Tôhoku Math. Journ. 20(1968), 346-354.

ON THE EQUIVALENCE OF q-MARTINGALES AND LOCALLY L^p-INTEGRABLE MARTINGALES

NORIHIKO KAZAMAKI

(Received February 8, 1968)

K. E. Dambis studied q-martingales in [2]. Local martingales, which were defined somewhat differently from the definition of q-martingales, were discussed by K. Ito and S. Watanabe [1]. In the present paper we shall prove that the class of all q-martingales (resp. q-submartingales) concides with the class of all continuous locally L^{p} -integrable martingales (resp. locally L^{p} -integrable submartingales) for all $p \ge 1$, under a general assumption.

As an application, we use this result to prove that the stochastic integral, which was defined for square integrable martingales by M. Motoo and S. Watanabe [6], can be extended to locally square integrable martingales.

1. In order to give a precise formulation of the theorems we need a series of definitions.

Let $(\Omega, \mathfrak{F}, P)$ be the basic P-complete probability space and $\{\mathfrak{F}(t)\}_{0 \leq t < \infty}$ a family of Borel subfields of \mathfrak{F} such that $\mathfrak{F}(s) \subset \mathfrak{F}(t)$ for s < t. We may, and do, suppose that each $\mathfrak{F}(t)$ contains all \mathfrak{F} -sets of P-measure zero. We write $a(b) = a_b$ and $a \wedge b = \min(a, b)$.

A submartingale (relative to the family $\mathfrak{F}(t)$) is a real valued process $\{x(t),\mathfrak{F}(t)\}$ such that

(i)
$$\forall t \ge 0, E[|x(t)|] < \infty$$

and

(ii)
$$\forall (s,t), s \leq t, x(s) \leq E[x(t)|\mathfrak{F}(s)]$$
 a.s.

If equality holds a.s. in (ii), the process is a martingale. If, moreover, $E[|x(t)|^p] < \infty$ holds, then the process is an L^p -integrable martingale. We shall be concerned here only with sample continuous (sub)martingales.

A stopping time with respect to the family $\mathfrak{F}(t)$ is a positive, possibly infinite, random variable $\tau(\omega)$ such that, for every $a \ge 0$, $\{\tau \le a\} \in \mathfrak{F}(a)$. Given a stopping time τ we shall define $\mathfrak{F}(\tau)$ as the system of all sets $A \in \mathfrak{F}$ for which $A \cap \{\tau \le t\} \in \mathfrak{F}(t)$ for every $t \ge 0$. To avoid constant repetition of qualifying phrases, we assume that τ , β , $\tau(n)$, $\beta(n)$, etc., denote stopping times.

We shall here assume that

$$\mathfrak{F}(t) = \bigcap_{h>0} \mathfrak{F}(t+h) \text{ for every } t \ge 0$$

and

$$\mathfrak{F}(\tau(n)) \uparrow \mathfrak{F}(\tau)$$
 for $\tau(n) \uparrow \tau$, a.s.

We sketch several concepts from [2]. By a φ -process, we mean a nonnegative right continuous nondecreasing random process $\{\varphi(t), \mathfrak{F}(t)\}$ possibly assuming infinite values. By a τ -process we mean a family $\{\mathfrak{F}(t), \tau(t)\}$ where $\tau(t) = \tau(t, \omega)$ is right continuous and nondecreasing in t for each fixed ω . We call a τ -process $T = \{\mathfrak{F}(t), \tau(t)\}$ (resp. φ -process $\{\varphi(t), \mathfrak{F}(t)\}$) normal if it is continuous, finite and increases strictly from 0 to ∞ .

For instance, let $X^a = \{x^a(t), \mathfrak{F}(t)\}, a \in A$, where A is an arbitrary set, be a collection of continuous random processes such that

$$\sup\{|x^{a}(s) - x^{a}(0)|; \ 0 \le s \le t, \ a \in A\}$$

is continuous (that is trivially satisfied if A is a finite set), and put

$$\Lambda = \{\lambda(t), \mathfrak{F}(t)\} \text{ where } \lambda(t) = t + \sup\{|x^a(s) - \boldsymbol{x}^a(0)|; 0 \leq s \leq t, a \in A\},\$$

then $\lambda(t)$ is $\mathfrak{F}(t)$ -measurable, finite and increases strictly from 0 to ∞ . Thus Λ is a normal φ -process. We call the τ -process $\Theta = \{\mathfrak{F}(t), \theta(t)\}$ where $\theta(t) = \inf\{u; \lambda(u) > t\}$, the stopping process for the processes X^a or the brake of the processes X^a . By the definition of Λ , $\theta(t)$ is continuous, finite and strictly increasing from 0 to ∞ . Moreover, from the continuity of Λ , we have $\lambda(\theta(t)) = t$ and so for each $t \geq 0$,

$$\forall s \geq 0, \ [\theta(t) \leq s] = [t \leq \lambda(s)] \in \mathfrak{F}(s)$$

Thus each $\theta(t)$ is a stopping time with respect to the family $\mathfrak{F}(t)$. In other words, $\Theta = \{\mathfrak{F}(t), \theta(t)\}$ is a normal τ -process. As $[\lambda(t) \leq s] = [t \leq \theta(s)] \in \mathfrak{F}(\theta(s))$, $\{\mathfrak{F}(\theta(t)), \lambda(t)\}$ is a normal τ -process.

Let $X = \{x(t), \mathfrak{F}(t)\}$ be a process that is continuous from the right and let $T = \{\mathfrak{F}(t), \tau(t)\}$ be a τ -process such that $x(\infty) = \lim_{t \to \infty} x(t)$ is defined for all ω for which $\tau(t, \omega) = \infty$ for some $t, 0 \leq t < \infty$.

Put $TX = \{x(\tau(t)), \mathfrak{F}(\tau(t))\}$. Then we say that the process TX is obtained from X by means of a random time change. If T is normal, then the random time change will be called normal.

DEFINITION 1. We call q-(sub)martingales those which are obtained by normal random time changes from continuous (sub)martingales.

DEFINITION 2. $X = \{x(t), \mathfrak{F}(t)\}$ is called a locally L^p -integrable (sub)martingale if there exists a sequence $\tau(n)$ of stopping times with respect to the family $\mathfrak{F}(t)$ with $P[\tau(n) < \infty, \tau(n) \uparrow \infty] = 1$ such that each random process $\{x(t \land \tau(n)), \mathfrak{F}(t \land \tau(n))\}$ is an L^p -integrable (sub)martingale.

We shall denote by $(SM)^p$ (resp. M^p , $(SM)^p_{loc}$, M^p_{loc} , QSM and QM) the family of all continuous L^p -integrable submartingales (resp. L^p -integrable martingales, locally L^p -integrable submartingales, locally L^p -integrable martingales, q-submartingales and q-martingales).

2. In what follows, we may, and do, suppose that x(0)=0.

LEMMA 1. Let $X = \{x(t), \mathfrak{F}(t)\}$ be a right continuous submartingale and $T = \{\mathfrak{F}(t), \tau(t)\}$ a τ -process. Then:

(1) If X is uniformly integrable or there exists a "constant process" c_t such that $\tau(t) \leq c_t < \infty$, then TX is also a submartingale. If, moreover, X is a martingale, then TX is a martingale.

(2) If, for any $a \in [0, \infty)$, the random variable $x^+(t \wedge \tau(a))$ is uniformly integrable with respect to t, then TX is a submartingale. If $x(t \wedge \tau(a))$ is uniformly integrable and X is a martingale, then TX is a martingale.

Part (1) of Lemma 1 is proved in [4] (see Theorem 11.8, Chapter 7) and for the proof of part (2), see Theorems 4.1. and 4.1.s of Chapter 7 in [4].

LEMMA 2. For any random process $X = \{x(t), \mathfrak{F}(t)\} \in (SM)^{1}_{loc}$ (resp. M^{1}_{loc}), $\mathfrak{O}X$, where \mathfrak{O} is the brake of X, belongs to $(SM)^{1}_{loc}$ (resp. M^{p}_{loc}) for any $p \ge 1$.

PROOF. If $X = \{x(t), \mathfrak{F}(t)\} \in (SM)_{loc}^1$, there exists a sequence $\beta(n)$ of stopping times with respect to the family $\mathfrak{F}(t)$ such that

 $\mathbb{P}[\beta(n) < \infty, \beta(n) \uparrow \infty] = 1 \quad \text{and} \quad \{x(t \land \beta(n)), \mathfrak{F}(t \land \beta(n))\} \in (SM)^1.$

Put $\alpha(n) = \inf\{t; \theta(t) > \beta(n)\}$. It follows at once from the normality of Θ that $P[\alpha(n) < \infty, \alpha(n) \uparrow \infty] = 1$ and $\{\alpha(n) \leq s\} = \{\beta(n) \leq \theta(s)\} \in \mathfrak{F}(\theta(s))$ for any $s \geq 0$. Therefore each $\alpha(n)$ is a stopping time with respect to the family $\mathfrak{F}(\theta(t))$. By the definition of $(SM)_{loc}^{p}$, we have only to give the proof of the fact $\{x(\theta(t \land \alpha(n))), \mathfrak{F}(\theta(t \land \alpha(n)))\} \in (SM)^{p}$. Since $t = \lambda(\theta(t)) = \theta(t) + \sup\{|x(u)|; 0 \leq u \leq \theta(t)\}$ from the definitions of $\lambda(t)$ and $\theta(t)$, we see

LOCALLY L^p-INTEGRABLE MARTINGALES

 $0 \leq \theta(t) \leq t$ and $\sup\{|x(u)|; 0 \leq u \leq \theta(t)\} \leq t$.

On the other hand, since

$$x(\theta(t \land \alpha(n))) = x(\theta(t) \land \theta(\alpha(n))) = x(\theta(t) \land \beta(n)) = x(\{\theta(t) \land \beta(n)\} \land \beta(n))$$

and

$$\{\theta(t) \land \beta(n) \leq s\} = \{\theta(t) \land \beta(n) \leq s \land \beta(n)\} \in \mathfrak{F}(s \land \beta(n)) \text{ for all } s \geq 0,$$

that is, $\theta(t) \wedge \beta(n)$ is a stopping time with respect to the family $\mathfrak{F}(t \wedge \beta(n))$, in view of Lemma 1(1), each $\{x(\theta(t \wedge \alpha(n))), \mathfrak{F}(\theta(t \wedge \alpha(n)))\}$ belongs to $(SM)^p$. Hence ΘX belongs to $(SM)^p_{loc}$. This completes the proof.

LEMMA 3. For any random process $X = \{x(t), \mathfrak{F}(t)\} \in QSM$ (resp. QM), ΘX , where Θ is the brake of X, belongs to $(SM)^p$ (resp. M^p) for any $p \ge 1$.

PROOF. From the definition of QSM, X=TY, where $Y = \{y(t), \mathfrak{G}(t)\}$ is a continuous submartingale and $T = \{\mathfrak{G}(t), \tau(t)\}$ is a normal τ -process. As $\sup\{|x(u)|; 0 \leq u \leq \theta(a)\} \leq a$ for any $a \geq 0$, we have

$$\sup\{|y(t \wedge \tau(\theta(a)))|; 0 \leq t < \infty\} \leq a.$$

This implies the uniform integrability of $\{y(t \land \tau(\theta(a)))\}_{0 \le t < \infty}$, hence by Lemma 1(2) $\Theta X = [\Theta T]Y$ belongs to $(SM)^p$. Thus the lemma is proved. (This proof is due to K. E. Dambis [2]).

THEOREM 1. For any $p \ge 1$, $(SM)_{loc}^p$ (resp. M_{loc}^p) coincides with QSM (resp. QM).

PROOF. Let $X = \{x(t), \mathfrak{F}(t)\}$ be any random process of QSM and Θ be the brake of X. Lemma 3 implies $\Theta X \in (SM)^p$ for any $p \ge 1$.

Put $X^n = \{x(t \land \theta(n)), \mathfrak{F}(t \land \theta(n))\}$. Then clearly

$$x(t \wedge \theta(n)) = x(\theta(\lambda(t)) \wedge \theta(n)) = x(\theta(\lambda(t) \wedge n))$$

and so each $X^n \in (SM)^p$ by Lemma 1(1). Hence $X \in (SM)_{loc}^p$.

Conversely $X = \{x(t), \mathfrak{F}(t)\}$ is a locally L^p -integrable submartingale, then ΘX is a locally L^p -integrable submartingale by Lemma 2, that is, there exists a sequence $\tau(n)$ of stopping times with respect to the family $\mathfrak{F}(\theta(t))$, with $P[\tau(n) < \infty, \tau(n) \uparrow \infty] = 1$ such that $\{x(\theta(t \land \tau(n))), \mathfrak{F}(\theta(t \land \tau(n)))\}$ belongs to $(SM)^1$ for each n. By the assumption on $\mathfrak{F}(t)$, as $\mathfrak{F}(\theta(s \land \tau(n))) \uparrow \mathfrak{F}(\theta(s))$, for any $A \in \mathfrak{F}(\theta(s))$ there exists $A^n \in \mathfrak{F}(\theta(s \land \tau(n)))$ such that $P(A \triangle A^n)$ converges

to 0. Then for each n,

$$\int_{\mathcal{A}^n} x(\theta(s \wedge \tau(n))) d\mathbf{P} \leq \int_{\mathcal{A}^n} x(\theta(t \wedge \tau(n))) d\mathbf{P}, \quad s \leq t.$$

In view of the Lebesgue bounded convergence theorem, we have

$$\int_{\mathcal{A}} x(\theta(s)) \, d\mathbf{P} \leq \int_{\mathcal{A}} x(\theta(t)) \, d\mathbf{P} \, .$$

Hence ΘX belongs to $(SM)^1$. Therefore as $X = \Lambda[\Theta X]$, X is a q-submartingale. This completes the proof.

COROLLARY. Let $X = \{x(t), \mathfrak{F}(t)\}$ be a continuous local submartingale. Then $\lim_{t \to \infty} x(t)$ exists and is finite almost surely where $\limsup_{t \to \infty} x(t) < \infty$.

PROOF. It is proved in [4] (see Theorem 3.1.s (iv) of Chapter 11) when X is a continuous submartingale. Then the proof is obvious from the fact $(SM)_{loc}^1 = QSM$.

3. Next we shall show that the equivalence of q-martingales and locally L^{p} -integrable martingales is also true in \mathbb{R}^{n} .

DEFINITION 3. We call a process $X = \{x(t), \mathfrak{F}(t)\}$ in \mathbb{R}^n with $\{(h \circ x)(t), \mathfrak{F}(t)\}$ a continuous martingale, for each spherical harmonic polynomial h in \mathbb{R}^n , a continuous martingale.

DEFINITION 4. We call q-martingales in \mathbb{R}^n those processes which are obtained by normal random time changes from continuous martingales in \mathbb{R}^n .

DEFINITION 5. A process $X = \{x(t), \mathfrak{F}(t)\}$ in \mathbb{R}^n is called a locally L^p integrable martingales in \mathbb{R}^n if $h \circ X = \{(h \circ x)(t), \mathfrak{F}(t)\}$ is a locally L^p -integrable martingale for each spherical harmonic polynomial h in \mathbb{R}^n .

We shall denote by $M^{p}(\mathbb{R}^{n})$ (resp. $M_{loc}^{p}(\mathbb{R}^{n})$ and $QM(\mathbb{R}^{n})$) the family of all continuous L^{p} -integrable martingales (resp. locally L^{p} -integrable martingales and q-martingales) in \mathbb{R}^{n} .

THEOREM 2. For any $p \ge 1$, $M_{loc}^{p}(\mathbb{R}^{n})$ coincides with $QM(\mathbb{R}^{n})$.

PROOF. If $X = \{x(t), \mathfrak{F}(t)\} \in QM(\mathbb{R}^n)$, then X = TY, where $Y = \{y(t), \mathfrak{G}(t)\}$

is a continuous martingale in \mathbb{R}^n and $T = \{\mathfrak{G}(t), \tau(t)\}$ is a normal τ -process.

Let h be any spherical harmonic polynomial in \mathbb{R}^n . Put $h \circ X = \{(h \circ x)(t), \mathfrak{F}(t)\}$. Then $h \circ X = T[h \circ Y]$. As $h \circ Y$ is a continuous martingale, $h \circ X$ is a q-martingale. Theorem 1 implies that $h \circ X$ is a locally L^p -integrable martingale. Hence $X = \{x(t), \mathfrak{F}(t)\} \in M^p_{loc}(\mathbb{R}^n)$ for any $p \ge 1$.

Conversely if $X = \{x(t), \mathfrak{F}(t)\} \in M_{loc}^p(\mathbb{R}^n)$, $h \circ X = \{(h \circ x)(t), \mathfrak{F}(t)\}$ is a locally L^p -integrable martingale for each spherical harmonic polynomial h in \mathbb{R}^n . There exists a sequence $\beta(n)$ of stopping times with respect to the family $\mathfrak{F}(t)$ such that $P[\beta(n) < \infty, \beta(n) \uparrow \infty] = 1$ holds and $\{(h \circ x)(t \land \beta(n)), \mathfrak{F}(t \land \beta(n))\}$ is a martingale for each n. This sequence $\{\beta(n)\}$ may depend on h. Let Θ be the brake of X. Then $\{(h \circ x)(\theta(t)), \mathfrak{F}(\theta(t))\}$ is a locally L^p -integrable martingale in view of Lemma 2. Therefore there exists a sequence $\alpha(n)$ of stopping times with respect to the family $\mathfrak{F}(\theta(t))$ such that $\{(h \circ x)(\theta(t \land \alpha(n))), \mathfrak{F}(\theta(t \land \alpha(n)))\}$ is a martingale with $P[\alpha(n) < \infty, \alpha(n) \uparrow \infty] = 1$.

By assumption, as $\mathfrak{F}(\theta(s \wedge \tau(n))) \uparrow \mathfrak{F}(\theta(s))$, for any $A \in \mathfrak{F}(\theta(s))$ there exists $A^n \in \mathfrak{F}(\theta(s \wedge \tau(n)))$ such that $P(A \triangle A^n)$ converges to 0. Then for each n,

$$\int_{A^n} (h \circ x)(\theta(s \wedge \alpha(n))) d\mathbf{P} = \int_{A^n} (h \circ x)(\theta(t \wedge \alpha(n))) d\mathbf{P} , \quad s \leq t .$$

As a harmonic function is bounded on every compact set, by the Lebesgue bounded convergence theorem we have

$$\int_{\mathcal{A}} (h \circ x)(\theta(s)) \, d\mathbf{P} = \int_{\mathcal{A}} (h \circ x)(\theta(t)) \, d\mathbf{P}.$$

This implies $h \circ \Theta X \in M^1$. Hence $\Theta X \in M^1(\mathbb{R}^n)$. As $X = \Lambda[\Theta X]$, X belongs to $QM(\mathbb{R}^n)$. This completes the proof.

4. We shall now apply the result obtained above to a generalization of the stochastic integral defined in [6].

Let N^+ be the set of all natural increasing processes A(t) defined for $t \in [0, \infty)$ and write

$$N = \{A(t) = A^{1}(t) - A^{2}(t); A^{i}(t) \in N^{+}, i = 1, 2\}.$$

Let Ψ be the class of all (t, ω) -measurable real-valued processes $\psi(t, \omega)$ that are $\mathfrak{F}(\tau)$ -measurable for each stopping time τ with respect to the family $\mathfrak{F}(t)$ and let Ψ_{rc} be the class of all bounded right continuous process having left hand limits. We define for $\varphi \in N^+$ semi-norms $\| \|_{\mathfrak{P}}(t)$ over Ψ by

$$\|\psi\|_{\varphi}(t) = \mathbb{E}\left[\left(\int_{0}^{t} \psi(s)^{2} d\varphi(s)\right)^{1/2}\right], \quad \psi \in \Psi$$

and put $L_2(\varphi) = \Psi \cap \overline{\Psi}_{rc}$, where $\overline{\Psi}_{rc}$ is the closure of Ψ_{rc} with respect to semi-norms $\| \|_{\varphi}(t)$. Clearly $\|\psi\|_{\varphi}(s) \leq \|\psi\|_{\varphi}(t)$ for s < t.

First we recall the followings.

THEOREM 3. For $X = \{x(t), \mathfrak{F}(t)\}, Y = \{y(t), \mathfrak{F}(t)\} \in M^2$, there exists a unique (up to equivalence) $\langle X, Y \rangle \in N$ such that for each $t > s \in [0, \infty)$

$$E[(x(t) - x(s))(y(t) - y(s)) | \mathfrak{F}(s)] = E[\langle X, Y \rangle (t) - \langle X, Y \rangle (s) | \mathfrak{F}(s)].$$

THEOREM 4. For every $X = \{x(t), \mathfrak{F}(t)\} \in M^2$ and $\psi \in L^2(\langle X \rangle)$ where $\langle X \rangle = \langle X, X \rangle$, there exists a unique $Y = \{y(t), \mathfrak{F}(t)\} \in M^2$ satisfying

$$(t) = \int_0^t \psi(s) d < X, Z>(s), \quad \text{P-a.s. for any } Z = \{z(t), \mathfrak{F}(t)\} \in M^2.$$

For the proof of these two theorems, see [5] or [6]. In M. Motoo and S. Watanabe [4], Y of the above Theorem 4 is called the stochastic integral of ψ by X and is denoted by

$$y(t)=\int_0^t\psi(s)\,dx(s)\,.$$

Now let $X = \{x(t), \mathfrak{F}(t)\}$ be any random process of M_{loc}^2 . In view of Lemma 4, $\Theta X = \{x(\theta(t)), \mathfrak{F}(\theta(t))\}$ belongs to M^2 for $X = \{x(t), \mathfrak{F}(t)\} \in M_{loc}^2$. It is easy to see that $\psi(\theta(t))$ is (t, ω) -measurable. As $\{\mathfrak{F}(\theta(t)), \lambda(t)\}$ is a normal τ -process and $[\theta(\tau) \leq s] = [\tau \leq \lambda(s)]$ holds for any stopping time τ with respect to the family $\mathfrak{F}(\theta(t))$, we see $[\theta(\tau) \leq s] \in \mathfrak{F}(\theta(\lambda(s))) = \mathfrak{F}(s)$, that is, $\theta(\tau)$ is a stopping time with respect to the family $\mathfrak{F}(t)$.

Therefore $\psi(\theta(\tau))$ is $\mathfrak{F}(\theta(\tau))$ -measurable. Thus, from Theorem 4, there exists a unique $Y^* = \{y^*(t), \mathfrak{F}(\theta(t))\} \in M^2$ such that

$$(t) = \int_0^t \psi(\theta(s)) d < \Theta X, Z>(s),$$
P-a.s. for any $Z = \{z(t), \mathfrak{F}(\theta(t))\} \in M^2$.

Put $H(X, \psi) = \Lambda Y^* = \{y^*(\lambda(t)), \mathfrak{F}(t)\}$. Theorem 1 implies $\Lambda Y^* \in M_{loc}^* = QM$. This mapping H coincides with the stochastic integral on M^2 . In fact, let $X = \{x(t), \mathfrak{F}(t)\}$ be an L^2 -integrable martingale. First we consider the case that $\psi(t)$ is a step function, that is, there exists an increasing sequence $\{\tau(n)\}$ of stopping times with respect to the family $\mathfrak{F}(t)$ such that $\tau(n) \uparrow \infty$ and $\psi(s) = \psi(\tau(n-1))$ if $\tau(n-1) \leq s < \tau(n)$. Then there exists an increasing sequence $\mathfrak{S}(n)$ such that $\theta(\mathfrak{S}(n)) = \tau(n)$ and $\psi(\theta(s)) = \psi(\theta(n-1)))$ if $\mathfrak{S}(n-1) \leq s < \mathfrak{S}(n)$. As

 $[\beta(n) \leq s] = [\theta(\beta(n)) \leq \theta(s)] = [\tau(n) \leq \theta(s)] \in \mathfrak{F}(\theta(s))$ for all $s \geq 0$, that is, each $\beta(n)$ is a stopping time with respect to the family $\mathfrak{F}(\theta(t))$, $\psi(\theta(t))$ is also a step function.

Since, by the definition of the stochastic integral in [6],

$$\int_0^t \psi(s) \, dx(s) = \sum_n \psi(t \wedge \tau(n-1)) \{ x(t \wedge \tau(n)) - x(t \wedge \tau(n-1)) \}$$

and

.

$$y^{*}(t) = \int_{0}^{t} \psi(\theta(s)) \, dx(\theta(s))$$

= $\sum_{n} \psi(\theta(t \land \beta(n-1))) \{ x(\theta(t \land \beta(n)) - x(t \land \beta(n-1))) \}$
= $\sum_{n} \psi(\theta(t) \land \tau(n-1)) \{ x(\theta(t) \land \tau(n)) - x(\theta(t) \land \tau(n-1)) \} ,$

we have

$$y^*(\lambda(t)) = \int_0^t \psi(s) \, dx(s) \, .$$

In other words, $H(X, \psi)$ coincides with the stochastic integral of ψ by X if ψ is a step function.

Now let ψ be any element of $L^2(\langle X \rangle)$. Then we can choose a sequence of step function $\{\psi^n\} \subset \Psi$ such that

$$\lim_{n\to\infty} \|\psi^n - \psi\|_{<\mathbf{x}>}(t) = 0.$$

Put

$$y^n(t) = \int_0^t \psi^n(s) \, dx(s) \, .$$

Then we get $\lim E[((y(t) - y^n(t))^2] = 0$ (see [5]). On the other hand, by the uniqueness of $\langle x \rangle$ in Theorem 3, we have $\langle \Theta X \rangle(t) = \langle X \rangle(\theta(t))$ for every $t \ge 0$. Since for any $\psi \in L^2(\langle X \rangle)$

$$E\left[\left(\int_{0}^{t} \psi^{2}(\theta(s)) \, d < \Theta X > (s)\right)^{\frac{1}{2}}\right] \leq E\left[\left(\int_{0}^{t} \psi^{2}(s) \, d < X > (s)\right)^{\frac{1}{2}}\right],$$

we get
$$\lim_{n \to \infty} E[(y^{*}(t) - y^{*}(t))^{2}] = 0 \quad \text{where} \quad y^{*}(t) = \int_{0}^{t} \psi^{n}(\theta(s)) \, dx(\theta(s)) \, .$$
 As

 $\{(y^n(t)-y(t))^2, \mathfrak{F}(t)\}$ is a submartingale, we have

$$\begin{split} \mathrm{E}[(y^{*}(t) - y(\theta(t)))^{2}] &\leq \frac{1}{2} \left\{ \mathrm{E}[(y^{*}(t) - y^{*}(t))^{2}] + \mathrm{E}[(y^{*}(t) - y(\theta(t)))^{2}] \right\} \\ &\leq \frac{1}{2} \left\{ \mathrm{E}[(y^{*}(t) - y^{*}(t))^{2}] + \mathrm{E}[(y^{n}(\theta(t)) - y(\theta(t)))^{2}] \right\} \\ &\leq \frac{1}{2} \left\{ \mathrm{E}[(y^{*}(t) - y^{*}(t))^{2}] + \mathrm{E}[(y^{n}(t) - y(t))^{2}] \right\}. \end{split}$$

hence $y^*(t) = y(\theta(t))$. This implies $y(t) = y^*(\lambda(t))$. Therefore if $X = (x(t), \mathfrak{F}(t)) \in M^2$, $H(X, \psi)$ coincides with the stochastic integral of ψ by X for any $\psi \in L^2(\langle X \rangle)$.

REFERENCES

- K. ITO AND S. WATANABE, Transformation of Markov processes by multiplicative functionals, Ann. Inst. Fourier (Grenoble), 15(1965), 13-30.
- [2] K.E. DAMBIS, On the decomposition of continuous submartingales, Teor. Verojatnost.
 i Primenen, 10(1965), 438-448. See also Theor. Probability Appl., 10(1965), 401-410.
- [3] G. DENZEL, The exit characteristics of Markov processes with applications to continuous martingales in Rⁿ, Trans. Amer. Math. Soc., 129-1(1967), 111-123.
- [4] J.L. DOOB, Stochastic Processes, Wiley, New York, 1953.
- [5] H. KUNITA AND S. WATANABE, On square integrable martingales, Nagoya Math. J., 30(1967), 209-245.
- [6] M. MOTOO AND S. WATANABE, On a class of additive functionals of Markov process, J. Math. Kyoto Univ., 4(1965), 429-469.

Mathematical Institute Tôhoku University Sendai, Japan