. A C°° Frenet curve satisfies condition (5. 2) iff it has
a dense subset which is the union of a countable number of spherical arcs,
plane arcs and line-segments.

5. 2. An example. We now give an example to show that curves of the
type described in Theorem 5.2 actually exist.



26 Y. WONG AND H. LAI

EXAMPLE 5.1. We first note that, if on an interval /, we have kλ Φ 0,
k[ Φ 0 and k2 Φ 0, then on this interval /, condition (5. 2) is equivalent to
(5.1) and to

p2 + p */k\ = R2,

where ρ=kϊ1, and R is a constant; that is, to

(5.4) k2=

Now let L be any bounded proper interval open on the right, and {sj},
j = 1, 2, , a strictly monotonic increasing sequence of points on L with no
limit point in L.

Let / be a non-negative C°° function defined on R, constructed as in § 1.4,
which vanishes precisely at the points sl9 s2, ••• and on ( — °o? ct0] and
[β0, + c ° ) , where do,βo are two points on R such that Lcz(oL0,β0). Then
since this / is positive elsewhere, the function h defined on L by

=[f f(t)dt]

is C°° and always positive.
Let φ be a C°° function on L such that (see §1.4)

φ{s)

= 0 if 5 ζ [ L n ( - o o , 5 1 ] } U [ 5 4 , 5 5 ] U ••• U [ 5 4 ^

> 0 a n d < 1 if s € (s1? s2) U (53, 54) U U (s2i-u s2ί) U

= 1 i f 5 € [S2, 53] U [5β, 57] U U [54 j-2, 54^-l] U

Then the function kx defined on L by kι{s)=φ{s)h{s) is C°°, has the same set
of zeros as φ, and coincides with h on

[S2, 53] U [S6, 57] U U [54 j_2, 5 ^ - i ] U •

Let us now take any sequence of constants Rjy j = 1, 2, , each greater
Λ/3o

than I f(t)dt, and define the function k2 on L by

( p\R)-p*yxβ if s ^ (54,_2, 54,_0 , ^ = 1, 2,

\ 0 elsewhere,
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where p=kϊ1. This function k2 on L is C°°. For, on

02,s3)u06,s7)u

we have

=k-i = h-i= ff(t)dt,
J «o

so that p = f. Therefore, k2 > 0 in each of the intervals (s4j_2, s4j_i); moreover,
at the points s2,s3,s6,s7, , the function p ( = / ) and consequently, also the
function k2 and their derivatives of all orders, are zero.

It follows from the above discussions that the Frenet curve determined
by the C°° functions kx and k2 just defined satisfies condition (5.2) and
consists of a countably infinite number of

line-segments, corresponding to {L Π( — oo? sλ]}, [s4, 55], ,
plane arcs, corresponding to [Si,s2], t5s> SΔ> * * >

and spherical arcs, corresponding to [52, s3], [56, 57],
We note that the spheres on which the spherical arcs lie are of radii Rj
0"=l, 2, ), which can be chosen to be all different.

6.1. (C°° regular) plane curves, helices, and spherical curves are
Frenet curves. We have noticed (in § 5.1) that a C°° regular curve lying on
a sphere is necessarily a special Frenet curve. We now prove

THEOREM 6.1. A C°° regular curve which is a helix {and in particular,
a plane curve) is necessarily a Frenet curve.

In fact, we can prove

THEOREM 6.2. A C°° regular curve is a helix whose tangents make
a constant angle a (0 < a ^ τr/2) with some fixed direction iff it has a C°°
Frenet frame with respect to which k2 = kλ cot a holds.

PROOF. We first prove Theorem 6.1. Let Γ : x(s), 5 € L, be a C°° regular
curve which is a helix whose tangent vectors make a constant angle a
(0 < a ^ 7r/2) with a constant unit vector p. Then

(6.1) βι p = cos a,

where ex = x'. Define
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(6.2) e3 = ^

It follows easily from (6.1) and (6. 2) that {el9 e2, e3} is a C°° family of right-
handed orthonormal frames along Γ.

It remains to verify the Frenet equations. Using (6.1) and (6. 2) we have

eί e3 == - — L — e Ί Cp-cosΛeO = 0.
sin oί

Therefore, e1 — k1e2 for some C" scalar function kx. The verification of the
other two Frenet equations can now be completed by the usual argumeat.

We have thus proved that Γ is a Frenet curve. Let us now prove the
remaining parts of Theorem 6.2. For our particular choice of e3 given in
(6. 2), we have

— e'3 e2 = cot a e[ e 2 , i.e. k2 — kx cot a .

Conversely, let Γ be a C°° Frenet curve for which there exists a C°° Frenet
frame such that k2 = kx cot a holds for some constant a (0 < a rg τr/2).
Define the unit vector

p = cos aβi + sin a e 3 .

Then p eλ — cos a and

p' = kλ cos ae2 — k2 sin #e 2 = 0 ,

so that p is a constant vector. Hence Γ is a helix.

6. 2. Necessary and sufficient conditions for a Frenet curve to be a
plane curve, helix or spherical curve. In §3.1-§5.2, we have dealt with the
conditions usually given for a regular curve to be a plane curve, a helix or
a spherical, curve, and we have shown by examples that these conditions are
necessary but not sufficient conditions. The results in Theorem 6.1 and
Lemma 2.1 enable us to obtain necessary and sufficient conditions for a C°°
regular curve to be a plane curve, a helix or a spherical curve. From the
discussion in § 6.1, it is seen that there is no loss of generality in stating our
results for Frenet curves.

THEOREM 6.3. A C°° Frenet curve Γ : x(s), s e L, is a helix which makes
an angle a, (0 < a ^ τr/2) with its directrix iff there exists a C°° function



A CRITICAL EXAMINATION OF THE THEORY OF CURVES 29

φ(s) on L such that

{ kx sin φ = 0 ,
(6. 3)

' kλ cos φ cot a = k2 + φ'.

PROOF. Necessity. If the Frenet curve Γ makes a constant angle a,
0 < a 5g 7r/2, with a constant unit vector p, then

ex p = cos a.

Since sin aφO, it follows from Lemma 2.1 that there exists a C°° function
φ(s) on L such that

(6.4) p = cos aeλ + sin cί( — sin φ e2 + cos φ e 3).

Differentiation of this gives

sin oί(k1 sinφ) ex 4- [cos akλ — sin a(k2-\-φ') cosφ] e2

— sin #(&2 + Φ) sin φ e3 = 0 .

From this it follows that

' kλ sin φ = 0 ,

kλ cot a = (/^2+Φ) cosφ ,

0 = (£2 + Φ) sin Φ >

which can easily be seen to be equivalent to (6. 3).
Sufficiency. Let Γ be a Frenet curve satisfying condition (6. 3) for some

constant a, 0 < a ^ τr/2, and some C°° function φ(s). Then the vector p
defined by (6. 4) is a constant unit vector which makes constant angle oi with
the tangent vectors of Γ.

REMARK. It is easy to see that this theorem is also a direct consequence
of Theorems 2.1 and 6.2.

Putting a=τr/2, we have

COROLLARY 6.1. A C°° Frenet curve Γ: x(s), s e L, is a plane curve
iff there exists a C°° function φ{s) on L such that
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~kx sin φ = 0 ,
(6.30

k2 + φ' = 0.

THEOREM 6.4. A C°° Frenet curve Γ: x(s), 5 € L, Zz&s on a sphere of
radius R iff there exists a C°° function φ(s) on L such that

i i n φ ,
(6.5) R

[ k2 + φ' = 0 .

PROOF. Necessity. Let Γ lie on a sphere with centre at c and radius
equal to R. Then |x—c12= ,R2 and (x — c) ei = 0. Therefore, by Lemma 2.1,
there exists a C°° function φ(s) on L such that

(6. 6) x — c = —R sin φ e2 + R cos φ e 3 .

Differentiation of this gives

ex = k1 R sinφβi — R{k2 + φf) cosφe2 — R{k2+φ') s inφe 3 ,

from which (6. 5) follows.
Sufficiency. Let Γ be a Frenet curve satisfying condition (6. 5) for some

non-zero constant R and some C°° function φ(s) on L. Then the vector c
defined by (6.6) is constant. Therefore, Γ lies on the sphere with centre c
and radius R.

6. 3. Some remarks.

REMARK 1. To construct a C°° regular plane curve, helix or spherical
curve which contains a countably infinite number of arcs of different kinds,
we need only construct first a suitable C°° function φ similar to the function
φ in § 1.4, then two C°° functions kx and k2 which together with φ satisfy
conditions (6.3), (6.3) or (6.5) respectively, and finally, the Frenet curve
determind by kx and k2.

REMARK 2. If k^O on a curve Γ, conditions (6.3) and (6.3') reduce to
the usual conditions k2=±k1cota and k2 = 0, respectively. On the other hand,
conditions (6. 5) are equivalent to

fki = (Jfcf1)' and / + k2k{τ = 0 ,

where
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f=-Rcosφ, R* = P + (kϊ1)*.

Thus we get back the results quoted at the beginning of § 5.1 from Wong [10].
We also notice that condition (6. 5) becomes (6.3') when R —> oo, as can

be expected.

ADDED IN PROOF. Lemma 2.1 can be found in B. O'Neill, Elementary
Differential Geometry, Academic Press, 1966, p. 50.
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