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K. E. Dambis studied g-martingales in [2]. Local martingales, which were
defined somewhat differently from the definition of q-martingales, were
discussed by K. Ito and S. Watanabe [1]. In the present paper we shall prove
that the class of all g-martingales (resp. g-submartingales) concides with the
class of all continuous locally Lp-integrable martingales (resp. locally Lp-
integrable submartingales) for all p^l, under a general assumption.

As an application, we use this result to prove that the stochastic integral,
which was defined for square integrable martingales by M. Motoo and S.
Watanabe [6], can be extended to locally square integrable martingales.

1. In order to give a precise formulation of the theorems we need a
series of definitions.

Let (12, $, P) be the basic P-complete probability space and {$(*)} ô ί<oo a
family of Borel subfields of $ such that i$(s)c.i$(t) for s < t. We may, and
do, suppose that each $(t) contains all $-sets of P-measure zero. We write
a(b)=ah and a/\b=min(α, b).

A submartingale (relative to the family %{t)) is a real valued process

)> fKO) s u c n t n a t

(i) v * ^ 0 , E|>(*)|]<oo

and

(ϋ) V(s, t\ s rg ty x{s) ̂  E[x(t) \ %(s)] a.s.

If equality holds a.s. in (ii), the process is a martingale. If, moreover,
E[ I x{t) Ip] < oo holds, then the process is an ZZ-integrable martingale. We
shall be concerned here only with sample continuous (sub)martingales.

A stopping time with respect to the family %(t) is a positive, possibly
infinite, random variable τ(ω) such that, for every α^O, [r^a] <= $(<z). Given
a stopping time r we shall define $(T) as the system of all sets A € $ for
which Aί) {T ̂  i] € %{t) for every t^O. To avoid constant repetition of
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qualifying phrases, we assume that T, /3, τ(n), Θ(n), etc., denote stopping
times.

We shall here assume that

g(ί) = f~} %(t+h) for every t ^ 0
Λ>0

and

%{r{n)) t 3(τ) for τ{n) ] r, a.s.

We sketch several concepts from [2]. By a ^-process, we mean a non-
negative right continuous nondecreasing random process {φ(t), $(£)} possibly
assuming infinite values. By a τ-process we mean a family {3K0>T(0} where
τ(t)=τ(t, ω) is right continuous and nondecreasing in t for each fixed ω. We
call a τ-process T= [ί$(t)9r(t)} (resp. ^-process {<p(t), $(£)}) normal if it is
continuous, finite and increases strictly from 0 to 00.

For instance, let Xa = [xa(t),$(t)}, az A, where A is an arbitrary set, be
a collection of continuous random processes such that

sup{|;rα(s) - xaφ)\; 0 ^ 5 ̂  t, a z A]

is continuous (that is trivially satisfied if A is a finite set), and put

Λ = {λOO, δ(t)} where X(t) = t + sup{ | xa(s)-xa(0) \ 0 ^ s ^ ί, a € A} ,

then λ(£) is g(i)-measurable, finite and increases strictly from 0 to 00. Thus
Λ is a normal ^-process. We call the τ-process Θ = {$00, θ(t)} where
θ(t) = inf {u X(u) > ί}, the stopping process for the processes Xa or the brake
of the processes Xa. By the definition of Λ, θ(t) is continuous, finite and
strictly increasing from 0 to 00. Moreover, from the continuity of Λ, we
have X(θ(t)) = t and so for each t ^ 0,

V* ^ 0, [θ(t) rg 5] = [t^ λ(s)] € $(5) .

Thus each θ(t) is a stopping time with respect to the family ί$(t). In other
words, Θ= {g(V), 0(ί)} is a normal τ-process. As [X(t) ̂ s] = [t^ θ(s)] ζ $((9(5)),
{ι$(θ(t))9 X(t)} is a normal τ-process.

Let X={x(t),%(t)} be a process that is continuous from the right and let
T={ι$(t),τ(t)} be a τ-process such that x(oo) = \imx(t) is defined for all ω for

£-•00

which τ(ί, ω) = oo for some t, 0 5g ί < 00.
Put ΓX={α:(τ(ί)),gί(τ(ή)}. Then we say that the process TX is obtained

from X by means of a random time change. If T is normal, then the random
time change will be called normal.
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DEFINITION 1. We call <7-(sub)martingales those which are obtained by
normal random time changes from continuous (sub)martingales.

DEFINITION 2. X = [x(t), $(*)} is called a locally Lp-integrable (sub>
martingale if there exists a sequence τ(n) of stopping times with respect to the
family $(£) with P[τ(n) < oo, r(n) \ oo] = 1 such that each random process
{x(t/\τ(n)),%(tf\τ(n))} is an Z/-integrable (sub)martingale.

We shall denote by (SM)P (resp. Mp, (SM)foc, Mfoc, QSM and QM) the
family of all continuous Lp-integrable submartingales (resp. Lp-integrable
martingales, locally Z/-integrable submartingales, locally Z/ integrable mar-
tingales, q-submartingales and g-martingales).

2. In what follows, we may, and do, suppose that ;r(0)=0.

LEMMA 1. Let X={x(t),^(t)} be a right continuous submartingale and
T= {$(*), τ(t)} a T-process. Then :

(1) // X is uniformly integrable or there exists a "constant process97 ct

such that τ(t) ^ ct < oo? then TX is also a submartingale. If, moreover, X
is a martingale, then TX is a martingale.

(2) If, for any a € [0, oo), the random variable x+(t Λ τ(#)) is uniformly
integrable with respect to t, then TX is a submartingale. If x(t/\τ(a)) is
uniformly integrable and X is a martingale, then TX is a martingale.

Part (1) of Lemma 1 is proved in [4] (see Theorem 11.8, Chapter 7) and
for the proof of part (2), see Theorems 4.1. and 4.1.s of Chapter 7 in [4].

LEMMA 2. For any random process X={x(t),($(t)} z (SMym (resp. Mloc\
ΘX, where Θ is the brake of X, belongs to (SM)P

OC (resp. M&) for any

PROOF. If X = {x(i), $(*)} <= (SM)\Ocy there exists a sequence β(ri) of
stopping times with respect to the family $(t) such that

P&8(*)<«>,0(n)too]==l and {x(tAβ(n)),%(tΛβ(n))} € (SM)1.

Put a(n) = inf{£ ;θ(t)> I3(n)}. It follows at once from the normality of Θ
that V[a(n) < oo, a(n) \ oo] = 1 and [a(n) ^ s} = {β(n) ^ θ(s)} € %(ji(s)) for
any 5 ^ 0 . Therefore each cc(ri) is a stopping time with respect to the family
%(θ(t)). By the definition of (SM)foc, we have only to give the proof of the
fact {x(θ(tha(n))),%(θ(tAa(n)))} z (SM)9. Since t = X(θ(t)) = θ(t) +
0 5g u ίg θ(t)} from the definitions of λ(ί) and θ(t), we see
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0 ^ θ(t) ̂  t and sup{|:r(«)| 0 ^ u ^ θ(t)} ^ t .

On the other hand, since

x(θ(tA*(n))) = x(θ(t)AΘ(a(n))) = x(θ(t)Aβ(n)) = *({0(f)Λ/β(ιi)} Λfln))

and

[θ(t)Aβ(n) ^ 5} = {θ(t)Aβ(n) ^ 5Λ/S(n)} € %(sΛβ(n)) for all 5 ̂  0 ,

that is, θ(t)Aβ(n) is a stopping time with respect to the family £XtΛj3(τz)), in
view of Lemma 1 (1), each {*(0(*A<»))),?K0(*Aa(*O))} belongs to (SM)P.
Hence ΘX belongs to (SM)foc. This completes the proof.

LEMMA 3. For any random process X= [x(t),%(t)} e QSM (resp. QM),
ΘX, where Θ is the brake of X, belongs to (SM)P (resp. Mp) for any p^ 1.

PROOF. From the definition of QSMy X = T 7 , where Y={y(t)9®(t)} is
a continuous submartingale and T={G&(t),τ(t)} is a normal τ-process. As
sup{ Ix(u) I 0 ^ u fg ^(α)} ^ Λ for any α ̂  0, we have

sup{ \y(tAτ(θ(a))) I 0 ^ t < oo] ^ α .

This implies the uniform integrability of {y(t A τ(θ(a)))} 0^<ββ, hence by
Lemma 1(2) ΘX = [Θ7^Y belongs to (5M)P. Thus the lemma is proved.
(This proof is due to K. E. Dambis [2]).

THEOREM 1. For any / > ^ 1 , (SM)foc (resp. M&c) coincides with QSM
(resp. QM).

PROOF. Let X={x(i),%(t)} be any random process of QSM and Θ be
the brake of X. Lemma 3 implies ΘX<= (SM)P for any p^ 1.

Put Xn = {x(t A θ(n)\ %(t A θ(n))}. Then clearly

x(tAΘ(n)) = x(θ(X(t))AΘ(n)) = x(θ(\(t)An))

and so each Xn € (SM)P by Lemma 1(1). Hence X €
Conversely X={j:(ί),3ί(ί)} is a locally ZZ-integrable submartingale, then

θ X is a locally LMntegrable submartingale by Lemma 2, that is, there exists
a sequence τ(n) of stopping times with respect to the family %(θ(t)), with
V[τ(n) < oo, τ(n) t oo] = 1 such that { ^ Λ τ W ) ) J ( ί ( ί Λ τ W ) ) } belongs to
(SM)1 for each TZ. By the assumption on g(f), as 5(0(SΛT(Λ))) t S(0(s)), f o r

any A ^ g ^ ^ ) ) there exists An € tS(θ(s/\τ(n))) such that P(AΔAn) converges
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to 0. Then for each n,

(xψ<isAτ(n))) dP r g [x(θ(tAτ(n))) dP, s ^ t .
JAn JΛn

In view of the Lebesgue bounded convergence theorem, we have

ϊx(θ(s))dP^ ϊx(θ(t))dP.
JA JΛ

Hence ΘX belongs to (SM)1. Therefore as X=Λ[ΘX], X is a g-submartingale.
This completes the proof.

COROLLARY. Let X = {x(t), %(t)} be a continuous local submartingale.
Then XvεΆx(ί) exists and is finite almost surely where limsup:r(£) < oo.

t-*OQ ί->OO

PROOF. It is proved in [4] (see Theorem 3.1.s(iv) of Chapter 11) when
X is a continuous submartingale. Then the proof is obvious from the fact
(SM)lc = QSM.

3. Next we shall show that the equivalence of g-martingales and locally
Lp-integrable martingales is also true in Rn.

DEFINITION 3. We call a process X = {x(t\ %(t)} in Rn with {(hoχ)(t), %(t)}
a continuous martingale, for each spherical harmonic polynomial h in Rn, a
continuous martingale.

DEFINITION 4. We call ^-martingales in Rn those processes which are
obtained by normal random time changes from continuous martingales in Rn.

DEFINITION 5. A process X = [x(t\ %(t)} in Rn is called a locally Lp-
integrable martingales in Rn if AoX= {(hoχ)(t)9 $(t)} is a locally Lp-integrable
martingale for each spherical harmonic polynomial h in Rn.

We shall denote by Mp(Rn) (resp. M^R71) and QM(Rn)) the family of all
continuous Lp-integrable martingales (resp. locally ZAintegrable martingales
and g-martingales) in Rn.

THEOREM 2. For any p^l, M&cίR71) coincides with QM(Rn).

PROOF. If X = {x(t\ 3?(ί)} e QM{Rn\ then X=TY, where Y = {y(t\ ©(*)}
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is a continuous martingale in Rn and T = {©(£)> τ(ί)} is a normal τ-process.
Let Λ be any spherical harmonic polynomial in Rn. Put hoX=z{(hoχ)(t)9

$(t)}. Then hoX = T[AoY]. As ΛoY is a continuous martingale, hoX is a
^-martingale. Theorem 1 implies that ΛoX is a locally Lp-integrable martingale.
Hence X = {x(t\ %(t)} € M&(#n) for any />^ 1.

Conversely if X = {*(*)> SKO1 * Mfoc(R
n), hoX= {{hoχ)(t\%(t)} is a locally

Lp-integrable martingale for each spherical harmonic polynomial h in Rn.
There exists a sequence β(ri) of stopping times with respect to the family ^(t)
such that P[/900 < oo, β(n) T °°] = 1 holds and {(hoχ)(tAβ(n)),%(tM(n))} is
a martingale for each n. This sequence [β(n)} may depend on A. Let Θ be
the brake of X. Then {(hoχ)(θ(t))9 ι$(θ(t))} is a locally Lp-integrable martingale
in view of Lemma 2. Therefore there exists a sequence a(n) of stopping times
with respect to the family %{θ{t)) such that {(hoχ)(θ(t/\a(n)))^φ(tA^(n)))}
is a martingale with Y[a{n) < oo, cί(n) \ oo] = 1.

By assumption, as f?(0(5Λτ(n))) { S(0(s)), f o r a n ^ Az%(θ(s)) there exists
An€^(θ(s/\τ(n))) such that P(AΔAn) converges to 0. Then for each n,

f(hoχ)(θ(s Λ a(n)))d? = [ (hoχ)(θ(t Λ cί(n))) d? , 5 ̂  ί.

As a harmonic function is bounded on every compact set, by the Lebesgue
bounded convergence theorem we have

This implies ho<&XzM\ Hence ΘX <= M\Rn). As X=Λ[ΘX], X belongs to
QM(Rn). This completes the proof.

4. We shall now apply the result obtained above to a generalization of
the stochastic integral defined in [6].

Let N+ be the set of all natural increasing processes A(t) defined for
t € [0, oo) and write

i\Γ= {A(t) = A\t) - A\t) A'(0 € iV+, i = 1,2} .

Let Ψ be the class of all (t, ω)-measurable real-valued processes ^{t, ω)
that are ^(^-measurable for each stopping time r with respect to the
family $(t) and let Ψrc be the class of all bounded right continuous process
having left hand limits. We define for <p$N+ semi-norms || \\φ(t) over Ψ by
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and put Li(<p)=ΨΓ['Ψrc, where Ψrc is the closure of Ψrc with respect to
semi-norms || \\Ψ(t). Clearly \\γ\\φ(s) ^ ||ψ|U(ί) for s < * .

First we recall the followings.

THEOREM 3. For X = {Λ{0>3(*)}> Y = {y(f)>f$(t)} $M\ there exists a
unique {up to equivalence) < X , Y> z N such that for each t > s £ [0, oo)

Έ[(x(t) - φ))(y(t)-y(s))\$(s)] = E[<X,

THEOREM 4. For every X = {.r(0> 3(0} e M2 and ψ <= L 2 ( < X > )
< X > = < X , X > , ί/î r̂  ^/5ί5 α unique Y = [y(t), $(t)} z M2 satisfying

= fa
Jo

<Y, Z>(t) = tfs)d<X, Z>(s), P-α.5. for any Z = {z(t), g(ί)} € M2.

For the proof of these two theorems, see [5] or [6]. In M. Motoo and
S.Watanabe [4], Y of the above Theorem 4 is called the stochastic integral of
ψ by X and is denoted by

y(t)=

Now let X = {x(t\ %{t))} be any random process of M&. In view of
Lemma 4, ΘX = {x(θ{t)\ %iβ{t))} belongs to M 2 for X = {x{t\ %{t)} <= M&.
It is easy to see that ψ{β(t)) is (£, ω)-measurable. As {££(0(0), λ(ί)} is a
normal τ-process and \θ(j) ^ 5] = [T ^ λ(5)] holds for any stopping time T
with respect to the family 3(0(0), we see [0(τ) ̂  s] * %(θ(λ(s))) = %(s), that is,
θ(τ) is a stopping time with respect to the family $(£).

Therefore ψ(0(τ)) is 9;(^(τ))-measurable. Thus, from Theorem 4, there
exists a unique Y*={y*(t),%(θ(t))} z M2 such that

<Y*yZ>(t) = [ψ(θ(s))d<®X,Z>(s\ P-a.s. for any Z= {z(t)9 %(θ(t))} € M 2 .
Jo

Put ί/(X,t)=Λy^={^(λ(ί)X3 ί (0}. Theorem 1 implies
This mapping H coincides with the stochastic integral on M 2 . In fact, let
X = [x(t),ι!f(t)} be an ZΛintegrable martingale. First we consider the case that
ψ(0 is a step function, that is, there exists an increasing sequence {τ(ri)}
of stopping times with respect to the family 3(0 such that τ(ή) | °° and
ψ(s)=ψ(τ(n—l)) if τ(n —1)^5 < τ(n). Then there exists an increasing sequence
β(n) such that θ(β(n))=τ(n) and ψ(θ(s))=φ(θ(n-ΐ))) if β(n-l) ^ s</3(n). As
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[β(n) ^ 5] = [θ(β(n)) ̂  θ(s)] = [τ(n) ̂  θ(s)] € %(θ(s)) for all s ^ 0, that is, each
β(n) is a stopping time with respect to the family %(θ{t)\ ^(β(f)) is also a
step function.

Since, by the definition of the stochastic integral in [6],

f(s) dx{s) = £ ψ{tAr(n-l)){x(tAτ(n)) - x(tAτ(n-l))}

and

y*(t)= fψ(θ(s))dx(θ(s))

= Σf(θ(tΛβ(n-l))){x(θ(tAβ(n)) -

we have

In other words, ί/(X, ψ) coincides with the stochastic integral of ψ by X if ψ
is a step function.

Now let ψ be any element of L 2 ( < X > ) . Then we can choose a sequence
of step function {ψn} c Ψ such that

Put

Then we get lim E[((;y(ί) - yn(t))2] = 0 (see [5]). On the other hand, by the
uniqueness of < α : > in Theorem 3, we have <ΘX>(£) = <X>(0(£)) for every
t ^ 0. Since for any ψ <= L\<X>)

^] ̂  E [(j

we get limE[(^(ί)-3;*n(ί))2] = 0 where / n ( ί ) = ί ψ W ) ώ(e(5)). As
w-°° Jo
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{{yn(t)—y(t)Y>ΰ(t)} 1S a submartingale, we have

+ E[(y*\t)-y(θ{t)))%]}

+ n(yn{θ(t))-y(θ(t)))2]}

hence y*(t)=y(θ(t)). This implies y(t)=y*(Λ(t)). Therefore if X = (x(t),
€ M2, H(X, ψ) coincides with the stochastic integral of ψ by X for any
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