Tôhoku Math. Journ. 20 (1968), 113-119.

A NOTE ON CONVERGENCE AND SUMMABILITY FACTORS

J. CLEO KURTZ

(Received June 20, 1967)

This paper deals with summability factors of the type which transform summable series into absolutely summable series, i.e., factors of type (A, |B|). All matrices under consideration will be normal $(a_{nk}=0 \text{ for } k > n; a_{nn} \neq 0)$. Theorem 1 gives the summability factors of type (A, |B|) for a class of matrices where A satisfies a certain mean value theorem and $|A| \subseteq |B|$. In Theorem 2 the inclusion requirement is dropped and A is taken to be a weighted arithmetical mean. Theorem 3 gives (A, |I|) factors, A having a mean value theorem. Theorem 4 uses an induction argument to obtain factors of type $(A^*, |B|)$, where $A^*=AP^*$, P is a weighted mean, and the factors are known for (A, |B|). Finally, applications are given for specific methods.

1. Definitions and theorems.

DEFINITION 1. If a method A has the property that given integers n, m with $n \ge m$ there exists an integer n' and a constant K depending only on A such that

$$\left|\sum_{k=0}^{m} a_{nk} s_{k}\right| \leq K \left|\sum_{k=0}^{n'} a_{n'k} s_{k}\right| \qquad (0 \leq n' \leq m \leq n)$$

then A is said to have a mean value theorem.

DEFINITION 2. If $\sum a_n \varepsilon_n \in |B|$ whenever $\sum a_n \in A$ we say that $\varepsilon_n \in (A, |B|)$.

DEFINITION 3. The matrices \overline{A} and \widehat{A} are defined by the equations

$$\sigma_n = \sum_{k=0}^n a_{nk} s_k = \sum_{k=0}^n \overline{a_{nk}} a_k; \quad \sigma_n - \sigma_{n-1} = \sum_{k=0}^n \widehat{a_{nk}} a_k$$

where as usual $s_n = a_0 + \cdots + a_n$.

J. C. KURTZ

LEMMA 1. If A has a mean value theorem and $s_n \in A$, then $s_n = O(\frac{1}{a_{nn}})$. PROOF. See [4], Lemma 1.

THEOREM 1. Suppose A has a mean value theorem, $\sum_{k=0}^{n} a_{nk} = 1$, $a_{nk} \searrow 0$ as $n \nearrow \infty$, $a_{nk} > 0$ $(k \le n)$, $\frac{a_{mk}}{a_{nk}} \stackrel{\frown}{a_{nk}} as k \nearrow (k \le n, m > n)$. Also assume B is regular, $b_{nk} \ge b_{n+1,k}$ $(k \le n)$, $|A| \subseteq |B|$ and $\frac{b_{kk}}{a_{kk}} = O\left(\frac{b_{k+1,k+1}}{a_{k+1,k+1}}\right)$. Then $\varepsilon_n \in (A, |B|)$ if and only if

(i)
$$\mathcal{E}_n = \sum_{k=n}^{\infty} \alpha_k \overline{a_{kn}}; \quad \sum_{k=0}^{\infty} |\alpha_k| < \infty$$

(ii)
$$\sum_{n=0}^{\infty} \frac{b_{nn}}{a_{nn}} |\mathcal{E}_n| < \infty.$$

PROOF. A partial summation gives the formula

$$\sum_{k=0}^{n} \widehat{b}_{nk} a_k \mathcal{E}_k = \sum_{k=0}^{n} \widehat{b}_{nk} S_k \Delta \mathcal{E}_k + \sum_{k=0}^{n} (\Delta_k \widehat{b}_{nk}) S_k \mathcal{E}_{k+1}$$
$$= A_n + B_n.$$

The author has shown ([4], The proof of Theorem 1) that condition (i) is sufficient for $\sum s_k \Delta \varepsilon_k \in |A|$, hence by the assumed inclusion we have $\sum_{n=0}^{\infty} |A_n| < \infty$. For the remaining term we have the estimation

$$\sum_{n=0}^{\infty} |B_n| \leq O(1) \sum_{k=0}^{\infty} \frac{|\mathcal{E}_{k+1}|}{a_{kk}} \sum_{n=k}^{\infty} |\widehat{b}_{nk} - \widehat{b}_{n,k+1}|$$
$$\leq O(1) \sum_{k=0}^{\infty} \frac{b_{k+1,k+1}}{a_{k+1,k+1}} |\mathcal{E}_{k+1}| < \infty.$$

Thus the conditions are seen to be sufficient. To show the necessity of (ii) we introduce the inverse matrix.

$$\sum_{k=0}^{n} \widehat{b}_{nk} a_k \varepsilon_k = \sum_{j=0}^{n} \sigma_j \sum_{k=j}^{n} \widehat{b}_{nk} \overline{a}'_{kj} \varepsilon_k = \sum_{j=0}^{n} A_{nj} \sigma_j.$$

Since the matrix (A_{nj}) transforms every convergent sequence into an absolutely

114

convergent series it is necessary [7] that

$$\sum\limits_{n=0}^{\infty}|A_{nn}|=\sum\limits_{n=0}^{\infty}rac{b_{nn}}{a_{nn}}|m{arepsilon}_n|<\infty.$$

The necessity of (i) follows from a theorem of Peyerimhoff [6] since $\varepsilon_n \in (A, |B|)$ implies $\varepsilon_n \in (A, B)$.

THEOREM 2. Let P be a weighted mean with $p_n > 0$, $P_n \to \infty$ and $\frac{P_n}{p_n} = O\left(\frac{P_{n+1}}{p_{n+1}}\right)$. Suppose in addition that B satisfies $\sum_{k=0}^{n} b_{nk} = 1$, $b_{nk} \searrow 0$ as $n \nearrow \infty$, $b_{nn} = O(b_{n+1,n+1})$. Then $\varepsilon_n \in (P, |B|)$ if and only if

(i)
$$\varepsilon_n = \sum_{k=n}^{\infty} \alpha_k \left(1 - \frac{P_{n-1}}{P_k}\right); \sum_{k=0}^{\infty} |\alpha_k| < \infty$$

(ii)
$$\sum_{n=0}^{\infty} \frac{P_n b_{nn}}{p_n} |\mathcal{E}_n| < \infty.$$

PROOF. The necessity follows from Theorem 1. Computing the \widehat{B} transform of $\sum a_k \varepsilon_k$ we obtain the formula

$$\sum_{k=0}^{n} \widehat{b}_{nk} a_{k} \varepsilon_{k} = \sum_{j=0}^{n} \sigma_{j} \sum_{k=j}^{n} \widehat{b}_{nk} \overline{p}_{kj}^{'} \varepsilon_{k}.$$

For the sufficiency it clearly suffices to show that

$$\sum_{j=0}^{\infty}\sum_{n=j}^{\infty}\left|\sum_{k=j}^{n}\widehat{b}_{nk}\overline{p}'_{kj}\varepsilon_{k}\right|<\infty.$$

A straightforward computation gives the formula

$$\sum_{k=j}^{n} \widehat{b}_{nk} \overline{p}'_{kj} \varepsilon_{k} = \frac{P_{j}}{p_{j}} \varepsilon_{j} \Delta_{j} \widehat{b}_{nj} + P_{j} \widehat{b}_{nj} \Delta \left(\frac{\Delta \varepsilon_{j}}{p_{j}}\right) - \frac{P_{j}}{p_{j+1}} \varepsilon_{j+2} \Delta_{j} \widehat{b}_{n,j+1}$$
$$= \mathbf{I} + \mathbf{II} + \mathbf{III}.$$

For I we calculate

$$\sum_{j=0}^{\infty} \frac{P_j}{p_j} |\varepsilon_j| \sum_{n=j}^{\infty} |\Delta_j \widehat{b}_{nj}| = 2 \sum_{j=0}^{\infty} \frac{P_j b_{jj}}{p_j} |\varepsilon_j| < \infty.$$

J. C. KURTZ

In case II we use the representation (i) to obtain

 $\sum_{j=0}^{\infty} P_j \left| \Delta \left(\frac{\Delta \mathcal{E}_j}{p_j} \right) \right| \sum_{n=j+1}^{\infty} \widehat{b}_{n,j+1} = \sum_{j=0}^{\infty} |\alpha_j| < \infty.$ (Note that our assumptions

imply \hat{B} is positive and absolutely regular [4].) In case III we have

$$\sum_{j=0}^{\infty} \frac{P_j}{p_{j+1}} |\mathcal{E}_{j+2}| \sum_{n=j+1}^{\infty} |\Delta_j \widehat{b}_{n,j+1}| = 2 \sum_{j=0}^{\infty} \frac{P_j}{p_{j+1}} |\mathcal{E}_{j+2}| b_{j+1,j+1}$$
$$= O(1) \sum_{j=0}^{\infty} \frac{P_{j+2}}{p_{j+2}} b_{j+2,j+2} |\mathcal{E}_{j+2}| < \infty$$

THEOREM 3. If A has a mean value theorem and $a_{n+1,n+1} = O(a_{nn})$, then $\mathcal{E}_n \in (A, |I|)$ if and only if $\sum_{n=0}^{\infty} \frac{|\mathcal{E}_n|}{a_{nn}} < \infty$.

PROOF. The necessity follows again from Theorem 1. On the other hand,

$$\sum_{k=0}^{\infty} |a_k \mathcal{E}_k| = \sum_{n=0}^{\infty} |\mathcal{E}_k| |s_k - s_{k-1}| \leq O(1) \sum_{k=0}^{\infty} \left| \frac{\mathcal{E}_k}{a_{kk}} \right| < \infty,$$

using Lemma 1 and the condition on the diagonal elements of A.

DEFINITION 4. If $\mathcal{E}_n = \sum_{k=n}^{\infty} \alpha_k \bar{a}_{kn}$ with $\sum_{k=0}^{\infty} |\alpha_k| < \infty$ we say that $\mathcal{E}_n = \mathcal{E}_n(\overline{A}, \alpha)$.

DEFINITION 5. If $s_{n-1} \in A$ whenever $s_n \in A$ we use the notation $A \subseteq A$. The notation $|A| \subseteq |A|$ is defined analogously.

THEOREM 4. Let P be a weighted mean and suppose A, B and P satisfy the following condions.

- (1) $p_n > 0; P_n \to \infty; \frac{p_{n+1}}{P_{n+1}} = O\left(\frac{p_n}{P_n}\right)$
- (2) A has a mean value theorem; $a_{n+1,n+1} = O(a_{nn})$ and $\sum_{k=0}^{n} |a_{nk}| < M$ (3) $\sum_{k=0}^{n} b_{nk} = 1$; $b_{nk} \searrow 0$ as $n \nearrow \infty$

116

117

$$(4) \quad \frac{p_n}{P_n} = O(b_{nn}); \quad \frac{b_{nn}}{a_{nn}} = O\left(\frac{b_{n+1,n+1}}{a_{n+1,n+1}}\right)$$

$$(5) \quad A \subseteq AP; \quad |B| \stackrel{\cdot}{\subseteq} |B|.$$

$$If \quad \sum_{n=0}^{\infty} \left| \frac{b_{nn}}{a_{nn}} \varepsilon_n(\overline{A}, \alpha) \right| < \infty \text{ implies } \varepsilon_n \in (A, |B|), \text{ then also } \sum_{n=0}^{\infty} \left| \left(\frac{P_n}{p_n}\right)^k \frac{b_{nn}}{a_{nn}} \times \varepsilon_n(\overline{AP^k}, \alpha) \right| < \infty \text{ implies } \varepsilon_n \in (AP^k, |B|) \text{ for } k = 1, 2, \cdots.$$

LEMMA 2. Let D = CP. If \overline{D} and \overline{C} have bounded columns, and if $C \subseteq D$, then for every $\alpha = \{\alpha_n\}; \sum_{n=0}^{\infty} |\alpha_n| < \infty$

(a) there exists
$$\beta = \{\beta_n\}; \sum_{n=0}^{\infty} |\beta_n| < \infty$$
 such that $\mathcal{E}_n(\overline{D}, \alpha) = \mathcal{E}_n(\overline{C}, \beta)$
(b) there exists $\alpha \gamma = \{\gamma_n\}; \sum_{n=0}^{\infty} |\gamma_n| < \infty$ such that $\Delta \mathcal{E}_n(\overline{D}, \alpha) = \frac{p_n}{P_{n-1}} \mathcal{E}_n(C, \gamma)$.

PROOF. See [3].

LEMMA 3. If $\sum_{k=0}^{n} b_{nk} = 1$, $b_{nk} \searrow 0$ as $n \nearrow \infty$, and $\frac{p_n}{P_n} = O(b_{nn})$, then $\sum_{n=k}^{\infty} \left| \widehat{F}_{nk} - \frac{P_{k-1}}{P_k} \widehat{b}_{n,k+1} \right| = O(b_{kk}).$

PROOF.

$$\sum_{n=k}^{\infty} \left| \widehat{b}_{nk} - \frac{P_{k-1}}{P_k} \widehat{b}_{n,k+1} \right| \leq \sum_{n=k}^{\infty} \left| \widehat{b}_{nk} - \widehat{b}_{n,k+1} \right| + \frac{p_k}{P_k} \sum_{n=k+1}^{\infty} \widehat{b}_{n,k+1} = O(b_{kk}).$$

LEMMA 4. If A has a mean value theorem, $a_{n+1,n+1} = O(a_{nn})$, and $\frac{p_{n+1}}{P_{n+1}} = O\left(\frac{p_n}{P_n}\right)$, then $s_n \in AP^k$ implies $s_n = O\left(\frac{1}{a_{nn}}\left(\frac{P_n}{p_n}\right)^k\right)$.

PROOF. See [5], Theorem 1.14.

PROOF OF THEOREM 4. Consider first the case k=1, and let $\delta_n = \frac{P_{n-1}}{p_n} \Delta \varepsilon_n(\overline{AP}, \alpha)$. By Lemma 2, $\delta_n = \delta_n(\overline{A}, \gamma)$ and

J. C. KURTZ

$$\sum_{n=0}^{\infty} \left| \frac{b_{nn}}{a_{nn}} \delta_n \right| \leq O(1) \left\{ \sum_{n=0}^{\infty} \left| \frac{b_{nn} P_n}{a_{nn} p_n} \varepsilon_n \right| + \sum_{n=0}^{\infty} \left| \frac{b_{n+1,n+1} P_{n+1}}{a_{n+1,n+1} p_{n+1}} \varepsilon_{n+1} \right| \right\} < \infty$$

hence $\delta_n(\overline{A}, \gamma) \in (A, |B|)$. Setting B = BP'P and performing a partial summation yields the formula

$$\sum_{k=0}^{n} \widehat{b}_{nk} a_{k} \mathcal{E}_{k}(\overline{AP}, \alpha) = \sum_{k=0}^{n} (\widehat{BP'})_{nk} \mathcal{E}_{k}(\overline{AP}, \alpha) \widehat{P}_{k}(a_{i}) + \sum_{k=0}^{n} \widehat{b}_{nk} \frac{P_{k-2}}{P_{k-1}} \Delta \mathcal{E}_{k-1}(\overline{AP}, \alpha) \widehat{P}_{k-1}(a_{i})$$
$$= \sum_{k=0}^{n} (\widehat{BP'})_{nk} \mathcal{E}_{k}(\overline{AP}, \alpha) \widehat{P}_{k}(a_{i}) + \sum_{k=0}^{n} \widehat{b}_{nk} \delta_{k-1}(\overline{A}, \gamma) \widehat{P}_{k-1}(a_{i})$$
$$= \mathbf{I} + \mathbf{II}$$

where $\widehat{P}_{k}(a_{i}) = \sum_{i=0}^{k} \widehat{p}_{ki} a_{i} = \frac{p_{k}}{P_{k} P_{k-1}} \sum_{i=1}^{k} P_{i-1} a_{i}$. Now if $\sum a_{k} \in AP$ then $\sum \widehat{P}_{k}(a_{i}) \in A$, hence $\sum \delta_{k} \widehat{P}_{k}(a_{i}) \in |B|$, but then also $\sum \delta_{k-1} \widehat{P}_{k-1}(a_{i}) \in |B|$.

For I we have the estimation

$$\begin{split} \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} \widehat{(BP')}_{nk} \mathcal{E}_{k} \widehat{P}_{k}(a_{i}) \right| &\leq O(1) \sum_{k=0}^{\infty} \left| \frac{\mathcal{E}_{k}}{a_{kk}} \left| \sum_{n=k}^{\infty} \left| (\widehat{BP'})_{nk} \right| \right| \\ &\leq O(1) \sum_{k=0}^{\infty} \left| \frac{P_{k} \mathcal{E}_{k}}{p_{k} a_{kk}} \left| \sum_{n=k}^{\infty} \right| \widehat{b}_{nk} - \frac{P_{k-1}}{P_{k}} \widehat{b}_{n,k+1} \right| \\ &\leq O(1) \sum_{k=0}^{\infty} \left| \frac{P_{k} b_{kk}}{p_{k} a_{kk}} \mathcal{E}_{k} \right| < \infty, \end{split}$$

making use of Lemma 1 and Lemma 3. This completes the proof for k = 1. The induction step is completely analogous to the case just proved. We simply write $AP^{k+1} = (AP^k)P$ and use Lemma 4 instead of Lemma 1.

COROLLARY. Let $P^{(i)}$ be a weighted mean which satisfies the conditions of Theorem 4 for each $i = 1, 2, \cdots$, and set $A^* = A \prod_{i=1}^{k} P^{(i)}$. Suppose also that $A \subseteq AP^{(1)} \subseteq \cdots \subseteq A^*$. If $\sum_{n=0}^{\infty} \left| \frac{b_{nn}}{a_{nn}} \varepsilon_n(\overline{A}, \alpha) \right| < \infty$ implies $\varepsilon_n \in (A, |B|)$, then also $\sum_{n=0}^{\infty} \left| \frac{b_{nn}}{a_{nn}^*} \varepsilon_n(\overline{A}^*, \alpha) \right| < \infty$ implies $\varepsilon_n \in (A^*, |B|)$.

118

2. Applications. In Theorem 1, take $A = (C, \alpha)$ and $B = (C, \beta)$, where $0 < \alpha \leq \beta \leq 1$.

A typical application of Theorem 2 is the case $P = (R, \log(n + 1), 1)$, the discontinuous Riesz mean of order 1, and $B = (C, \beta)$, with $0 \leq \beta \leq 1$. It is easily seen that P is equivalent to the weighted mean Q, with $q_n = 1/(n+1)$. Using this fact together with Lemma 2, part (a), we invert the representation (i) of Theorem 2 and arrive at the equivalent statement that $\mathcal{E}_n \in (P, |B|)$ if and only if

(i)'
$$\sum_{n=1}^{\infty} n \log n |\Delta^2 \mathcal{E}_n| < \infty$$
(ii)'
$$\sum_{n=1}^{\infty} n^{1-\beta} \log n |\mathcal{E}_n| < \infty.$$

If $\beta = 0$, then (ii)' alone is necessary and sufficient, which one may also obtain immediately from Theorem 3.

Finally, we let $A = (C, \alpha)$ $(0 < \alpha \leq 1)$ and B = P = (C, 1). Theorem 2 and Theorem 4 together give the summability factors $(C_{\alpha}, |C_1|)$ for $\alpha > 0$.

The theorems proved here clearly cover a much wider class of methods than just the Cesàro means, but on the other hand it would be desirable to be able to offer a complete generalization of the Cesàro results. One would at least expect Theorem 1 to be true when $|B| \subseteq |A|$, perhaps with other minor restrictions. This question remains open.

BIBLIOGRAPHY

- [1] G. H. HARDY, Divergent Series, Clarendon Press, London, 1949.
- [2] W. JURKAT AND A. PEYERIMHOFF, Summierbarkeitsfaktoren, Math. Zeitschr., 58(1953), 186-203.
- [3] W. JURKAT AND A. PEYERIMHOFF, Über Sätze vom Bohr-Hardyschen Typ, Tôhoku Math. Journ., 17(1965), 55-71.
- [4] J.C.KURTZ, Hardy-Bohr theorems, Tôhoku Math. Journ., 18(1966), 237-246.
- [5] G.E. PETERSON, Convergence and summability factors, Dissertation, University of Utah, 1965.
- [6] A. PEYERIMHOFF, Konvergenz-und Summierbarkeitsfaktoren, Math. Zeitschr., 55 (1951), 23-54.
- [7] A. PEYERIMHOFF, Über ein Lemma von Herrn H. C. Chow, Journ. London Math. Soc., 32(1957), 33-36.

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN, U.S.A.