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1. Introduction. The Bernstein polynomial

(1) Bn{f; x)=

is constructed in correspondence with a function fix) £ C[0,1] and the satur-
ation problem with the polynomial was studied by K. de Leeuw [3] and G.G.
Lorentz [4], independently. In the same way that the Bernstein polynomial
originates in the identity

starting from the identity

-"'Σ
k=0

we are led to the operator introduced and investigated by O.Szasz [7]

(2) Sn(f; *) = *-»

In 1957, V.A.Baskakov [1] gave an example of a sequence of linear positive
operators of which the Bernstein polynomial (1) and Szasz operator (2) are
particular cases. In this paper, we shall determine the order of saturation and
its class in the local approximation by a special form of the Baskakov operator
which is defined in the following.

In the sequence of real functions
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each function has the following properties:

1) <Pn(y) c a n be expanded in Taylor's series in [0, oo),

2) φ.φ) = l,
3) ( - l )Vf (x) iS 0 (£ = 0,1, 2, •), for x € [0, oo),

4) -φV{x) = * < ? « * ) (£ = 1, 2, •), * € [0, oo),
where c is an integer.
We expand the function φn(y) in a Taylor's series with .r € [0, oo), that is

= Σ-^

By 1) and 2),

(3) Σ(-i)*-2

Now we define for J; e [0, oo) the linear operator Mn(f; x) by

(4) Mn(f; x) = Σ, (- 1)* -2 |M **/(-M, („ = i, 2,
^ \ 71 /

It has a meaning for each function f(x) which is continuous on [0,i?] and zero
on (R, oo), and it is positive on account of 3), where i?(gr 1) is an arbitrarily
fixed positive number.

REMARK 1. We say a linear operator Lw is positive if the positivity of
f(x) implies the positivity of Ln(f:x). In this case we note that

Ln(f, x) ^ Ln(g; x\ x € [a, b]

if f{x) ^ g(x) on the finite interval [a, b],

2. Auxiliary theorems. In this section, we consider the local approxim-
ation of continuous functions by linear positive operators Ln(f, x\ which
have the follwoing properties

Pi: If f(x) is a linear function on a finite interval [α, b] (0 ̂  a < b <°°),
then Ln(f; x) = f(x\ x e [a, b].

P2: If f(x) = Ax2 on [α, b], then

( ^ ) , uniformly over [α, 6],

where the weight function ψ(x) is a bounded, twice continuously differe-
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ntiable and not equal to zero on (α, b).
P3: There exists a positive integer m(> 1) such that

Ln{(t-x)im;x]=o(~^9 uniformly over \a9b\'

THEOREM A. (P. P. Korovkin [2]). Let [Ln(f;x)} be an infinite sequence
of linear positive operators, which satisfies the three conditions

Ln(l; x) = 1 + ctn(x),

Ln(t; x) = x + Θn(x)

and

Ln(t2; x) = x2 + Ίn{x\

<xn(x), βn(x) and yn(x) being any functions uniformly tending to zero in
[a, b] as n -> oo. Then Ln(f) converges uniformly in [α, b] to f(x), if f(x)
is continuous in [a,b\

THEOREM B. (R. G. Mamedov [5] and F. Schurer [6]). Assume that the
sequence of linear positive operators [Ln(f; x)} has the property that

Ln(l; x) = l, xz[a, b\

Ln(t; x) = x+ y ^ + ° ( ^ y ) ' uniformly over [a, b\

Ln{t2\x) = x2 + ^W + ° ( rn\ )> uniformly over [a,b].

If there exists a positive integer ra(> 1) such that

Ln{(t - x)2m;x] = o[—-ΓJA, uniformly over [a,b],

then for each function f{x) £ C(2)[α, b\ we have

- 2xψι(x)} ( 1 \+o\ n) j ,

uniformly on [au bx\ a <aί <bx <b,
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where C(2)[α, b] is the set of all real functions f(x) of which the second
derivatives f"(x) exist in [α, b] and are bounded,

PROPOSITION 1. If the three conditions

Ln(l;x) = l, xz[a,b],

Ln(t; x) = x, xz [a, b],

Ln(t2; x) = x2 + ^ + o ( j , uniformly on [α, b]

are satisfied for a sequence of linear positive operators {Ln(f; x)}, which
have the property

Ln{(t — xY;x}= o( J, uniformly on [a,b]9

then for each function f(x) € C(2)[^, b], we get

Ln(f;x) - f(x)= ^X)f
2n

{x) + o(^-), uniformly on [aub&

where a <at <bι <b.

PROOF. In the above theorem B, we have only to set

m = 2, ψi(x) = 0, φ{n) = n and ψ2(x) = ψ(x).

Analogously we have

PROPOSITION 2. Let a sequence of linear positive operators {Ln(f; x)}
have the same properties as the assumption of proposition 1, then for each
function f{x) € C(2)[α, b], we get

Ln(f;x) - f(x) =

3. Asymptotic formula of a special linear positive operator.

PROPOSITION 3. The sequence of operators {Mn(f;x)} converges in
[0, R] uniformly to the function f(x)y if f(x) is continuous in [0, R] and
equal to zero on (R, oo).

RROOF, We show that the sequence of operators {Mn(f; x)} converges
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uniformly in [0, R] to f(x) if n —> oo in the cases f(x) ΞΞΞ 1, f(x) = .r, and
f(x)=x2. The uniform convergence of Mn(f;x) to 1 in the case /(.r) = 1
follows from (3). When f(x) = x9 we have to consider the series

Using the identity 4), the right hand is equal to

(5) ^(-IΓllf^

= x φ n + c φ ) = X - 1 =

When f(x)=x2 we arrive at the series

A:=0

fc-l Φn+c \X) ~k-\ K

Since

^ 2 ^ w + 2 c

V^J ; (* —2)!

and

2^K-L) " (h-Λ\\ X " '

we have

(6)
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From (3), (5) and (6), applying theorem A here, we obtain the proposition 3.

PROPOSITION 4. For each function f{x) e Q-^la, b], we have

Mn(f; x) = f(x) + f ^ ^ * CX' + o ( — ) , uniformly over [ax, b^,

where O^a <a1 <bx <b^R.

PROOF. We have only to verify the fact that

M n{(t — x)*;x} = o( V uniformly on [a,b].

From (3), (5) and (6),

(7) Mn{(t - x)*;x] = Mnφ - 4fx + βfx* - Atx% + xι;x)

= Mn(ί4; x) - 4xMn(t3; x) 6x*

3x4 + 6χ2(cx^ + χ) , say.

(8) M ( 2 ) — T^ (— ί)k Φn

h (k-2)\ X n + hi (*-l)! "2

" ygrg(j) ._, 2(w+c)α:2 " ^

έ^ (*-3)! ^ + «2 S (>fe-

(k-ϊ)\

(n+c)x2 x
+n2 + n2 + n2 + n*

n

On the other hand
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say-

g c
(k ό)\ n

( * 2 ) !

X ^ (k-4)\

3(n+c)(n+2c) ^ ( .t_, φ«;£(x)

2(n+c)(n+2c) " ygrjg(j) ,
" 3 S (*-3)!

2 ^ r

(10)

(*"2)!

5(w + c)(n+2c) 4(n + c) .
rr vr

-2 r«+2cW fc-2 ^ 1

vr

t l . ( ) ( j f e _ 2 ) ,

_ (n + c)(n + 2c) j ! l £ ( 1 ) t _, p&jgfrc) χk_3

i ^ V ^ / 1 \λ;-1 ^w+c ^ J ic-1

/c

:3 +

έ;
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By (9) and (10)

* i 6(n+c)(n + 2c)χ!ί 7(n+c) χ x
n3 n3 n%ill) Af" - x i χ χ

n3 n3 n3 n%

By (7), (8) and (11)

(12) Mn {(t-xY; x] =x*

o , 6cx + 6x Λ 4\-3xA-\ 4a:4

n

+ 4r2

n

= o( j , uniformly over [α, b].

Consequently, using (12) and proposition 1 we have for each function f(x) €

Mn(f;*)=/(*)+ f^ψ x(±+cx) +©(-£-), uniformly on [al9b%]

Analogously, using (12) and proposition 2 we obtain

PROPOSITION 5. For any function f{x)^C^[a,b\ we have

Ti/Γ rr \ rs \ f \ x ) X + CX2 ( 1

Mn(f;x)=f(x)+ J V J + {

where 0^a<b^R.
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COROLLARY 1. (E.V.Voronovskaja [8]). If fix) belongs to C ( 2 ) |>, b], then

B (f- τ)—f(τλ-\- J ^*^ ^ 4-

This holds uniformly on the interval [al9 bx~\ if O^a <Cal<Cbl <b ^1.

PROOF. In the proposition 4 and proposition 5, we set

[0, R] = [0,1], φn(y) = (1- yY and C = - 1 .

COROLLARY 2 (O. Szasz [7]). If fix) belongs to C^[ayb],then

, xz[a,b].

This holds uniformly on the interval [aι,b1] if 0 fg a < ax < bλ < δ ^ i?.

PROOF. We have only to take

<Pn(y) = e~ny and C = 0 ,

in the proposition 4 and proposition 5.

4. Local saturation theorem. Let 0^a<b ^=R be given. We consider
the following class U of functions u(x), x € [0, R]: w (x)=ψ(x)q(x\ where q(x)
is twice continuously differentiable, vanishes outside of an interval (cc, β) with
a <cc< β <b. Auxiliary numbers ai and bt (i = l, 2) are chosen to satisfy
a < ax < a2 < α < /S < b2 < bx < b. For the linear positive operators and f(x)
€ C[a, b\ let us define the linear functionals An by

We assume that for each W(Λ ) € [7, there is a constant iC such that

11/11 = max |/0r)|,
α?€[αδ]
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where the constant K is independent of f(x).

THEOREM 1. For the linear positive operators which have the properties:
Pu P2y P3 and f(x) € C[a, b], we get

(i) If there is a constant K such that

\Λn(g)I ^ K\\g\\, for any g(x) e C[a, b],

and

(14) I Ln(f; x)-f{x) I < M^X) ,xz[a, b] (»= 1,2, •),

then f{x) has a derivative which belongs to LipM 1 on [α, b],
(ii) If f\x) exists and belongs to Lip^ 1 on [aί9bι\9 then

I Ln(f; x)-f(x) I < — I f a - + ° ( — ) > uniformly in x € [α2,

(iii) 7f ίw addition to the assumption of (i), ίΛ^ relation

holds a.e. on [al9 δ j , ί/î /z /(Λ:) Z*5 linear on [al9 δ j .

We write this result by the notation

L.Sat. [Ln] = [/' € Lipjtfl, w"1, linear futction, ψ-(x)].

4.1. Proof of (i) of theorem 1. We prove the relation

(15) lim An(g)= I g(x)u"(x)dx> for g(x)eC[a,b] and u(x)eU.
Ja

Assume first that g(x) € C(2)[α, &]. From the properties Pu P2, P3 and propos-
ition 1, we have

(16) !,„(<,; *) - g(x) = ^OX*) . + o ( J _ ) } uniformly in j : € [α l f

for any j<j;) e σ2>[α, &].
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From (13) and (16) it follows that

> I g\x)u{x)dx {n -> oo),

which is equivalent to (15). Since C(2)[α, b] is dense in C[a,b] and there is a
constant K such that

\An(g)\ ^k\\g\\9 for any g(x)eQ_a,b]y

the relation (15) is established for all g(x) € C[a, b]. In the other hand, we
can write

(17) An(f)= f

with the step function

where the summation run over k such that a < < x. We assume that
n

f(x) satisfies (14) for x € \ajb\ Then the function \n(x) have a total variation
not greater than MR, and an increment \Xn(x)—Xn(y)\ does not exceed the
number of points in [x, y] multiplied with . By Helly's theorem [9],

we can extract a subsequence [λnp(x)} which converges on [a, b] to a function
X(x) of bounded variation and we have

(18) lim 4,,(/)= f u(x)dX(x).

From (15) and (18)

r f(x)u"(x)dx = I K(x)u\x)dx,
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where A(x) is an indefinite integral of λ(:r). Since this is true for all u(x) e Uy

we have

f{x) = A(x) + g(x) + h, x € [α, 6],

with some constants # and A.
Hence

f\x) = λ(:c) + gr, .r ^ [α, 6].

For the completion of (i), we have only to verify that \{x) belongs to Lip^ 1,
which is trivial by the definition of X(x).

4.2. Proof of (ii) of theorem 1. From the hypothesis, for t,xz [a2y &2],

\f(t)-f{x)-(t-x)f'(x)\ = |jΓ [f(y)-f(x)]dy

(y-x) dy

Since

Ln{(t - xf x} = Lnφ;x) -x>= , uniformly in x,

we get

I Ln(f; x) - Ax) I = I Ln {f{t) - fix) -it- x)f'ix); x] \

&- + o (—) , uniformly in x 6 [α2, b,],n \ n J
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which concludes the proof of (ii).

4.3. Proof of (iii) of theorem 1. Since (14) is satisfied, hence, since
f'(x) is absolutely continuous,/"(.r) exists a.e. on [a^b^. By proposition 2,
for almost all x <= [al9 &x]

(19) lim n [Ln(f; x) - f(x)} = & ^ M .

From (19) and the assumption of (iii), we have

x) π Γ , _
Γ-^ = 0 a.e. on [al9 b{\.

Since ψ(x) ^ 0 over [al9 bx\ we get

f"(x) = 0 a.e. on K ^ ] .

Consequently, we have that f(x) is linear on [aubγ~\ by the continuity of
f\x). Thus, we complete the proof of theorem 1.

5. Determination of the class of local saturation by some linear
positive operators on C[a, b], O fg a < b fg JB (R ^ 1).

5.1. We consider V.A. Baskakov's operator Mn(f;x) which satisfies the
following conditions:

npn+c,ι _ lc + n
Pnl ~ CX + 1 '

(20)

(21) pnl(x)dx =-—, xpnl{x)dx =
m i " m l+l

(n-c)(n-2c) '

(22) Σ, I xtpnl(x)dx=O{~)(i = 0,l),

where

and E(l)=£(0) = oo.
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THEOREM 2. For space C[a, b](0^a <b^R), V.A. Baskakov's operator
Mn(f; x) which satisfies the properties (20), (21) and (22), is saturated locally
with the weight function ψ(x)=x(l + cx). That is,

L.Sat.[Mn] = [/'(#)€ Lipjfl, w"1, linear function, x(l + cx)].

Applying theorem 1, for the proof of theorem 2, we have only to verify
the existence of a constant K such that

I An(f) I =g K\\f\\, for any f(x) e Qa, b].

In order to prove it, we need the following lemmas.

LEMMA 1. Let us write

Tnr = Σ (nx-iγpnl(x) and T* = Σ, \nx-l\pnl(x).
1=0 1=0

Then, we have

\£O) i n 0 — l , i n l — u, l n 2 — nx\L -f t x j

(23)' T* ^ ^

PROOF.

oo oo

= nx(l + c:r) ,

7 Ά* I /Ύ% i '•7 Ô * —— / L J > -/> I T̂ i L

Z^ Pnl\X) I "•2' ^ I j I 2—ι Pnl\X) Γ
ί=0 Z=0 ' 1=0 '

= [Tn2]
 h =.
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LEMMA 2. For given 0<a<b < R, there exist constants Cr (r = 1, 2)

such that for each polynomial

Rn(χ)= ΣaιPm(χ)y Wλ ^L>
1=0

one has

(24) \Rίr)(x) \^CrLn*, if a^x^b and ex + 1 Φ 0 .

PROOF. Let us set X—{x(l-\-cx)}'1. From the property (20), we have

(25) pUx) = (I - nx)Xpnl(x)

(26) p:t(x) = - nXpnl{x) + (Z - nxfX2pnl(x) - (2cx + 1)(Z - nx)X2pnl (x).

From (25), we get

(27) \R'n(f; x)\ ̂ LXJZ\1- nx\pnl(x)
1=0

-L L

g L X X 2 n 2

By (26), we have

i=0

X2 Σ«iC "
1=0

• (2cx + 1)X2 Σ aι(ι - nχ)Pm(x)
1=0

Since

1=0 1=0 1=0

we get
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(28) I i?"(/; x) I ^ L [nX + nx(l + cx)X2 + 2nx(2cx + 1)X2}

x + 3 _ 2c

x(l-\-cx)

^ C^Ln.

From (27) and (28), we obtain lemma 2.

LEMMA 3. For arbitrary 8 > 0, £/κ?Γ£ z's α constant C(δ) 5wc/ι ίΛαί

(29) Σ A«(^) ^ C(l)n-\ x € [α,*].

PROOF.

Σ AifcO^*-1 Σ ("f

+

—

LEMMA 4. L^ί Qn(x) be a sequence of twice continuously dijferentiable
functions on [0, R]; let (A) the maximum μn of |Qn(^c)| on the intervals
(0, a2) anb (b2,R) be μn = O(n~ι), and (B) the maximum Mn of \Q'ή(x)\ on
(a^bi) be Mn — O{n). Then

(30) E Qn (~) -nf Qn(x)dx - O(l) .
naι<k<nbι \ ^ / JQ

REMARK 2. The lemma 4 is a slight modification of a lemma by G.G.
Lorentz [4]; we omit the proof.

5.2. Proof of theorem 2. We can rewrite (13) in the form
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+
naί<k<nbι

where the ξkι are between and . Since q\x) is bounded, the statement

will follow if we can prove that the three sums

1=0
Σ

- Σ

Σ

are bounded. For the third sum we have, using the estimation (23) for Tn2

in lemma 1,

(31)
δ! 1=0

= Λ" Σ n—(l+c—) =

To estimate 5iυ, we can rewrite it in the form

J Σ ^(-jr)-L 7
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where qnl = ztq( j and qnι — Q for ~—i^aor ^ β. Thus the. qnl are

bounded. If we put

1=0 na<l<nβ

then, since I pnl(x)dx= , we have
Jo n — c

Since E(c) ^ 1, from the assumption (22)

For the functions (32), the condition (A) in lemma 4 is checked by means
of lemma 3 and (B) by means of lemma 2. Hence, using lemma 4 we get

(33) S!» =

To estimate Sn\ we write it in the form

m sl"> = . . £ < J ^ s # ) - a ( - ^
where

qnι=±q ( — I and qnl = 0 for — < tf or — > β.

Since from (21)

(C) Z + l

P(x)dxPnί(x)dx= (n_c)(n_2c) ,

we h
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(35) f xQn(x)dx- ί Qn(
Jo Jo

ή-2lc
h (n-2c)(n-c)

< Const. T] \=O f — ] .

Like the functions (32), also the functions Qn{x) and Qn{x) satisfy the con-
ditions (A) and (B) of lemma 4. For functions xQn(x) this follows from the
fact

\(xQn(x))"\ ̂ 2 |Q; | + |QB"|, O^xSR

and lemma 2 with r = l , 2. Applying (22), (35) and lemma 4 to the sum (34),
we obtain

E{C)

X

fn ( xQn(x)dx-n ί Qn(x)dx + n [ ' Q n ( x ) ^ - ^ QT OW

ZΛ:

Λ-n

-\-n

r^ ( c ) —
^Q n (

Γ(c) _ _

xQn( I = 0(1),

Consequently, from (31), (33) and the estimation for 5^, we complete the
proof of theorem 2.

T H E O R E M 3 (G. G. Lorentz [4]).
L.Sat.[jBn] = f/'(j:)€ Lipjfl,/!"1, linear function, x(l — x)].

PROOF. Since / ( —1) = 1, it is trivial.

REMARK 3. The whole interval case of theorem 3 has been investigated
by K. de Leeuw [3],

THEOREM 4.
L.Sat.[SJ = [/'(#) eLipjfl, n~\ linear function, x\.
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PROOF. By theorem 2, we have only to verify

Γ I x i

,Λ nl \ n )

I pnί(x)dx=R I pnl(Rt)dt= —r. I tιe~nmdt

= ~T\ [ΊiRΓ + ~&Rf + ' * * + (nR)ι+1\

Let us set cί=S and β=R—S(>0), where € is an arbitrarily fixed positive
number and sufficiently small.

j=0

R
-ε)n εn

=Sι+S2, say.

= const. Σ,
O^j^εn

Λ. ^ Uj(ή)
-const. χ ; —7τ

where

(ΠJ+1Rje-nE, if O^
j(n)=\

10 , if 7 > £

Let us write

Since
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we have
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= Rjxje~RxU + 1 - Rx},

u'j(x) ^ 0 , if 0 5g Λ: ^ ^ ^ .

It'Ί T*\ ^ Π if ^ ^^ /y.
Uj\X) <^ U , II j-) <^ X .

On the other hand, the functions u^x) are zero if x < -̂ — and we can take

7 such that -— > ^ 5 — . Then, we have

sup «/*) = u,

Using Stirling's formula, we get

Hence

JΓ

1 R -1) + (j + 1) log A . + -TΓ-logi - -|-Iog2τr-logi?

For the function /(£)=

R

i? i?

1 i , i 1 1

~γ \ogj + log — 2~

1> w e have

and /(£) is strictly decreasing over (0, R).
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Since 0 < β < ~γ and log 2 = 0.69

-7Γ- -log^- -1^2-log2-l>0.3.c c

Hence, there is an integer jo(β, R) such that

log -~ rg ^—h -^- log^ + const.

and we get

lim w/w)=0, for a fixed j.
W->oo

Hence

That is

(36) 5 1 = o ( l ) .

Analogously we shall estimate *S2 in the following.

^ const. £ nBn 2^ —^— = const.
J

= const. > —f^- ,
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where

nj+1Rje~nR, if Sn<j^ (R-8)n.

0 , Ίίj^Sn.

Let us set

Since the functions v5(x) are zero if x < p _ and we can take j such that

sup

Using Stirling's formula, we obtain

j \

Hence

~

\-\ogj-j I 1

 e - l j +0 + l)log
1

On the other hand, we know the following formulae

(37) ^— = 1 -

(38) l o g _ J ^ - = ^ + ^ / ^
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From (37) and (38), we get

Hence, there is an integer j^S, R) such that

— - ^ ' ' /, for j

and we have

0 0 TT

Σ V j ^-

J

lim t /w) = 0, for a fixed j .

Hence

That is

(39) 5, = o ( l ) .

Combining (36) with (39), we get

(40) £ £ pnl{x)dx =o L±A£*
Using (40), we can verify easily the fact

(41) Σ Γxpnl(x)dx=θl±).

Consequently, from (40) and (41) we can prove theorem 4.



SATURATION OF LOCAL APPROXIMATION 453

REFERENCES

[ 1 ] V. A. BASKAKOV, An example of a sequence of linear positive operators in the space of
continuous function, Doklady Akad. Nauk, 113(1957), 249-251.

[2] P. P. KOROVKIN, Linear operators and approximation theory, Delhi, I960.
L 3] K.de LEEUW, On the degree of approximation by Bernstein polynomials, Journ. d'Analyse

Math., 7(1959), 89-104.
[4] G.G.LORENTZ, Inequalities and the saturation classes of Bernstein polynomials, Proc.

of the Conference at Oberwolfach, 1963, 200-207.
[5] R.G.MAMEDOV, Asymptotic approximation of differentiable functions with linear positive

operators, Doklady Akad. Nauk, 128(1959),471-474.
[ 6 ] F. SCHURER, On the approximation of functions of many variables with linear positive

operators, Indagationes Math., 25(1963), 313-327.

[7] O. SZASZ, Generalization of S. Bernstein's polynomials to the infinite interval, J.Res.
Nat. Bur. Standards, 45(1950), 239-245: Collected Mathematical Works, Cincinnati
(1955), 1401-1407.

[8] E. VORONOVSKAJA, Determination de la forme asymptotique d'approximation des functions
par les polynδmes de S.Bernstein, C.R. Acad.Sci. U.S.S.R., (1932), 79-85.

L9] D.V.WlDDER, The Laplace transform, Princeton University Press, 1946.

COLLEGE OF GENERAL EDUCATION

TOHOKU UNIVERSITY

SENDAI, JAPAN.




