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1. Introduction. Let X= [Xny %n, n g: 1} be a martingale on a probability
space (Ω, fj, P), where g^cg^c are sub-o -fields of $• Denote dn = xn—xn..l9

x0 ΞΞ 0, sn = (xλ + + :rn)/w for n = l, 2, .
The classical martingale convergence theorem asserts that

lim xn = lim(J1 + dn) = dx + d2 + ( 1 )
n^κχ> n—*oo

exists (and is finite) almost surely, if X is Lι-bounded: supE{|;rw | }< oo. D. G.
n

Austin [1] (see also Burkholder [2]) proved that the series

d\ + d\ + - ( 2 )

converges almost surely under the same assumption on X. And, D. L.
Burkholder [2] obtained further remarkable properties of the Austin series (2).

In this note we shall prove, along the Burkholder way, some results on
the following two series

( 3 )
π = l n

and

( 4 )

where nx < n2 < are positive integers such that q2 ^ nk+ι/nk g: qx > 1
(£ = 1, 2, ) with constants qx and q2.

In the case of ZΛbounded martingale, the sequence {dn} forms an
orthogonal system, and the almost sure convergence of the three series (2), (3)
and (4) will be easily obtained (see for example [6] II, Chap. XIII, XIV, XV).
The last two series correspond to the so-called Littlewood-Paley functions for
Walsh and trigonometric series.
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Throughout the paper we denote by A an absolute positive constant and
by Ap a positive constant depending on the indexed parameter p, both letters
are not necessarily the same in each occurrence. Further, the martingales
treated in this paper are assumed to be real this convention does not restrict
the generality of the results.

2. Convergence of martingales and the series λ(X) and π(X).

THEOREM 2.1. If X={xny^n, n^l] is an U-bounded martingale, then
the series X(X) and τr(X) converge almost surely.

PROOF. Denote by λn = λn(X) and τrn = τrn(X) the n-th. partial sums of
λ(X) and τr(X) respectively. Then

1

N Λ in

\A; = 1

n = l 7 t λ=l n = l
2 £ -V Σ, Σ (i-i)(*-D d,

say. Clearly,

Σ d\

which is bounded as Λr—• oo, almost surely by the Austin theorem stated in
J f c - l

§1. On the other hand, as Y] (J — V)d} =(k— l)(xk.ι—sk-ι),

N

j 1
/ 1

n=\

N

Σ(

n

y? ^ ί A* 1 ι
/ \ /
* = 1

; ^ - l ) 2 ( ^ A : - l - .

7 /

"ΆV ^ Λ - l -5

S*-l) Â: Σ
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CO

where Cj_χ= Σ n~3 ~~j~2 a s 7 ~* °° The sums

= 1,2,

form a martingale transform defined by Burkholder [2], since the £-th
multiplier {k—l)\xk-ι — sk^ι)Ck.ι is clearly measurable O -̂i As limx n = lim sn

exists almost surely by the convergence theorem, the multipliers are bounded
almost surely. Hence by the Burkholder theorem ([2] Theorem 1), lim Sffl

exists almost surely. Now, by the Abel transformation,

N

fc=l

N

r Σ (2£ — 1
k=l

is measurable a n ( i bounded in j almost surely,Since ^ _ x — 5
k

lim 22 (^j-i — Si-\)d5 also exists almost surely by the same theorem of

Burkholder, therefore

almost surely, where O(l) means a finite valued random variable independent
of K So that, |Sg>|^|S#>| + |S#>| = O(l) almost surely, and hence \XN\
^1*5^1 +215^ I =O(1) almost surely. This proves the almost sure convergence
of \(X).

Similar estimation will be applied to the series 7r(X). We notice that,
as 72 i < n2 < form a lacunary sequence of integers,

r 2 ( 7 = 1 , 2 , . . . )

Now, expanding as before,
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say. Then,

which is bounded in N almost surely by the Austin theorem. And,

T%> = Σ n? Σ U-mxi-i-Sj-i) ds
k=l

Since the multiplier {j—l)\x^ι—sj-i)Dj-ι is measurable %}-ι and is O(l) as
j -+ oo almost surely, the martingale transform

converges as N—* oo almost surely, and as we have just shown

%> = D n N

as N—+OO, almost surely. Therefore

\τ%>\ ̂  ITJ^I + \τ%>\ = O ( i )

as N-> oo, and τrN(X)^\TW\ +2|T'i?) | =O(1) as ΛΓ-> oo almost surely. q.e.d.

This Theorem can be carried over to the submartingale case.

COROLLARY 2.2. If X = {xn, $n, n ̂  1} is an U-bounded submartingale,
then both series λ(X) and τr(X) converge almost surely.

PROOF. The submartingale can be written as
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xn = x'n + Σ Δ, (n = 1, 2, , Δ t = 0)
. 7 = 1

where {x'nΉn, ^ ^ 1} is a martingale, Δ ; §: 0 and Δ j is measurable
O' = l, 2, •)• Denote

CLn — J0n OCn — i j Cl>n OCn jθn — i j

Sn = (^1+ * * * +^n), S'n =

then

dn = dή + An,

and

1
- ^n = (Λ:» - s'n) + — -

7 2

As the sequence {̂ w} is L1-bounded, so is the sequence {xή}, and

j < oo almost surely (Doob [3] p. 297, Theorem 1.2). Therefore

r _

n=l W n=l W n=l U \j=l

and the first series in the last hand side is convergent almost surely by
Theorem 2.1 the last series is also convergent, in fact, by the Minkowski
inequality,

l/2

which is convergent almost surely.
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The series τr(X) will be treated similarly.

LEMMA 2.3. If {xn, g n, n ^ 1} is a martingale and E{λ(X)1/2} < oo,
then s u p E { | ^ - 5 ^ | } ^ AE{λ(X)1/2}.

PROOF. AS we see easily [n(xn—sn)} forms a martingale, the sequence
{n\xn—sn\] is a submartingale and the submartingale inequality shows that, if
N<n, then

E{N\xN - sN\} ^E{n\xn - sn\] .

Hence

E{\xN-sN\} =
N

^ £ E{n\xn-sn\}

1 ( 2N

JΓ^E] Σ n\xn-sn\

1
 F IΓ f ^Ί1 / 2 Γ ? ^ ^

^ L5+χ J LξL ( n"n)

\l_n=iv+i _J ι_n=iv+l

1/2

/2

}, q.e.d.

REMARK. In the case p^l, the inequalities supE{13:^1p} < oo and

supE{|5^|p} < oo are equivalent (see [5]), and then by Theorem 3.1 in the

next §, the conclusion of Lemma 2.3 will be extended to

sup E{ 1^-5*1p] ^

THEOREM 2.4. Let X = [xn, $n, n ^ 1} be a martingale, and suppose
that E{suρ|<in|} < oo. If one of the expectations E{λ(X)1/2} and E{τr(X)1/2}

n

is finite, then lim xn exists almost surely.
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PROOF, (i) Let E{λ(X)1/2} be finite. There exists a finite constant K
such that

[ N Λ In \ 2 Ί 1 / 2

< κ

for all N'. By the Khinchin inequality of the Rademacher system (see for
example [6] I, p.213), the second side is not less than

dt

f
f Σ.{k-l)dkRN(t) dt

say, where Rj~ι(t) = Σn~3/2rn(t). Hence
71=./

for all N, and

\ Σ,(k-l)dk \ f \RN{t)\ dt

< A E

< A E

Σ(*-
1/2

by Lemma 2.3. Therefore /#» ^ AK for all N, that is,

•'o
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for all N. Since |]Γ] (k—V)Rk-ι{£)dk \ is a martingale for any fixed t, the

integrand of the left hand side is nondecreasing in N, so that

Λ 1

I supE

and then sup E )
N I

Austin theorem,

for almost all t. Applying the

for almost all (ί, ω) € [0,1[ x £2, and then for almost all fixed ω € 12, the above
inequality holds for all ίζE ω c[0,1[ , where Eω is a full set. Hence by the
Egorov theorem, for such ω, there exist a constant K = Kω and a set
F = F ω c E ω , IF I > 0 such that

for all t z F. Integrating both sides on F and using the Khinchin inequality,

^Σ{k-ιγd\ ίRt-rWdt
fc=l J F

that is, Σ dk < °° almost surely. By a theorem of Burkholder ([2] Theorem
fc=l

4), limxn exists almost surely.
n

(ii) Now, let E{τr(X)1/2} = M < oo. Then for all N, as in (i),

1/2
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/ ' dt

. 7 = 1

Σ
.7 = 1

dt

\dt-A[\\
) Jo [ .7 = 1

dt

= AJψ - AJff

say, where Sj-^t) = Σ rk(t)/nk

.*

For any positive integer j , let ^0 be such that nkot^j < ^ΛO+I> then by the
condition nk+1/nk 5s ^2 it is obtained that

^ Σ »Ϊ ^ »ί?+i

It follows that

AE

AE

^ AE{τr(X)1/2}

and Jίy} 5£ AM + AM ^ AM for all iV". As in the case of λ(X), the sequence

= 1, 2,

forms an L'-bounded martingale for almost all t, and the Austin theorem
implies that
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for almost all {ty ω) € [0,1[ x ίϊ. Hence, just as for λ(X), Σ ^ < °° almost

surely, and lim xn exists almost surely. q. e. d.
n—>oo

THEOREM 2.5. Let X = [xn9 3ίn, w ^ 1} έ# α martingale and let

E{sup| d j } < oo. T7i£72 (i) limα;n exists almost surely on the set (λ(X) < oo
n n->oo

and sup|:rΛ—sn\ < oo}, (H) λ(X) < oo almost surely on {supx n <oo}, (in)
n n

lim.rn exists almost surely on {τr(X) < oo} and (iv) τr(X) < oo almost surely
n—>°°

on {supxn < oo}.

PROOF, (i) Let c be a positive constant. Define

m = nι(ω) = 'mί{n λn(X) ^ c2 or \xn—sn\ ^ c}

where put inf φ=oo. Since m(ω) is a stopping time, if $n=XmΛn, the sequence

X = [in, δn,^ ̂  1} forms a martingale (see Doob [3]). Denote dn = χn — χn_x

0ro=O) and 5^=(ίi + + «»)/Λ. On the set [m(ω) < oo},

π = l

τ n - 1

Xn —

n

2

2

-12

J

Since

m

—1

m

-^c + sup I J n I ,
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it follows that

λ(X) ^ c2 + A(c + s u p | J J ) 2 ^ A(c

On {m(ω) = oo}, clearly λ(X) < c2. Hence E{λ(X)V2} < oo. From Theorem 2.4
lim ,^n exists almost surely, so that lim xn exists almost surely on {λ(.r) < c
tt-κx> 7l->oo

and s\ip\xn—sn\< c], and hence on [λ,(x) < oo and sup\xn—sn\ < oo} as c is
n n

arbitrary.

(ii) Let c > 0. If m = inf {n; |x n | ^ c ] , then m is a stopping time, and

so if we put χn — xm/\n> X = {in} forms a martingale. Moreover X is
L1 -bounded, since

X n \ ^ | ^ m Λ n — Λ Γ ( m Λ n ) - l | + | ^ ( m Λ n ) - l | ^ S U P I ^n \ + C .
n

Therefore by Theorem 2.1 λ(X)< oo almost surely. On the set {sup|.rn| <c],

λ(X) = λ(X) and as c is arbitrary, λ(X) < oo almost surely on {sup|.rn |< oo}.
n

But, by the Doob theorem ([3] Theorem 4.1 (iv), p. 320) the last set is
equivalent to the set [ s u p ^ < oo}.

n

(iii) Let c > 0, and let m = inf {k 7tk(X) ^ c2}. Then nm(ω) is a stopping
time if we define χn = xn for n < τzm_ι and irn = ^n n., for n §: 72m_χ, then

X = {xn} forms a martingale. Let ctk = xk-χk-ι (x0 = 0) and 5̂  = (x, H

k- Since τr(X) ^ c on {m = oo}, and on {m < oo},

n J U=i J

^c2 + Ac2,

we have E{τr(X)1/2} < oo, hence \\mχn exists almost surely by Theorem 2.4.
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As χn—χn on \m — oo\^ \\vs\xn exists almost surely on {7τ(X)<c2}. Let c-^oo
71—>oo

and the results follows.

(iv) Let c > 0, ?n = inf {n, \xn\ ^ c], x» = ^mΛn Then clearly | £ n |

^ c + s u p 1^1 and X = {#n} is an Lι -bounded martingale. Therefore, by

Theorem 2.1 τr(X) < oo almost surely. Hence π(X) = π(X) < oo almost surely
on {m = oo} = (sup \xn\ < c } . Let c —> oo, and noting that the sets

n

{sup|.rn| < oo] and [sup.xw< oo} are equivalent, we get the conclusion, q.e.d.
n n

3. Inequalities.

THEOREM 3.1. Let {xn, ^nyn ^ 1} be a martingale, then for 1 < p< oo

the following inequalities hold for N — 1, 2,

( i)

(ϋ) ApE{\xnκI»} =g E{^(Xr 2} ^ APE{\xπ

For the proof we use the following lemma concerning the Rademacher
functions rn(t) (n = l,2, — ) .

LEMMA 3.2. Let aj9 bj<n (j, n = 1,2, ) &e any constants. Then for

( N N \ p/2 1 r N IN \ 2 ~lp/2 I N N \%

y-1 'n«l / = ΛL=1 \»=l / J = P\j=l ' n=l ''")

PROOF. In the case />^2, using the Holder inequality, the second side
of the conclusion is not smaller than

I ^Γ a\r ΠΓ bi nrn(t) dt
L^o y=i \n=i I J

which is, by the orthonormality of the Rademacher system, equal to

N N \p/2
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Hence the first inequality of the conclusion holds with Ap — 1.
In the case 1 rg p 5Ξ 2, if we write

1ΓN IN \ 2 η 1

•/O Lj = l \n = l / J Jo

where, for simplicity, 5 denote the integrand in the left hand side then by
the Holder inequality,

4-jΓ

2 - p

Expanding the integrand 52 of the second integral in the last side and
using the independence property or multiplicative orthonormality of the
Rademacher system, we get easily

\y=i

On the other hand

N 1 / N

hnU)) dt
n = l /

N N

n = l

and combining the above inequalities, we get

N N / -1 \ 4_p / N N \ ^ϊ=jh

j=l n = l WO / \y=l n=l /

from which it follows the first inequality of the conclusion.
The second inequality of the conclusion is also easily proved. In fact

for l ^ / > ^ 2 ,

1 / r l \P/2 (N N \p/2
ί.s" d'={j,Sd') -
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and for 2 fg p, by the Minkowski inequality and the Khinchin inequality,

If S»dt) ^ E W
WO / ./̂ lVo

dt)

Thus the Lemma was proved.

P R O O F O F T H E O R E M 3.1. (i) Since, for ρ> 1

(2SΓ=1,2,...)

by the Burkholder theorem ([2] Theorem 9), it is sufficient to prove ( i ) and

(ii) replacing by . Now

I-|»S

dt

by the Khinchin inequality, and

dt

*

by the Burkholder theorem quoted above, since the sequence

forms a martingale for all t. The last integral is equal to
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and by Lemma 3.2 this is not less than

p/2

The second inequality of (i) was proved.
Similarly, the first inequality of ( i ) is shown, because the inverse

inequalities in the above argument are also true.

(ii) This case is also treated along the same line. In fact,

p/2 f 1

UA,E
(Vo

= A J
Jo

dt\

dt

^ k ^

l
and all the inequalities can be reversed.

The Theorem was proved completely.

Recently R. F. Gundy [4] introduced a mapping of class B, and gave an
elegant proof of the weak type inequalities of Burkholder ([2] Theorem 8).
If the series λ(X) and n(X) are considered mappings of a martingale X, as
we may checked easily, they are of class B of Gundy. Hence it follows the
following result and from which the second inequalities of (i) and (ii) of
Theorem 3.1 may be deduced by the Marcinkiewicz interpolation theorem.
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THEOREM 3.3. If X is a martingale, then for all a > 0

aΈ>{λ(X)>a] ^ AsupE{|.rn|} ,
n

and

aP{π(X)>a} ^
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