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1. Introduction. The Bernstein polynomial

o) B,(f. )= ,E f(-ﬁ-)(Z) 21— zyt

is constructed in correspondence with a function f{x)e C[0,1] and the satur-
ation problem with the polynomial was studied by K. de Leeuw [3] and G.G.
Lorentz [4], independently. In the same way that the Bernstein polynomial
originates in the identity

n

> (3)=a - ot =1,

k=0

starting from the identity

—nx : 1 k — 1

ey A (nx)t =1,

k=0
we are led to the operator introduced and investigated by O.Szész [7];
= kBN 1

2 S.(f; x) = e ™ — )5 (nx)k.
@) (fi 2) G

In 1957, V.A.Baskakov [1] gave an example of a sequence of linear positive
operators of which the Bernstein polynomial (1) and Szész operator (2) are
particular cases. In this paper, we shall determine the order of saturation and
its class in the local approximation by a special form of the Baskakov operator
which is defined in the following.

In the sequence of real functions

¢n(y) » (n= 132""),
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each function has the following properties:
1) @.(y) can be expanded in Taylor’s series in [0, o),
2) ¢n(0) =1,
3 (—1kp® (x)=0 (k=0,1,2,--), for xe][0, o),
4) _q);k)(x) = n¢n+cl)(x) (k =12,- ')’ z €0, OO),
where ¢ is an integer.
We expand the function @,(y) in a Taylor’s series with x € [0, o), that is

@a(y) = Z ¢'n (x) — 2)*,
By 1) and 2),

®) S (= 1) 2 "’" (x) =1,

k=0

Now we define for x € [0, o) the linear operator M,(f;x) by

@ M) = (10 2w (A =12,

It has a meaning for each function f{x) which is continuous on [0,R] and zero
on (R, o), and it is positive on account of 3), where R(== 1) is an arbitrarily
fixed positive number.

REMARK 1. We say a linear operator L, is positive if the positivity of
f(x) implies the positivity of L,(f:x). In this case we note that

L.(f;x) = Lu(g; ©), x¢<la,b]

if flx) = g(x) on the finite interval [a, b].

2. Auxiliary theorems. In this section, we consider the local approxim-
ation of continuous functions by linear positive operators L,(f, x), which
have the follwoing properties;

P, : If f(x) is a linear function on a finite interval [a, 5] (0 =< a < b <),

then L.(f; x) = f(x), x € [a, b].

P,: i flx)=Ax* on [a,b], then

L.(f,x)— flxy=4 f;;r—) +O<%> , uniformly over [a, b],

where the weight function y(x) is a bounded, twice continuously differe-
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ntiable and not equal to zero on (a,b).
P;: There exists a positive integer m(> 1) such that

L. {(t— 2" 2} =o(%), uniformly over [a, b].

THEOREM A. (P. P. Korovkin [2]). Let {L,(f;x)} be an infinite sequence
of linear positive operators, which satisfies the three conditions

L,(1;x) =1 + a,(z),

L(t:2) = & + 8,(@)
and

L,(%x) = 2* + V,(2),
a,(x), B.(x) and V,(x) being any functions uniformly tending to zero in
[a,b] as n— co. Then L,(f) converges uniformly in [a,b] to flx), if f(x)

is continuous in |[a, b].

THEOREM B. (R. G. Mamedov [5] and F. Schurer [6]). Assume that the
sequence of linear positive operators {L,(f;x)} has the property that

L,(1;x)=1, x<[a,b],

L, (t; x)=x + ‘Z;((;) + 0( <p(1n) ), uniformly over [a, b],

2. 2 \[/‘2(.73)
Lyt 2) =zt + YO +o<

o) >, uniformly over [a, b).

If there exists a positive integer m(> 1) such that

L, {(t— x)™ x} = 0(?2717)’ uniformly over [a, b,

then for each function f(x)e C®[a,b], we have

L(fi) = fia) = HEPPDELLDMAD =200 o (05,

uniformly on [ay, b,], a < a, <b, <b,
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where C®[a, b] is the set of all real functions f(x) of which the second
derivatives ' '(x) exist in [a,b] and are bounded.

PROPOSITION 1. If the three conditions

L,(1;z)=1, z¢<la,b],

L,(t;x) =z, z<la,b],
L, (%5 x) =2 + aCal + 0(1—> uniformly onla,b]
n b n n b b4

are satisfied for a sequence of linear positive operators {L,(f;x)}, which
have the property

L, {(t — ) x}= o( 711 ), uniformly on [a,b],

then for each function f(x)ec CPla,b], we get
L.(f; x) — flo)= \k(x_)g;@ -+ O<-’1’T>,. uniformly on [al,‘b,]f

where a < a, < b, <b.

PROOF. In the above theorem B, we have only to set

m = 2,9,(x) =0, p(n) = n and y(x) = Y(x).
Analogously we have

PROPOSITION 2. Let a sequence of linear positive operators {L,(f;x)}
have the same properties as the assumption of proposition 1, then for each
Sfunction f(x)e C®[a, b], we get ' '

L(f ) — flz) = ‘Mgn#xl +o<—711—>, xela,bl

3. Asymptotic formula of a special linear positive operator.

PROPOSITION 3. The sequence of operators {M,(f;,x)} converges in
[0, R] uniformly to the function f(x), if f{x) is continuous in [0,R] and
equal to zero on (R, o).

RROOF. We show that the sequence of operators {M,(f;x)] converges
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uniformly in [0,R] to flzx) if n— oo in the cases flx)=1, f(x) = z, and
flx)=x%. The uniform convergence of M,(f;x) to 1 in the case flx)=1
follows from (3). When f(x)=x, we have to consider the series

My(t; ) = Z( 1 2242 4

0
Using the identity 4), the right hand is equal to

®) 2 T (= ot B e

= 2@ 0)=x1=zx.
When f(x)=x* we arrive at the series
2

M(52) = 3 (-1 P ()

_ - _1\k-1 ¢flk:cl)(x) k—li
=22, (DTG A

oo

(k—2)
= tc Z (— 1)k-? (znizcg)x‘)

ks e 2D
+ ;_‘:1( 1) l(k—l)! xk-n

Since

= (- B gt = g 00=1

k=3

and

> (-1 ) et 2 g, 0) = 1,

we have

x(1 + cx) .

(6) M,(t% x)= z2* + .
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Frem (3), (5) and (6), applying theorem A here, we obtain the proposition 3.

PROPOSITION 4. For each function f(x)e C®[a,b), we have

M,(f; x) = f(x)+ féx) z( : cx) + o(%), uniformly over |a,, b,],

where 0=a <a, <b, <b=R.

PROOF. We have only to verify the fact that
\ 1 .
M, {¢ — )4 x} = 0(7), uniformly on [a, &].

From (3), (5) and (6),
@) M, {(t — 2)*; x} = M,(t* — 48*x + 682x2® — 4tz + xhx)

2 2
= M, (" %) — 4xM,(t% 1) + 3x* + “@w

2 2
= M® — 4xM® + 3x* + GL(CJ;;’T) , say.

2

& M> = i (- 1 28 (R xé(—l)k L) (L)

+ 22 k—2Pn+oc k = k-1 Prnie 1 Rk
= Z( b (p(k (Z?x o tro (D (?k 1(;:')xk

+c)n+2c = @D o 2n+o)xt PR >
_ (n )512 )xBZ(—l)’“ 3 ¢(’k_3€§-)r') k-3 (nnzc)x ST (—1y Zé__z(;!i)xk 2

(k—2) e
(”+C)x Z( 1)k- ?Eziz-cé';? k-4 xg Z(_l)k 1¢(’rz—c g-’l)?

xk 1

k=2

_ (n+o)(n+20)x* | 2(n+o)x* | (n+c)xd x
- n? * n? Tt Tt

n n n

On the other hand
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M®D — Z( 1) @n ‘Pn (x) (7)4 =xé(_1)k 1%7;% 1(;) (_)

k=0

2

p— n+c 2 k-2 ¢n+2c('r) . ’ = k-1 5"Ic"’_cl)( ) k—1 k
Z( D =1 = <n) +z2 (=1 e

=M@ +Mg, say.

+ +2 &3
(9) Mg; (_71_(")("—6)_ SZ( 1)k -3 ‘(P}e_scs(jr!_)xk_s .

2n46) g qye-e PR(E)
LD B Gl ) T

_ (n+c)(n—|;§c)(n+30) x“g(—l)""“ %g%)z(l.;) k-

+ 3(n+c)’£:z+2c) 23 (—1) %(Zki??g;)

2n+)(n+20) <~ qvees PoR(T) -
R P N = T

4(n+c) 22( 1)k -2 ¢£»k:2zc)(x) k-2

+ (E—2)!

:(n+c)(n+%c)(n+3c‘) . 5(n+c)3(n+2¢) e 4(n—:—c) 2
n n n

R AT T =i

k=1

("+C)(7l+2€) 32( 1)k-3 Epkrwscs(;:)

xk—3

2(n+o)x* & ks Pue(x) ., nmtcC 2 _qyer Pie (E).
+ e é( 1y (k—2)! S xkgzx 1 (k—1)!

_;E_m 11 P (E) e
o 2 DT *

_ (n+c)(731+2€) e 3("‘2‘0) P ia
n n n

xk—2
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By (9) and (10)

(n+c)(n+%c)(n+3c) o 6(n+c)(3n+2c‘)x3+ 7(n-:—c) x+i3
n n n n

(1) M® =

n n? n®

2 3 2
=(1+g+ Lic +6_c?>x4+< 6 18 , 12 )x3
n n n

+( r +7—f>x2+ =z
n n n

By (7),(8) and (11)

6cxt + 622 + 11’z +18cx® + 7x?
n n?

12) M, {¢t—x); x} =x*+

3 -4 2.3 2 4 3
" 6¢c’x +12cnf +7cx*+x +3x4+60x :6x -

_ 12cx*+122°*  8c’x'+12ca’+ 4x?
n n’

_ 3’z +6cx® + 32° + 6cixt +12¢° 2 +Tex’ +x
- n2 n3

=o<—711—>, uniformly over [a, b].

Consequently, using (12) and proposition 1 we have for each function f(x)e
C®la, b},

M,(f; x)=f(x)+ f-ZQ) ._x(_l;-il-_c.g)_ + o(—};), uniformly on [a, b,].

Analogously, using (12) and proposition 2 we obtain

PROPOSITION 5. For any function f(x)e C*®[a,b], we have

M,(f: 2)=Ff(z)+ L "2@ “;fxz +0<%), zela,bl,

where 0=a<b=R.
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COROLLARY 1. (E.V.Voronovskaja [8]). If f(x) belongs to C®[a, b), then

B.(f; x)=f(x)+ Ji*z(x—)f(lnj)— + o(%), z€[a,b].

This holds uniformly on the interval [a;, 0] if 0=a<a, <b, <b=1l

PROOF. In the proposition 4 and proposition 5, we set
[0,R] =[0,1]), @.(y) =1 — y)® and C=—1.
COROLLARY 2 (O. Széasz [7)). If flx) belongs to C®|a,b], then

) — S =z 1
S.(f;x)=f(x)+ 5 p +o< . ), x<la,b].
This holds uniformly on the interval [a,,b,] if 0=a <<a, <b, <b=R.

PROOF. We have only to take
@ (y)=e" and C=0,

in the proposition 4 and proposition 5.

4. Local saturation theorem. Let 0 =a < b = R be given. We consider
the following class U of functions w(x), x € [0, R] : u (x) =+ (x)q(x), where g(x)
is twice continuously differentiable, vanishes outside of an interval (a, 8) with
a<a<<P<b Auxiliary numbers a; and b, (i=1,2) are chosen to satisfy
a<a <a;<a<B<b,<b <b. For the linear positive operators and f(x)
€ Cla, b, let us define the linear functionals A, by

L. B) (£
(19)  AN=2 & #5) <”>u

)
na<k<on ’4"( __f;_ ) ( n

2 2 [1() ()

na1<k<nd,

We assume that for each u(x)< U, there is a constant K such that

A =HA, 1A =max @),
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where the constant K is independent of f(x).

THEOREM 1. For the linear positive operators which have the properties:
P, P,, P, and f(x)< (la,b], we get
(i) If there is a constant K such that

| A =Kllgll,  for any g(x) < Cla, b],

and

19 L(fo-fa) <2 reta ) (n=1,2,-- 9,

then f(x) has a derivative which belongs to Lipy 1 on [a,b).
(i) Lf f'(x) exists and belongs to Lipy 1 on [a,, b,], then

|L.(f; 2)—flx)| < Lwlzlf;(ﬂ + o(—i‘;) , uniformly in x < [a,, b,).
(iii) If in addition to the assumption of (i), the relation
Li(f;) = fi@) = o)

holds a.e. on la,, b)), then f(x) is linear on [a,, b,].

We write this result by the notation
L.Sat.[L,] = [f € Lipyl, n7!, linear futction, ¥ (x)].

4.1. Proof of (i) of theorem 1. We prove the relation
(15) lim A,(¢9)= f ’ g(x)u” (x)dx, for g(z)e Cla,b] and u(x)<U.

Assume first that g(x) € C®[a, b]. From the properties P,, P,, P; and propos-
ition 1, we have

16) L,(¢;x)— gx)= "'ﬁ)—gn(ﬂ + o(%), uniformly in x € [a,, b,],

for any g(x) e C®[a, b].
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From (13) and (16) it follows that

4@= T g ()u(p)rew

na1<k<nbdy
——[ g @@ (0o,

which is equivalent to (15). Since C®[q, b] is dense in Cla,b] and there is a
constant K such that

|A.(9)] = k|gl, for any g(x)< Cla,b],

the relation (15) is established for all g(x)< ([a,b]. In the other hand, we
can write

a7 a,0= [ uwdr ),

with the step function

M(x)=22

(s ) o(4)

where the summation run over 2 such that a < ~ﬁ— < x. We assume that

flx) satisfies (14) for x <[a,b]. Then the function A,(x) have a total variation
not greater than MR, and an increment |A,(x)—M\,(y)| does not exceed the

number of points —fl; in [z, y] multiplied with L\Z—I—z— . By Helly’s theorem [9],

we can extract a subsequence {A,(x)} which converges on [a, b] to a function
Mx) of bounded variation and we have

a9 tim 4,()= [ u@dr)
From (15) and (18)

f ' feowd @)z = f A (@),
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where A(x) is an indefinite integral of M(x). Since this is true for all w(x) < U,
we have

flx) = A=) + g(x) + h, x<[a,b],

with some constants ¢ and h.
Hence

f(@) =Mx) + g, x<[a,b]

For the completion of (i), we have only to verify that M(x) belongs to Lip, 1,
which is trivial by the definition of Mx).

4.2. Proof of (ii) of theorem 1. From the hypothesis, for z, x € [a,, b,],

- fm— - @) = FO~F @]

=M

2
f (y—2x) dy\
=L ooy
= M(t—x)*.
Since
L,{¢t—-x)%x} =L,(t%x)— x2* = \—II;L) + o(%), uniformly in z,

we get

|La(f; 2) = f)| = | La{f() — flx) = ¢ — 2)f (2); z} |
= L. {If()) - flx) — (¢ — 2)f (2)]; 2}

= —27‘/{ L,{t ~ x)* x}

- % L — 22t + 2% 2)
= —Jz\i \pix) +o0 (%) , uniformly in x € [a,, b,],
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which concludes the proof of (ii).

4.3. Proof of (iii) of theorem 1. Since (14) is satisfied, hence, since

f'(x) is absolutely continuous, f"'(x) exists a.e. on [a,, b,]. By proposition 2,
for almost all x < [a,,b,]

= lim nlL(f;2) ~ flz)) = LD
From (19) and the assumption of (iii), we have

a.e. on [a;, b,].

Y@ (@) _
2

Since Yr(x) = 0 over [a,, b,], we get
fx)=0 a.e. on [a;,b,].

Consequently, we have that f(x) is linear on [a,,5,] by the continuity of
f'(x). Thus, we complete the proof of theorem 1.

5. Determination of the class of local saturation by some linear
positive operators on Cla,b],0 =a <b=R (R=1).

5.1. We consider V.A. Baskakov’s operator M,(f; x) which satisfies the
following conditions :

I v =
@ [ a@de= e [ endedas 1
(22) aig fR " e pw)dz= o(%) G =0,1),
where
Pu(@)=(-1y T2 2, Bo)= =12 Gt > 0,1,

and EQ)=E(0)=oco.
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THEOREM 2. For space Cla,b] (0 =a <b =R),V.A. Baskakov’s operator
M, (f,x) which satisfies the properties (20),(21) and (22), is saturated locally
with the weight function y(x)=x(1+cx). That is,

L.Sat.[M,1=[f"(x) € Lipyl, n', linear function, z(1+cx)).

Applying theorem 1, for the proof of theorem 2, we have only to verify
the existence of a constant K such that

|A()] = K[ f], for any f(z) < Cla, b].

In order to prove it, we need the following lemmas.

LEMMA 1. Let us write

T..= > (nx=1lypx)and T = 3" |nx—1| p(x).

=0 1=0

Then, we have

(23) T.w=1 T, =0T, =nx(l + cx)
and

23y Tr =/ nx(l+cx).

PROOF.

Tho=2_ tul@®)=1,T,,= > (nx — Dpp(x) = nx — nx =0,
=0 =0

The= i (nx — 1)’ p,(x) = n’x* — 2n°2* + n® Z prn pnl(x)

=0

ct+x -
———) —n’z
n

—n22 o pnl(x)—nx =n <x2+

=nzx(l + cx),

\nz — 1 pnl(x)<{§pm(x)|nx—l| } {i nz(x)}z_

0 1=0

Ms

Tr=

14

o[

= {T,:} " =anzc(l+cx).
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LEMMA 2. For given 0 <<a < b <R, therz exist constants C, (r=1,2)
such that for each polynomial

Rn(x)= Z alpnl(x)’ |al| é L’
=0
one has
(24) IRP()| =C,Ln*, ifasz=<b and cx +1+0.
PROOF. Let us set X={x(1+cx)} '. From the property (20), we have
(25) pulx) = (1 — nx)Xp,(x)

(26) pu(x)=—nXp,(x) + ( — nx)’ X2 p(x) — Ccx + 1) — nx) X*p,,(x) .
From (25), we get

27 |IR.(f; x)| =L X3 |l — nx| pu(x)
<LXX' n'
L/n -
:,\T——AW)‘éclLﬂ .

By (26), we have

Ri(fix) = 2 a, pinl)
=0

=X Y apu@ + X* L all — nz)pulx)
=0

=0

oo

—2cx+ DX 3" a(l — nx)p(x).
=0
Since

Z ( = nx)p(x)=—nx Z a,p(x) +n Z a; “’lﬁ‘ Dni(X),
1=0 1=0

=0

we get
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IR'(f;z)| = L{nX + nx(l + cx)X® + 2nz(2cx + 1)X%

x+3 2c
=Ln { xz(l+cx) = (cx+1)? }

_ Becx+2)
i x(cx+1)*

= C,Ln.
From (27) and (28), we obtain lemma 2.

LEMMA 3. For arbitrary 8 > 0, there is a constant C(8) such that

(29) > pul@) =CRn, z<a, bl

ll;—xlgs
PROOF.

2

z Pnl(x)és-z Z —.’C) Pnl(x)

1L —z|=5
n

N

LIRS

_S_ n—ES_ZTnZ
=n"18""x2(1 + cx)
=CB) =, z<la,b].

LEMMA 4. Let Q,(x) be a sequence of twice continuously differentiable
Sfunctions on [0, R); let (A) the maximum p, of |Q,(x)| on the intervals

0, a,) anb (by, R) be p,=0n"), and (B) the maximum M, of |Q.(x)| on
(aj, b)) be M,=0(n). Then

0 S 0u(E)-n [ Qi = 0.

nay<k<nb,

REMARK 2. The lemma 4 is a slight modification of a lemma by G.G.
Lorentz [4]; we omit the proof.

5.2. Proof of theorem 2. We can rewrite (13) in the form
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AN =2 N Z a5 e 5)-a(5)}

O Z, G

+
|
e
qn

|
g
\_/w
/\
31@
~——"

Q.

"

e

x
<
L__l

where the &, are between—i— and—i—. Since ¢”(x) is bounded, the statement

will follow if we can prove that the three sums

oo

w-gl 2wl
so=2| = (- n)a)|dCo))

wog (- L),

are bounded. For the third sum we have, using the estimation (23) for T,
in lemma 1,

o we g B )

<k<nb, 1=0 n
1 k
=L T (-
n* §< 121 : n )
1 2 BN
= T (l+egn)=00

To estimate S®, we can rewrite it in the form

se=Ta| £ aal5)-1);

a1<k<nb;
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where q,,==+q (lﬁ—) and ¢,,=0 for ~;l~ =a 0r~75— =HB. Thus the. ¢, are

bounded. If we put

=0 na<i<nB
E(C) 1
then, since pu(x)dx= T e have
0
E(C)
o= £ 0(E)-0-0) o
na1<k<nb 0

Since E(c) =1, from the assumption (22)

9= % (E)n [ 0wz + 0w

na1<k<nb;

For the functions (32), the condition (A) in lemma 4 is checked by means
of lemma 3 and (B) by means of lemma 2. Hence, using lemma 4 we get

(33) S® = O(1).

To estimate SP, we write it in the form

(34) s = 3 {—f;@(%) -0, (%)}

nay<k<nb

where

0,(@)= ¥ qupuil@), Dul@)= 3 - guputa),

=0 =0
gu==4q L and g :Oforl—<a0r~l—>ﬁ
nl —_ n nl n n .
Since from (21)

O I+1
j: TpulZ)dr= (n—c)(n—2c) ’

we have
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= n—2Ic
2 g (n—2c)(n—c)

=0

(35)

‘/;E@ 20 (2)d— fo " a-,,(x)di] = —}z_

=Const. > %:O(—l—)

na<l<nds n

Like the functions (32), also the functions Q,(x) and Q,(x) satisfy the con-
ditions (A) and (B) of lemma 4. For functions xQ,(x) this follows from the
fact ' ‘ '

[(2Qa(x)"| =2[Q4] + 1Q,"], 0=z =R

and lemma 2 with »=1,2. Applying (22), (35) and lemma 4 to the sum (34),
we obtain

IS | =

na1<k<nb; n

» E(c)
> o (L) -n[" 0w

Q) ' E@) _ EQ _ _ [
tn [ 20@dz—n [ Q@drin[ O ¥ Qn(z)]

na1<k<ndy

= na§<nb %_ Q_n <—7€—) —‘n j;R xgn(x)dx I

+n|[ " 2B e om) g‘_g,,(x)dxl + T 0, (—ﬁ—) —n R@,,(x)dx‘
E(c) E(C)

+n f 2Q,(x)dx | +n an(x)dx. =0Q1).

Consequently, from (31),(33) and the estimation for SP, we complete the
proof of theorem 2.

THEOREM 3 (G. G. Lorentz [4]).
L.Sat.[B,]=[f"(x) € Lipyl,n~!, linear function, x(1—x)].

PROOF. Since f{—1)=1, it is trivial

REMARK 3. The whole interval case of theorem 3 has been investigated
by K. de Leeuw [3].

THEOREM 4.
L.Sat.[S,]=[f'(x) € Lipyl, n™', linear function, x].
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PROOF. By theorem 2, we have only to verify

> fxpm(x)dx O( )(i=0,1).

nasl=np

f Pux)dr=R f Pu(RE)dt= n e "Bdt

R 1
_ anl+l e—nR le—nR lle—nR
=T [ R T T@mRyE T (nR)’“J

= -nRZ ]n—]+1

i=0J

Let us set a=& and B8=R—&(> 0), where & is an arbitrarily fixed positive
number and sufficiently small.

S=n 3 pulx)dz=n 3 '"“Z ~j+

141
nasi=nB YR en=I=(R-&)n j=0 J:
nRI iRJ
—p—nR R n
=e"t 3 2 D 2 i
en=sI=(R-e)n 0=j=<en J ° en=I=(R-&)n en+1=j=l J *
=S, +.S,, say.

nj+le—’nRRj
1 n

!
0=j=en : 0=jsen J:

j
S,=const. e"Fn AR const. >

=const. Z ,(n)

where

ntRie™E i 0=j=én.

uj(n)z—{ o
0 , if j>én.

Let us write

U,=sup u,(n).

Since
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ujx) = R{(j + 1)x’e ** — Rx’*'e %}

= Riz’e™®{j + 1 — Rz},

we have

On the other hand, the functions u,(x) are zero if x < ls— and we can take

; Joo Jt+1
7 such that 5 >R

. _R - j+1
sup uy(x) = u; (%-) =e*’ (J?) R’

Using Stirling’s formula, we get

. Then, we have

U, R ey
]T ~ ]13_1«/27{]'

. 1 [ R\
— I g (T) :

Hence
U .[ R . R 1 .1
log]—.!i ~—J (—é— —1) +(j+1) log - —E-log] — Tloan—logR

.[ R R 1 . 1 1
=—7 (—8‘— —logT —1) + ~2~10g]+10g?~ ——2—log27t.

For the function f(&)= —SR_ —log—g— —1, we have

lim f(e) = e, AIR) =0,

and f(€) is strictly decreasing over (0, R).



450 Y.SUZUKI

Since 0<8<%and log 2=069---,

—EE- —log% —1=2-log2—1 > 0.3.

Hence, there is an integer j,(&§ R) such that

U,
J!

log =-— ]T + —;— logj+const.

<= - for j = j,(& R).

10’

and we get

.
]

<,

S
.

[
I

~.

S

Hence
lim Z,,u,('n) =0
ne ST, J
That is
(36) S, = o(1).

Analogously we shall estimate S, in the following.

t iR
—e 3 > n’R

J !
en=I=(R-&)n j=en+1 :

niRI . nitlg="BRI

< —'n,R — _

const. e z 3 =const. Z ] ]
en+1=j=(R-¢e)n : en+1=<j<(R-¢e)n :

= const. Z ,(n)
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where

n’*'Rie™™F, if en <j =(R—8&)n.
v(n)= o
, if j=én

Let us set
v;=sup v,;(n).
n
Since the functions v,(x) are zero if x < RJ— 8 and we can take j such that

J+1 J
R ~ R—¢ -

J L i\
()= —¢ R IRJ

sup v(x) "Uj( R—E) € R (R—S) .
Using Stirling’s formula, we obtain

Vj_ - e-%jjjn(R_s)—J—lRJ

J! Jle N 2mf

’

1 j+1
et ) —j( I—ie —1) 1 R
=w2mge 7\ r=) -

Hence
\%4 1 . [ R . R 1
log -J—‘—"\' —2—log]—] (—R: —1)+(] +1) logm - 710g27t—-logR

] __1—2;_— —1) +(j+1)log—1—— —
1 1-—-

1
2 5 log2r —logR.

On the other hand, we know the following formulae
1 & e\
®7) —-s_ZH(T)“L(‘E) o
1=

& 1 (e
(38) log———e=?+“z—(7)+“'
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From (37) and (38), we get

) sol(£) ) e

¢
R

lo

Hence, there is an integer j,(§, R) such that

V; 1 (e, .
log i =— (T) J» for j = ji(& R),

and we have

o o 176\

> Ex i<,

= J ih

lim v,(n) =0, for a fixed j.
Hence

lim Z ,(n) =
That is

(39 S; =0(1).

Combining (36) with (39), we get

(40) > f Pux)dx =0 (%) .
a§%§ﬁ R
Using (40), we can verify easily the fact
(41) > xpm<x>dx=0(i)-
a§:7§ﬁ E "

Consequently, from (40) and (41) we can prove theorem 4.

1
— 5 log2zR".
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