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1. Introduction. In the theory of the classical Hardy classes Hp (1 ̂  p
^ oo) there is an elegant factorization theorem of Hp-functions. A function
f in Hp is a function in Lp(—7r,τr), where we shall identify the interval
(—77% 7r) with the unit circle in the complex plane, whose negative Fourier
coefficients are zero:

(1.

Every function f in Hp produces an analytic function F in the open unit disc
by the Poisson integral formula:

(1-2)

If this is the case, F(z) converges to the value f(t) for almost all t when z
approa hes non-tangentially to the point eil, and it follows that

(1.3) \im\\Fr\\P=\\fh,

where Fr is the function in Lp{—π, TΓ) denned by Fr(t) = F(reιt), and || ||,>
denotes the norm in Lp(—TΓ, ΊΓ) normalized so that || 1 11^=1.

An inner function / in Hp is a function in Hp with | / | = 1 almost
everywhere, and an outer function g in Hp is a function in Hp such that

(1.4) -±- flog \g I dt = log -£- fg dt
J-7C J—7t

Then every non-zero function / in Hp has the form

(1.5) f=ig,

> -oo.
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where / is an inner function in Hp and g is an outer function in Hp. In
this formula I (and hence also g) is unique up to within a constant factor of
modulus 1. Furthermore, every inner function / can be decomposed into the
form

(1. 6) / = kBS

where k is a complex number with modulus 1, B is the Blaschke product
induced from the zeros of / (as an analytic function in the open unit disc),
and S, called a singular function, is an inner function which has the form (as
a function in the open unit disc)

(1. 7) S(z) = exp [~ J* - J l ^ dm(t)j (| z | < 1)

for some non-negative singular measure m on the unit circle. About these
facts, refer to Hoffman's book [4] and Privaloff's one [6].

In this paper, we are interested in the factorization formula (1. 6) of inner
functions. One may question what characterize Blaschke products and singular
functions as functions on the unit circle. We may answer to this question
as follows. In the set U of the inner functions, a linear fractional map (of
the unit disc onto itself) as a function on the unit circle plays a role as a
"prime" in U, since the only inner functions which divide it in U are the
constant multiples of it and the constant inner functions. Then a Blaschke
product may be characterized as a countable product of "primes" in U, and
a singular function may be characterized as an inner function which any
"prime" does not divide in U.

In this direction, we want to get the factorization formula (1. 6) of inner
functions in some general function algebras.

2. Notations, definitions, and a theorem. Let X be a compact Hausdorff
space and A a logmodular algebra on X. As is well-known ([1], [5]), every
non-zero complex homomorphism of A has a unique (non-negative) representing
measure for it. Let m be a probability measure on X which is multiplicative
on A:

(2.1) jfgdm = (ffdm)Ijgdm) (/, gzA).

Then m satisfies Jensen's inequality

(2.2) log I ffdm \^f\og\f\dm (/e A) ,
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and is an Arens-Singer measure:

(2.3) log = f\og\f\dm

where A"1 denotes the set of those functions in A which have an inverse
in A.

Suppose now that m is an arbitrary probability measure on X. Then,

Am is the space of all functions f in A with I fdm=0. For each positive

number p^ 1, Hp(dm) denotes the closure of A in the normed space Lp(dm),

and H°°(dm) denotes the set of all h in L°°(dm) such that / fh dm — 0 for all f

in Am. It follows that H°°{dm) is a weak-star closed subspace of L°°(dm).
An outer function g in Hp(dm) is a function in Hp(dm) such that

(2.4) log J gdm = J log\g\dm> -oo ,

and an inner function / in Hp(dm) is a function in Hp{dm) with | / | = 1
almost everywhere.

These notations and definitions are used throughout this paper.

THEOREM 2.1. Let m be a probability measure on X which is
multiplicative on A. If m is not a point mass on X, then m is a con-
tinuous measure. If this is the case, H°°(dm) contains a non-constant inner
function I and a non-constant outer function g such that Ig coincides with
a function in A except for a set of measure zero.

We need a lemma.

LEMMA 2.2. Let m be an arbitrary probability measure on X, and h

any function in L1(d?n) with I hdm = d > 0. Suppose that

(2.5) log J {h—z)dm §: ί \og\h—z\ dm

for all complex numbers z such that \z\ < d. Then we have h = d almost
everywhere.

PROOF. We shall first show that for each real number r > 0 , the function
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\og\h—rexp[z£]| is absolutely summable on the product space Xx(~τr,τr)
with respect to the product measure dmdt, where dt is the Lebesgue measure

on the interval (—7Γ, ΊΓ) normalized so that / dt — 1. Since
J-X

\h-relί\ -\og\h-reιt\ >0,

Fubini's theorem applies, and we have

ίf {I h-reιt I - log | h-reu \} dm dt

^ [ \h\dm + r - \\ I log\h - reu\dt\dm
Jx 'JxlJ-x )

= I \h\ dm Λ- r — \ max (log \ln\y log r) dm
3χ Jx

^ I I h I dm + r — log r < oo ?

for all r > 0. This clearly implies that the function log\h—rexp[z"£]| is
absolutely summable for all r > 0.

Suppose that h satisfies the hypotheses in the Lemma. Then we have

(2.6) \og\d-reu\ ^ J\og\h- reil\ dm (0<r<d)

for all real numbers t. Since log | h — r exp [it] \ is absolutely summable as
a function of two variables, integrating both sides of (2. 6) with respect to t,
we see that

^ j U \og\h-reιt\dt\dm

= I max(log\h\, logr)dm
Jx

= ί \og\h\dm + m{Er) log r (0 < r < d),

where Eτ is the subset of X on which \h\^r and E'r is its complement.
Letting r—>d, it follows that
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log d ^ I log I h I dm + m(Ed) log d,

or equivalently, that

?n(Ed) log d ^ I log | h \ dm .
JEd

This implies that | h | — d almost everywhere on Edy and hence that \h\^d

almost everywhere on X. Since I hdm = d, we must have that h = d almost

everywhere. This completes the proof.

PROOF OF THEOREM 2.1. Let m be as in the Theorem. The first
statement there is well-known, and is essentially contained in [5]. (See also
[8].) We shall omit the proof.

In order to prove the last assertion, let K be the closed support of m.
Since m is a non-zero continuous measure, K is a perfect set. Since A
separates the points of X, A contains a function f such that the set f{K) is
not entirely contained in any circle in the complex plane. Then, Lemma 2.2,
combined with Jensen's inequality (2.2), shows that

(2.6) Jlog\f-z\dm>log\J(f-z)dm > -oo

for some complex number z. Putting h = f—z7 we see that h is in A and

that I hdmφO. Therefore, h has the form h=Ig, where 7 is an inner function

in H°°{dm) and g is an outer function in H°°(d?n) [5]. h is not an outer

function by (2.6), and hence I can not be constant. Since \g\ = \h\, and
since \h\ is a non-constant continuous function on K, g is also non-constant.
This establishes the Theorem.

3. Factorizations of iΓ(dίm)-functions. Hereafter, m denotes a fixed
probability measure on X which satisfies (2.1). To avoid trivialities, we shall
assume that m is not a point mass on X. Thus H°°(dm) contains at least
one inner function which is not constant. We shall often identify two inner
functions / and J in H°°(dm) (and write I— J) if 7 is a constant multiple of
J. If 7 is not a constant multiple of J, we say that 7 and J are essentially
distinct.

DEFINITION 3.1. For any function f in Hp(dm) and any inner function
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I in H°°(dm) such that fΐ is also in Hp(dm), we say that I divides f or that
f dominates /, and write I <f or f> I.

Let U denote the set of all inner functions in H°°(dm). The following
theorem is an easy consequence of the above definition, and we omit the
proof.

THEOREM 3.2. The relation ' < " restricted in the set U is transitive,
and has the properties:

( i) For any I and J in U, we have I< J and J < / if and only if
I=J (that is, if and only if I is a constant multiple of J);

(ii) // Il9 72, Jλ and J2 are in U, the statement that Iλ < 72 and Jί < J2

implies that I1J1 < 72<Λ

Thus, in particular, U is a partially ordered set with respect to the order
" < " . To state our main theorem, we need some definitions.

DEFINITION 3.3. An LjP-function L is a function in U such that any
I in U which divides L is either 1 or L. A singular function S is a function
in U such that the only LF-ίunction which divides S is 1.

DEFINITIONS 3.4. A finite Blaschke product B is a function in U which
is expressible in the form

(3.1) B = Jf •••/7>

where {pn} is a set of positive integers, and {In} is a set of essentially distinct
LF-funtions. An infinite Blaschke product B is a function in U which is
expressible in the form

(3.2) B = / f « . . . / ? . . . ,

where {pn} is a sequence of positive integers, {In} is a sequence of essentially
distinct Z/F-funtions, and the convergence of the infinite product in the right-
hand side of (3.2) is that in the weak-star topology of L°°(dm).

Using these definitions, our main theorem is stated as follows.

THEOREM 3.5. Every function f in H\dm) -with I fdm φ- 0 has the

form f=BSg, where B is a (finite or infinite) Blaschke product, S is a
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singular functiony and g is an outer funtion in H\dm). This factorization
of f is unique up to a constant factor of ?nodulus 1.

The proof will be accomplished in a series of theorems. The following
theorem will be frequently used in the remainder part of this paper.

THEOREM A. Let T be a closed subspace of H\dm) which is invariant

under multiplication by the functions in A. Suppose that I fdm Φ 0 for

some f in T. Then T has the form T=IH\dm) for some function I in U,

This theorem is originally due to Beurling [2] see also [3], [7], and [5].

THEOREM 3.6. Let E be a non-empty subset of H\dm\ and suppose
that there exists an element Io in U such that:

(a) Io divides all the functions in E

h0 Jo dm φ 0 for some h0 in E.

Then we can find an element in U which divides the functions in E and
which is the largest one in U with this property.

PROOF. Let T be the smallest closed subspace of H\dm) that contains E
and is invariant under multiplication by the functions in A. Since 70 divides

all the members in E by (a), I0T is a closed invariant subspace of H\dm).

By (b), I0T contains hoϊo, I holodm Φ 0, and hence ΪOT must have the form

I0T=GH\dm) for some G in U by Theorem A. Thus T=GI0H\dm), and
we see that GI0 is a function in U which divides the functions in E.

If / is any element in U which divides all the members of E, it is
trivially true that IH\dm) contains T. But, this implies that I divides GI0,
and hence that GIQ is the largest divisor of E. This establishes the Theorem.

DEFINITION 3.7. Suppose that E is a non-empty subset of U. The
G.C.D. of E is defined to be the (essentially unique) largest lower bound of
it with respect to the order " < " , provided that it exists. If E consists of the
finite elements Iγ, , IN, we denote the G. C. D. of it by the notation
Iχ Λ Λ IN-

Thus, Theorem 3.6 gives a sufficient condition for existence of G.C.D.
We list below some rather trivial properties of the operation "Λ"
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THEOREM 3.8. Let I, J, and K be any elements in U. Then zve have:

( i ) 7 Λ J exists, provided that I IdmφO or that I>K, J > K, and at

least one of the integrals I IKdm and J JKdm is different from 0

(ii) (I AJ) ΛK = I A(J AK) = I AJ AKy if all of them exist
(iii) If I<J, and if both I A K and J A K exist, then I A K< J A K.

PROOF. TO prove (i), it suffices to take 1 or K as 70 in Theorem 3.6.
The statements (ii) and (iii) are trivial and we omit the proofs.

THEOREM 3.9. Let N be a natural number, and let I and Ik {k = 1,
• , N) be any elements in U such that / > Ik for all k. Then zυe have
I > Iλ IN, provided that:

(a) Ij A h = 1 for all j , k with j Φ k (j, k= 1, , N)

lTkdm Φ 0 for some k (k = 1, , N) .

PROOF. We may assume that N^2 and that I IIιdmφ0. Let T be

the intersection of H\dm) and II\ INH\dnί). T is a closed invariant

subspace of H\d?n\ and contains all the elements IIk, k = 1, , N. Since

I IIxdmφ§, we have T=GH\dm) for some G in H2, by Theorem A. Since

G is in 7/j INH\dm\ we must have

(3. 3) G = IT, ΐNG

for some G in H\dm). We must also have

(3.4) Ih = GΓk (A = l , . . . , iSO

for some Γk in H\dm), because lΐk is contained in T for every k = l, , N.
Note that G and all the 7 '̂s are actually functions in U. Let J = 7X 7 ,̂
and let Jk = JΪk for k = l, , N. It follows from (3. 3) and (3.4) that

(3.5) Jk = ΓkG (* = 1 , . . . , # ) .

In case N=2, (3. 5) becomes
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(3.6) Ii=IΊG and I2 = Γ2G,

which implies that G is a constant, since Ix Λ h = 1 by (a). This combined

with (3.3) shows that //i/2 is in U, or equivalently, that 7 > 7 1 / 2 , and we

get the desired conclusion.

Returning to the general case, we have that

(3. 7) \ J x d m = / I2 /^ J m = ( \ I 2 d m ) ---[ f l N d m ) Φ 0 .

To see this, applying the result in case N—2, we have / > IJk for all k = 2,

• , N. Since I I^dmφO, it follows that

0 Φ flϊxdm = tjnjkdm\tjlkdm\ (A=2, , JV),

and hence (3. 7) is true. Therefore, Theorem 3.6 guarantees the existence of

the G.C.D. Jλ Λ ΛJN, and (3. 5) shows that Jλ Λ Λ JN > G'. But it is

easy to see that Jx Λ Λ JN = 1, using (a), (3. 7), and the definitions of

the Jfc's. Thus G' = l, and the fact 7 > / 1 . ZiV follows from (3.3). This

completes the proof.

COROLLARY 3.10. Let N be a natural number, and let J and Ik (k = l,

• y N) be any elements in U such that \ JdmφO and such that Ix IN

> J. If the set {Ik} satisfies condition (a) in Theorem 3.9, then we have

J > Ji JN, where Jk = Ik Λ J for k = 1, , N. If in addition,

I Zj INdmφ0, then we have J = Jλ JN.

PROOF. Since I JdmφO, all the Jks exist. Since the set {Ik} satisfies

condition (a) in Theorem 3.9, it is easy to see that the set {Jk} also does that.

Thus it is clear that all the conditions in Theorem 3.9 are satisfied for J and

{Jk}, and hence we have the first desired conclusion. To prove the last

statement, let J=JJ1 — JN, and let I=(I1J1) — (INJN) It is trivial that J

and I are in Uy that

(3.8) I>J\ I>IkJk (jfe = l , . . . ,AO

and that



FACTORIZATIONS IN FUNCTION ALGEBRAS 377

J f\hJk = l (Jt = \,-",N)
(3.9)

IJJJ Λ W = 1 (j,k = l,'- , N; jφK).

Thus, Theorem 3.9 applies since I Idm^O, and we see that 7 > J ' 7 , i.e., that

1 > J. Hence J ' = l, and this completes the proof.

THEOREM 3.11. Let M and N are two natural numbers, and let It

(z = 1, , M) and J5 0* = l, , N) be essentially distinct non-constant LF~
functions such that

(3.10) J Zi IMdmΦQ9 and j J, - JNdm ^ 0.

Suppose that both the sets {7s} and {Jj} satisfy condition (a) in Theorem
3.9, and that

(3.11) I?1 I**S = Jΐ JQ/T,

where S and T are singular functions, pi and qό are positive integers for
all i and j . Then we have M=N9 S=T, and Jl9 , JN is a permutation
of Ji, , IN.

PROOF. We shall first show that if I and J are essentially distinct

LF-functions, and if I IJdmφO, then P Λ JQ — 1 for all positive integers p

and q. To do this, let K—IP/\JQ for fixed p and q. Since / is an LF-funtion,
I/\K=1 or /. In case I/\K=1, we have P > IK (i.e., P~ι > K) by Theorem
3.9, and inductively we see that 1 > K9 i.e., that K=l. In case I/\K=I9 we
have I<K<JQ. Since / and J are essentially distinct LF-functions, we have
JQ > JI by applying Theorem 3.9. By induction, we see 1 > /, i.e., 7 = 1 .
Therefore, K=P /\Jq = \f\Jq = l, and this gives the required conclusion.

Now put 7=7?1 P* we claim that K=IAT=1. In fact, let K^KMψ
for all i. As shown above, Iψ/\Ilk = l for all z, k with iφk, since It and Ik

are essentially distinct LF-functions if iΦk thus Corollary 3.10 applies, and
we see that K=Kλ KM. Since Kt < K<T9 and since T is a singular
function, each Kt must be a singular function. But, 7?' > Ki9 and each 7t

is an LF-funtion it is easy to see (by using the preceding arguments) that
Kt = l for all i, and hence that K=l. Now since I/\T = 19 and since both
7 and T divide IS=JT, we can apply the Theorem 3.9, and we see that
IS>IT. Therefore S > T, and similarly S<T; hence S=T.

To complete the proof, we note that the set {If1} satisfies condition (a) in
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Theorem 3.9. Since / = Iζ< - Id/ = Jl*—JQ/, we have I> Jf thus Corollary

3.10 applies, and we get «7? = (J?Λ J?0 - (Jlι/\IV/). Repeating the arguments

which we have often used above, we see that Jι=Ii and q\ = pi for some i.

By induction, we have the desired conclusion.

THEOREM 3.12. Let D be a non-empty subset of U which is directed

-with respect to the order " < " , that is, which has the property, for each

pair I and J in D, we can find a K in D such that I < K and J < K.

Suppose that

(3.12) inf I dm >o.

Then we can find a J in U which dominates all the functions in D and

which is the smallest one in U with this property.

PROOF. For each Iγ in D, let D{IX) be the set of all / in D with Iλ<L

Since D is directed, it is easy to see that the family of all the sets D(I), I

in D, has the finite intersection property. Since the closed unit ball of

H°°(dm) is compact in the weak-star topology of L°°(dm), this assures that

there exists a J in the unit ball of H°°(dm) which lies in the weak-star closure

of D(I) for every I in D. We want to show that this J has all the required

properties. Let Io be an arbitrary element in D. Take any function f in

Am and any real number £ > 0. Since fϊ0 is a function in L\dm\ and

since J is in the weak-star closure of D(/o), there exists an Ix in D with

70 < /i such that

Since Iy Io is in H°°(dm) and since f is in Am, we see that

JflJodm = IffdrnjίfljΌdm) = 0 .

Therefore we have

ffJI~ dm I ̂  I //JoCJ-70 Jm I + I J/Z./o Jm

But since £ was arbitrary, we must have

(3.13) / ^ J ^ > d m = 0-

<e.
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This holds for every f in Am, and hence JI0 is a function in H°°(dm). Since
Io is an arbitrary element in D, it follows that J dominates all the members
in D. In order to prove that | J \ — 1 almost everywhere, we note that

(3.14) J dm >

for some d, as is easily seen from (3.12). Now for given £ > 0, we can find
an / in D such that

(3.15) (J-I)dm fj(I-J)dm <£,

because J is in the weak-star closure of D. Thus we have

(3.16) f\J\*dm^ JJIdm - J'J(J-J)dm

J'ldm - ε = I dm

jd £ - € .fjdm II j

Since 8 can be taken arbitrarily small, and since I Jdmφ§ by (3.14), it must

J \J\2dm^l.

be

(3.17)

But, since | J | : g l almost everywhere, this implies that | J\ = 1 almost
everywhere. Thus we conclude that J is an inner function in H°°(dnί)
which dominates all the members in D.

Finally, let /' be a function in U such that I < Γ for all / in D. Let /
in Am and £ > 0 be arbitrary. We can find an Ix in D such that

\jfΓ(J-ϊι)dm

since / / ' is a function in L\dm). Noting that /' Iγ belongs to H°°(din), we
see that
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JdmffΓ

Since £ can be taken arbitrarily small, this implies that Γ J is an H°°(dm)-

function, that is, that J < / ' . It follows that J is the smallest upper bound

of D.

The Theorem is now completely established.

COROLLARY 3.13. Let Il9 I2, , In , be a sequence of inner
functions in H°°(dm). Then we have:

(i) If Ix < Z2 < < In < , and if for some natural number N
the limit

(3.18) lim / InINdm
n—><χ> J

exists and is different from 0, then the sequence {In} converges to an inner

function in H°°(dm) in the weak-star topology of L°°(dm). The limit point

of this sequence is the smallest upper bound in U of the set {In}

(ii) If there exists a natural number N such that the limit

(3.19) lim [ ININ+1. In dm

exists and is different from 0, then the infinite product

(3.20) Z 1 Z 1 - . . Z n . . .

converges to an inner function in H°°(d?n) in the weak-star topology of

L°°(dm). The limit point of this product is the smallest upper bound in

U of the set of all the partial products of the infinite product in (3.20).

PROOF. We note, in general, that a sequence {hn} in L°°(dm) converges

to an h in L°°(dm) if and only if the sequence {hnf} converges to hf for

every / in L°°(dm). Hence we may assume that N= 1, IN = 1 in (i) and

that N=l in (ii).

Now suppose that the squence {In} satisfies the hypotheses in (i). Then,

Theorem 3.12 assures that the set {In} has a (the) smallest upper bound J

in U, and its proof shows that a subsequence of {In} converges to J. If K

is any cluster point of the sequence {Zn}, it is easy to see that K is in U and



FACTORIZATIONS IN FUNCTION ALGEBRAS 381

is also a smallest upper bound of the set {In}. Hence K is a constant
multiple of J. But, from (3.18), it is clear that

I Jdm = j Kdm = lim j Indm Φ 0.

Therefore J and K coincide as functions of H°°{dm). Thus J is the only
cluster point of the sequence {Jn}, and it is easy to see that the {In} converges
to J.

To prove (ii), let Jn = Ix In for n = 1,2, 3, . Then (i) applies, and
we are done.

PROOF OF THEOREM 3.5. Let / be any function in H\dm) with

fd?n Φ 0. f has the form / = Ig, where / is an inner function in H°°(dm)

and g is an outer function in H\dm). This factorization of f is unique up to

a constant factor of modulus 1. I IdmφO, because I fdmφO. Let D be the

set consisting of all essentially distinct LF-functions which divide I. We first
show that D contains at most countably many functions. In fact, let t be
any real number such that 0 < t < 1, and let Ix, , IN be any finite distinct

< t. Since {Ik} satisfies condition (a) infunctions in D such that / Ikdm

Theorem 3.9, and since / IdmφO, we have / > Iλ 7 .̂ Thus we must have

(3.21) 0 < / I dm ^ /x -INdm <tN.

This implies that D contains at most finitely many functions J such that

Jdm < t. Since t was arbitrary, and since the only inner functions J

such that Jdm = 1 are the constant inner functions, we conclude that Ό

contains at most countably infinite functions.
Let D= {I09 Il9 , In , }. We may assume that Zo = 1. Arrange each

In so that I Indm>0, and let pn be the largest positive integer such that

I > l£n for all n ^ 1. As we saw in the proof of Theorem 3.11, we have
If Λ III" = 1 if j ^ k. Thus Theorem 3.9 applies, and we have
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(3. 22) / > 7, Zp IS- (for all n).

In case D consists of the finite elements 70, 71; , IN, put

(3.23) B = IJί>..>I?.

B is a finite Blaschke product, and it is easy to see that S = IB is a singular

function. Thus we have / = BS, and this factorization of / is unique up to

a constant multiple of modulus 1 by Theorem 3.11.

In case D consists of the countably infinite elements 70, Ix, , In , ,

note that the numerical sequence

1/7fι •!* dm

allis a decreasing sequence of positive numbers, since 0 < J In dm < 1 for

n = l, 2,3, , and is bounded from 0 by (3. 22). Hence, by virtue of part (ii)

of Corollary 3.13, the infinite product

(3.24) 7f . . . / £ - . . .

converges to an inner function B in H°°(dm). B is an infinite Blaschke

product by the definition. It is easy to see that I dominates B and that

S=IB is a singular functions. Thus we have the desired factorization I=BS.

To prove the uniqueness of this factorization, let I have another form BS\

where JB' is a Blaschke product and S' is a singular function. Let J be any

LF ίunction, and p any positive integer. It is easy to see that Jp divides B'

if and only if it divides B'S\ = I). But this last condition is equivalent to

that Jp divides B. Since B is the smallest upper bound of the set consisting

of all the partial products of the infinite product in (3. 24) by (ii) of Corollary

3.13, we see that B < B\ On the other hand, B dominates each partial

product of the infinite product that represents B\ and hence it follows that

B' < B. Therefore, B' is a constant multiple of B, and so the factorization

of / is unique up to a constant factor of modulus 1. This completes the

proof of Theorem 3.5.

REMARKS, (a) In Theorem 3.5, the condition I fdm^O cannot be dropped.

See [3 p. 176]. (b) The author does not know whether the condition that

m is a continuous measure implies that H°°(dm) contains at least one inner

function which is a non-constant LF-ίunction. But this is the case, if m is
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contained in a non-trivial Gleason part. In fact, in this case, Hi, (the space

of all the functions h in H2(dm) such that I hdm=0) has the form ZH\dm)

for some inner function Z [5 p. 309]. Then it is trivial that Z is an

LF-function.
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