
Tohoku Math. Journ.
20(1968), 355-367.

ON A DUALITY FOR LOCALLY COMPACT GROUPS

KAZUYUKI S A I Ί Ό

(Received March 1, 1968)

At earlier time, W. F. Stinespring proved in [8] an operator algebraic
version of duality theorem for locally compact unimodular groups as an appli-
cation of non-commutative integration theory. Recently, a duality theorem
for locally compact groups was established by N. Tatsuuma as a generalization
of the so-called Tannaka duality theorem [4,11,14]. In this paper, we shall
prove the operator algebraic duality for not necessarily unimodular locally
compact groups as an extension of [8].

After writing this paper, the author found Eymard's paper [L'algebre de
Fourier d'un groupe localement compact, Bull. Soc. math. France, 92 (1964),
181-236, Theorem 3.34], in which he proved the analogous result with the
main theorem of this paper. His notation and method of proof are different
from that used in this paper.

The author wishes to thank Professor M. Takesaki for his many helpful
suggestions in the presentation of this paper.

Let © be a locally compact group with left-Haar measure μ. From the
theory of Haar measure, we know that there is a continuous positive-valued
function Δ(x), denned on ©, called the modular function, satisfying Δ(xy)
= Δ(x) Δ(y) and for all fz L1(&) (the set of all complex-valued μ-integrable
functions on ©) the following properties;

fff(x) d/4x) .

(2) /7

We define convolution in

(3) / * g(χ) = ff(y) giy-'x) dμ{y).

Define / * for /<= Lι(β) by f*(x) =f(x~1) Δ^" 1 ) , where 5 is the complex
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conjugate of the complex number a. Then under convolution as multiplication,
Lι(β) forms a Banach algebra having a natural involution f-^f*. [1, 5, 13].

Let 5ζ®->λ(s) denote the left regular representation of ©, which is
defined by

for every / Ξ L2(®), s,x€®, where L2(@) is the Hubert space of all complex-
valued μ- square integrable functions on @.

Similarly, the left regular representation of the Banach algebra Lι(&) is
defined by

for every/€ Lx(©), g £ L2(@) and x£@. Then, the mapping / - > λ ( / ) is to
be thought of as a "global" Fourier transform. A greater formal analogy
with the abelian case is manifest in the formula

= ί

where the integral is interpreted in the σ-weak sense.
Let M be the von Neumann algebra generated by all the λ(α), with a in

©. Then, the operators λ(/) are in M, and M is the von Neumann algebra
they generate.

For a little while, suppose © is abelian. Then, the spectrum of Lι(β)

becomes a locally compact abelian group ©, which is called the dual group of

©, and M is spatially isomorphic to the von Neumann algebra L°°(®) of all

complex-valued essentially bounded measurable functions over © with the Haar

measure of ©, which are represented as multiplication operation on L2(©).

Therefore, once we have identified M with L°°(®) by extended Fourier

transform, the Fourier transform of L!(©) becomes the canonical imbedding of

L*(©) into M (=L°°(©)). Thus, we get the following schema of the Fourier

transform $ and the back transform %:

( 1 )
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^®)It is worth noticing that both the systems {L\®)9 L°°(®)} and {L^®), L~(®)}
are duality systems as Banach spaces. Then, the Pontryagin's duality theorem

says that the space of all self-adjoint characters of !/(©) (Note that L\&) is

the pre-dual of L°°(®) [7]), with respect to the conjugation, is homeomorphic
to the originally given locally compact abelian group ®. The set of all self-

adjoint characters of L*(®) is the dual group ® of ®.
Returning to the general situation and without the commutativity

assumption for a given group, we cannot give the dual object ® as a group.
However, we can realize a similar situation as the schema (1). In fact, M is
considered as the non-commutative L°°-space and by making use of the tensor
power of the regular representation, we shall make the predual M* of M an
involutive commutative semi-simple Banach algebra and denote it by Lι(M).

The representation \(x) ® \(x) (tensor power of X(x)) of ® is multiple
of the left regular representation \(x); in fact, λfcc)® X(x) is an £<-fold copy
of λ(z) where $( is the dimension of L2(®). This means that the represen-
tation x —•> X(x) ® 1 where 1 is the identity operator on L2(®) is unitarily
equivalent to the representation \(x) ® \(x). A particular unitary operator
which implements this equivalence is the operator w on L2(® x ®) = L2(®)
<g)L2(®) defined by

(wf)(x, y) = f(x, xy) for all /<= L2(® x ®).

Let Φ(t) = w~1(t(g)l)w, for t in M, then, Φ is a ^-isomorphism of M into
M®M (W*-tensor product), such that

Φ(λ(α)) = λ(α) ® λ(α) for a € ® .

In the case of an abelian group ®, /<= Lx(®), the operator \(f) corresponds
to the multiplication by Fourier transform / of / on L2(®). An easy
computation shows that Φ(λ(/)) corresponds to the mutiplication by the

function f(xy) of two variables x and y on L2(® x ®). If F and H are

functions in Lx(®), then, their convolution is the function F* H satisfying the
equation

f
®where β is the Haar measure on ®. Thus, when © is an arbitrary locally

compact group, we are led to the following definition of convolution in M#.
[8, p. 48].
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DEFINITION 1. If F and H are in M*, we define F*H to be the unique
element of M* such that (F*H)(i) = (F®H)(Φ(t)) for all t in M, where F®H

is in M*®ai*Mχ, and cίQ* means the adjoint cross norm of the tfVnorm in
the sense of Turumaru [12].

Along with the convolution in M* just defined, there is a companion

involution. Let C denote complex conjugation in L2(β), i.e., (Cf)(x) = fix).

If t is any operator on L2(&), we define t to be CtC. It is easy to see that

λ(α)=λ(tf) for <Z€®, and therefore t-*t is a conjugate linear ^--automorphism
of M.

DEFINITION 2. If F is in M*, we define F in M* such that i^(ί) = F(t).

THEOREM (Duality theorem). The space of all self-adjoint characters
of Ma., with respect to the conjugation, is homeomorphic to the originally
given locally compact group. The set of all elements u of M zvith Φ(u)=u®u
and u —u becomes a locally compact group with respect to the multipli-
cation and the relative topology as a subset of M, which is isomorphic to
© under the map: x € ® -> \(x) <= M.

In order to prove the theorem, we need following lemmas.

LEMMA 1. Under the convolution as multiplication, M* becomes a
commutative Banach algebra having the isometric involution F-+F.

( n )
PROOF. AS the set | ^Z a^Xi) 0Ci is a complex number and xt € © [ is

U J
= i J

σ-weakly dense in M, the assertion is clear from Definitions 1 and 2.

LEMMA 2. Let F z M* and set F(x)=F(X(x)) for xz®. Then, F(x) is
•%

a bounded continuous function on % and F(x) = F(x).

REMARK. The function F(x) on © is the back transform of F in
Af# (=L\M)).

LEMMA 3. Let F and H be in L\M). Set F(x) = F(Λ(x)) and H(x)

=H(\(x))forx €®. ThenF(x)H(x)=F*H(Λ(x)).

LEMMA 4. The commutative involutive Banach algebra Lι(M) is semi-
simple and there is a one to one correspondence between operators in M
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which satisfy the equations

5 0 5 = φ(s) and 5 = 5,

and *-homomorphisms σ of U(M) into the complex numbers (i.e., self-
adjoint characters) the correspondence being given by σ(F)=F(s) for all
F in L\M).

PROOF. Suppose that σ is a self-adjoint character of Lι(M). By [4], σ
is automatically continuous linear functional on L\M), hence a{F) = F(s) for
some s in M. Then, for all F and H in &(M),

CF<g)H)(Φ(s)) = (F*H)(s) = σ(F*H)

Therefore Φ(s) = s®s and also for all F in Lι(M\

F(s) = F(s) = σ{F) = σ(F) = F(s).

This means that 5 = 5.
Conversely, suppose s(g)5=Φ(s) and 5 = 7 . Set σ(F) = F(s). Then, we

have

σ(F*H) = (F*H)(s) =

for all F and H in L\M) and

σ(F) = F(s) = F(7) = 1

for all F€ L\M).
If σ(F) = σ(H) for each self-ad joint character, where F and H are in

), then considering that Φ(λ(x)) = λ(x)(g> λ(α:) and λ(x)=λ(α;)> it follows

^rtjλ^); Λ, is a complexthat F(λ(:r)) = H(X(xj) for all .r ^ ©. Since

number and x^z ©h is σ-weakly dense in M, F=H and L\M) is semi-simple.

The lemma follows.
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LEMMA 5. Let L\{M) be the set [F; FzL\M) and F(x)zL2(®)} and
JS be the set of back transforms of the elements of L\(M). Then J3 is
norm-dense in L2{&) and is weakly dense in L°°(®), where L°°(©) is the set
of all complex-valued ^-essentially bounded measurable functions on ©.

PROOF. Define elements Wftg in L\M) by;

for szM and any pair /, g in Cc(@), where Cc(β) is the set of all complex-
valued continuous functions on © with compact supports. Then, an easy

calculation shows that Wf*i0{x) = (g*(Δ - f))(x) for xe®, and Wf.,g e L\(M).
Therefore {f*g; / , ^ C c ( 8 ) } c l Hence & is norm-dense in L2(®).

Let -So be the algebra of continuous functions on ® generated by {f*g;
fy 9 € Cc(®)} Then, -So is self-ad joint and separates points of ® and 0 is
uniformly dense in CΌX©), where CJJ&) is the set of all complex-valued
continuous functions on © vanishing at infinity. [4]. On the other hand,
CΌo(@) is weakly dense in L°°(@), hence -S is weakly dense in L°°(©). This
completes the proof.

REMARK. Since L\(M) = {F; FzL\M\ \F(X(f))\ ^ c | | / | | , for some
positive constant c and all / € L1(©)πL2(©)}, putting | | F | | , = sup{|F(λ(/)) | ;
/^L 1 (©)nL 2 (®)}, the completion L\M) of L\{M) under the norm || ||2
becomes a Hubert space and the back transform can be extended to a unitary
operator of L\M) onto L2(@). [5, p. 145, 36. D].

In fact, as F ( λ ( / ) ) = [f(x)F{x) dμkx) for all /^L 1(©)ΠL 2(©), it is clear

from the above lemma.

LEMMA 6. Let F be in L&M), then for any s in M, putting Fs(t)

= F(st) for azM, FszL\®) and Fs=7*F μ-a.e..

PROOF. For any g € L\®) Π L2(@), we have

( > £ g) = (F, ϊg) = ( F(x)(7g){x) dμ{x)

By the density theorem of Kaplansky, we can choose a directed system {fa}
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of elements of L\&) such that λ(/α) —>s, σ-weakly and || λ(/α) || ^ || s ||.
Therefore,

,g) = lim
a

= lim [F\x)(fa*g)(x)dμ(x)
a J©

= (F(s.7s{x))g{x)dμ(x)

for all g in L1(®)ΠL2(&). Now Fs is uniformly bounded and continuous on

@ and s*Fz L2(&), hence Fs € L2(©) and Fs=s*F μ-a.e.. The lemma follows.

Let Γ be the set {5; s z M, Φ(s) = s<g>s, s = s], then, Γ is σ-weakly closed
subset of the unit sphere of M, and therefore is σ-weakly compact. Hence,

putting @=Γ— {0}, © is a σ-weakly locally compact subset of Γ and for every

pair f g in L2(©), there exists a unique finite Radon measure μft0 on © such

that (Ff g) = [F(S) dμftΰ(s) for all Fz L\M). In fact, from Lemma 4, L\M)
J®

can be represented as a dense subalgebra C of CΌo(@), where CΌo(©) is the set

of all complex-valued continuous functions on © vanishing at infinity and the

restriction of the represented function of L\M) to {λ(x), x £ ©} is the back

transform of it. Putting L(F) = (Ff, g), if Fn converges uniformly to F on

©, then, Fn converges to F uniformly in L°°(@) and hence L(Fn) tends to
L(F) as n —• 00. Therefore, L(F) can be uniquely extended to a uniformly

continuous linear functional on CJJ&) and there is a finite Radon measure

μft0 on ©, such that

(Ff,g)= (F{s)dμf,0(s)
v ©

for all Fz L\M).

LEMMA 7. For E,F U and V in L\(M),
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E(s) Fζϊ) dμttϊ{s) = U(s) Vis

PROOF. For any H in L\M), we have

H(s) U{s)V(sTdμϊfi(s) = f
&

= (H*U*V • E,F) = (H U-V E,F)

= (H E F-U,V)

= fH(s)E(s)F(J)dμt,Φ)-
J (V)

The semi-simplicity of L\M) shows that U(s)V(s)dμί,t#(s) = E(s) F(s) dμfrf{s).
Thus the lemma follows.

LEMMA 8. There exists a positive Radon measure μ on & with the
following properties',

(i) (E, F) = f E(s)F(s)dμ(s) for every pair of E,Fe L\{M).

(ii) For any H in L\M) and any pair E, F in L\(M)y

H(S) dμk K*) = f H{S) E{S) F(S) dμts) .

PROOF. For each FeL\(M\ let UF be the set {s; sz®,F(s)*0}. Then

UF is an open subset of ©. Since L\{M) is weakly dense in L\M), the

family {UF FzL\(M)} forms an open covering of &. For each fz CC(JJF),

where CC(UF) is the set of all complex-valued continuous functions on UF

with compact supports,

(*) μΛf) = /. jf^γr dμtf (5)

defines a positive Radon measure μF on UF. If a continuous function f on @
has the compact support contained in UEΠUF for some E,FeLl(M)f then
/^(jO = μp(f) by Lemma 7. Therefore, the system [UF> μF} defines a unique
positive Radon measure /i on ® whose restriction to L7F coincides with μF by
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[2, Chap. Ill, §3, Prop. 1, p.68]. Also equation (*) implies that

= E(s)F(s)dμ{s) for every pair E, F in L\{M), which means equation (ii).

The finiteness of the Radon measure μ^p on % yields the square integra-

bility of E with respect to μ for every E € L\{M).
By the semi-simplicity of L\M), there is a directed system {Ha} in

L\M) such that J / α - > l for compact convergence topology of ® and ||ίfα||oo
5g 2. By the equation (ii), we have

\Ha(s) I F(s) 1

= f Ha(x)\F(x)\> dμ(x).

Hence, we have (F, F) = J \ F(s) \2 dμ(s), and via the polarization, equation (i)

is valid. Thus the lemma follows.

REMARK. The proof of Lemma 8 is the modification of the argument
used in [9, Lemma 5, 6, p. 13].

LEMMA 9. There is no non-trivial projection in Γ, that is, if e £ Γ,
and is a projection, then e — \ or 0.

PROOF. Since M' (the commutant of M) D {p(x) x <Ξ ®, p is the right
regular representation of ®}, putting (1 — e)L\&) = 5Dΐ, the closed linear
manifold fflΐ is invariant under right translation.

Next we show Loo(©)9ϊίcϊ)ί?. As <B is weakly dense in L°°(®), it is
sufficient to prove that iMccfflΐ. For F in L\(M\ and e in Γ noting that

e=e*> by Lemma 6 eF=Fe μ-a.e. and eF^L°°(&). For H € L\(M), we have

e(F-H) = (eF)(eH) μ-z.e..

In fact,

= (JF*

= (F® H)((e
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Therefore e(F H) = (eF)(eH) μ-a.e.. On the other hand, as 3) is strongly-

dense in L2(@), e{Fg) = (eF)eg in L2(@) for all g e L2(@). Thus, if #s9K,

then eFg=0, that is, ^maSSR.
By [13, Chap. Ill, p. 42], e = l or 0. This completes the proof.

REMARK. In the above lemma, we can drop the condition that e = e.
In fact, by Lemma 6 and the same reason as the proof of the above lemma,
we have

in L2(®) for all g s L2(@) and F in L\{M). Thus, if Wl = (l-7)L\®), then Wl

is invariant under right translation and L°°(®)a}ίc9Jί. Hence by the same

reason, e = 1 or 0. This means that e=l or 0.
Next lemma, which we prove by making use of an argument of Takesaki

[9, Lemma 7, p. 14], shows that © is contained in the unitary part of M and
is a locally compact group, that is,

LEMMA 10. ® is a locally compact group for σ-τveak topology, and μ
is its left Haar measure.

PROOF. Since, for any s in © and any pair E, F in L\(M\

f E(st) Fζt) dμ{t) = ( £ , F) = ( ? £ , F) = (£, sF)

= ί E(t) F\s*t) d^t) by Lemma 4,

it follows that

(**) f Λst) git) dμ(t) = f f(f) g{s*t) dμ(t),

for all / and g in Cc(@).

For a little while, we shall assume that the set H = [t t <= © s£ € K} is

compact for every compact subset K of ©. Then there exists, for an fz Cc(®)
with compact support K, a g in Cc(©) with ^(ί) = l if stzK and <7(s*£) = l
if £ € X, which implies by (**) that
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for every fz Cc(@). Therefore, the Radon measure μ is invariant under the

left translation : t € © —> st e ©, so that, for every pair E, Fz L\{M) and 5ζ®,

= [ E(st) F(st) dμ{t) = [ E(t)
J® J®

From Lemma 5, (ss*f,g) = (f,g) for any pair /, g in L2(®), which means that
55*1=1, and by the same reason, it follows that 5*5 — 1. Therefore 5 is a

unitary element of M and 5* is the inverse of 5. Hence, © is a σ-weakly

locally compact Hausdorff group with the left Haar measure μ.
To complete the proof, it is sufficient to show the fact assumed in the

last paragraph. First, we show that the map: t € M —> st € M is one to one

and is σ-weakly continuous for every 5 € ®. Suppose st = 0 for some t <= M.
Replacing 5 with 5%, we may assume that 5 is a positive element of M.
For each positive integer n, s1/n is positive z-th root of 5, and s1/n is also in

®. The sequence {sVn} converges strongly to the support projection e of 5,

so e belongs to &. Hence by Lemma 9, e = l, this implies t = 0. Since the

σ-weak-continuity of this map is clear, the map : t € © u {0} —» st € 5© u {0} is

one to one and is σ-weakly continuous and hence sH = (5©u{0})ΠiC is σ-

weakly compact subset of © U {0}. Therefore H is compact in © U (0}. On
the other hand if ta€ H converges to 0 for σ-weak topology, then sta

converges to 0. But it is impossible, because sta is contained in the compact

set sH. This means the compactness of H in ©. The lemma follows.

Now we are in the position to prove the main theorem.

Combining above results, it is sufficient to show that the mapping x £ ©

—> \(x) € © is an isomorphism of © onto ®. The mapping x € © —> X(x) Ξ ©

is continuous from ® into ®. To show that it is a homeomorphism we use
the fact that the σ-weak topology on © is the same as the strong topology.
Let V be any compact neighborhood of the unit of ©. Choose /<= L2(©) so
that | | / | | 2 = 1 and the support K of f is such that KK~1C.V. Suppose
| | λ ( α ) / - / | | 2 < 1 for some a € ®. Then azV. [7, Corollary 10.3].

To complete the proof, it suffices to show that this homeomorphism is
onto. Let ®' be the image of ® under the map x —> λ^r), then ®' is a closed

subgroup of ®, and there is a positive Radon measure v on ® which is

concentrated on ®' and is the Haar measure of ®\ In fact, if f is a con-

tinuous function with compact support on ®, then
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f(s)dv(s) =

Let C be the algebra of all functions / on © of the form f(s) = F(s) for some
FzL\(M). Consider C2 which consists of all sums of products of functions

in C. If / € C\ then / = £ # A where g3(s)=Gs(s) and hj(s)=Hj(s) for 5 € ©

with G,, / / , in L\(M). Then by the definition of L\{M\ f* L\®, v\ and

V\ 7s~

Furthermore, for t e @, and £ 6 LJ(M), by Lemma 6, Et* = tE /x-a.e., hence
we have

= f/(s)dv(s).

By applying [7, Corollary 1.4] to i; and its left translates, we conclude that v

is left Haar measure on @. In other words © = ©', and ©=@. This completes
the proof of the theorem.

COROLLARY. Let Fz L\M} and set F(x) = F(X(x)) for xz®. Then F
vanishes at infinity on ©.

PROOF. Since %' U {0} is the one-point compactification of ©', the
function f(s)~F(s) vanishes at infinity on ©'. [8, Corollary 10.5].

REMARK. Thus, we get the following schema of the "global" Fourier

transform λ and the back transform λ :
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L\&) - M

L-(®) -Λ* L\M).

It is worth noticing that the the two systems {L\®\ L°°(©)}, {L\M\M} are
both duality systems as Banach spaces.

REFERENCES

[ 1 ] L. AUSLANDER, Unitary representation of locally compact groups, Lecture note, Yale
Univ., 1961-1962.

[ 2 ] N. BOURBAKI, Integration, Paris, 1952.
[ 3 ] H. CARTAN AND R. GODEMENT, Theorie de la dualite et analyse harmonique dans les

groupes abeliens localement compacts, Ann. Sci. Ecole Norm. Sup., 64(1947), 79-99.
[ 4 ] J. ERNEST, Notes on the duality theorem of non-commutative non-compact topological

groups, Tόhoku Math. J., 15(1964), 291-296.
[ 5 ] L. H. LOOMIS, An introduction to abstract harmonic analysis, New York, 1953.
[ 6 ] L. S. PONTRYAGIN, The theory of topological commutative groups, Ann. Math., 35

(1934), 361-388.
[ 7 ] S. SAKAI, The theory of W*-algebras, Mimeographed note, Yale Univ., 1962.
[ 8 ] W. F. STINESPRING, Integration theorems for gages and duality for unimodular groups,

Trans. Amer. Math. Soc, 90(1959), 15-56.
[ 9 ] M. TAKESAKI, A characterization of group von Neumann algebras of locally compact

unimodular groups as a converse of Tannaka-Stinespring-Tatsuuma duality theorem,
to appear.

[10] T. TANNAKA, Uber den Dualitatsatz der nichtkommutativen topologischen Gruppen,
Tόhoku Math. J., 45(1938), 1-12.

[11] N. TATSUUMA, A duality theorem for locally compact groups, J. Math. Kyoto Univ.,
6(1967), 187-293.

[12] T. TURUMARU, On the direct product of operator algebras III, Tόhoku Math. J.,
6(1954), 208-211.

[13] A. WEIL, L'integration dans les groupes topologiques et ses applications, Paris, 1938.
[14] JOHN ERNEST, Hopf-von Neumann algebras, Prepublication copy.

MATHEMATICAL INSTITUTE
TOHOKU UNIVERSITY
SENDAI, JAPAN




