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ON THE EQUIVALENCE OF ¢-MARTINGALES AND
LOCALLY L*-INTEGRABLE MARTINGALES
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K. E. Dambis studied g-martingales in [2]. Local martingales, which were
defined somewhat differently from the definition of g¢-martingales, were
discussed by K. Ito and S. Watanabe [1]. In the present paper we shall prove
that the class of all g-martingales (resp. g-submartingales) concides with the
class of all continuous locally LP?-integrable martingales (resp. locally L?*-
integrable submartingales) for all p= 1, under a general assumption.

As an application, we use this result to prove that the stochastic integral,
which was defined for square integrable martingales by M. Motoo and S.
Watanabe [6], can be extended to locally square integrable martingales.

1. In order to give a precise formulation of the theorems we need a
series of definitions.

Let (Q,%,P) be the basic P-complete probability space and {&F(£)}o<t< @
family of Borel subfields of & such that F(s)cF(E) for s <t We may, and
do, suppose that each F(¢) contains all F-sets of P-measure zero. We write
a(b)=a, and a\b=min(a, b).

A submartingale (relative to the family (¢)) is a real valued process

{x(2), F()} such that

(i) V6 =0, E[|z(#)|] < o0
and
(ii) Y(s,2), s=¢, 2(s) = E[z(®)|F(s)] as.

If equality holds as. in (ii), the process is a martingale. If, moreover,
E[|x(¢)|?] < o holds, then the process is an L?-integrable martingale. We
shall be concerned here only with sample continuous (sub)martingales.

A stopping time with respect to the family F(£) is a positive, possibly
infinite, random variable 7(w) such that, for every a=0, {r=a} € §(a). Given
a stopping time = we shall define §(v) as the system of all sets AeF for
which AN{r=1t} &) for every £=0. To avoid constant repetition of
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qualifying phrases, we assume that =, 8, 7(n), B(n), etc., denote stopping
times.
We shall here assume that

3@ = [\ S@+h) for every t=0

h>0

and

F(n) 1 F(=) for 7(n) 1 7, as.

We sketch several concepts from [2]. By a ¢@-process, we mean a non-
negative right continuous nondecreasing random process {@(z), F(¢)} possibly
assuming infinite values. By a 7-process we mean a family {§(#), 7(¢)} where
7(¢)=7(¢, ®) is right continuous and nondecreasing in ¢ for each fixed 0. We
call a 7process T = {§(&),7(¢)} (resp. @-process {@(z), F()}) normal if it is
continuous, finite and increases strictly from 0 to oo.

For instance, let X*={x%®%), &)}, ac A, where A is an arbitrary set, be
a collection of continuous random processes such that

sup{|z(s) — z°(0)|; 0=s=t¢, acA}
is continuous (that is trivially satisfied if A is a finite set), and put
A = {A@), F)} where M) = ¢ + sup{|x*(s)—x*(0)]; 0=s5=1¢, ac A},

then A(Z) is J(¢)-measurable, finite and increases strictly from O to co. Thus
A is a normal ¢-process. We call the 7-process ® = {F(),0()} where
6(t) = inf{u; Mw) > t}, the stopping process for the processes X* or the brake
of the processes X°. By the definition of A, 6(f) is continuous, finite and
strictly increasing from 0 to oo. Moreover, from the continuity of A, we
have A6(2))=¢ and so for each ¢t =0,

Vs=0, [0@) =s] =t = Ns)] € §(s) .

Thus each 6(¢) is a stopping time with respect to the family §(#). In other
words, ®={J(#), (¢)} is a normal 7-process. As [M2) = s]=[t = 6(s)] € F(6(s)),
{§6@)),M(2)} is a normal T-process.

Let X={x(t), ()} be a process that is continuous from the right and let
T={Z(), ()} be a T-process such that x(c><>)=ltim x(2) is defined for all o for
which 7(¢, ®)=cc for some ¢, 0 <t < oo. -

Put TX = {x(7(2)), F(+())}. Then we say that the process TX is obtained
from X by means of a random time change. If T is normal, then the random
time change will be called normal.
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DEFINITION 1. We call ¢g-(sub)martingales those which are obtained by
normal random time changes from continuous (sub)martingales.

DEFINITION 2. X = {x(¢),F(®)} is called a locally L*-integrable (sub)-
martingale if there exists a sequence 7(n) of stopping times with respect to the
family &) with Plr(n) < oo, 7(n) 1 ] =1 such that each random process
{2t N\T(n)), F(ENAT(n))} is an LP-integrable (sub)martingale.

We shall denote by (SM)? (resp. M?, (SM )%, M%,, QSM and QM) the
family of all continuous LP’-integrable submartingales (resp. LP-integrable
martingales, locally L*-integrable submartingales, locally L?-integrable mar-
tingales, g-submartingales and ¢-martingales).

2. In what follows, we may, and do, suppose that x(0)=0.

LEMMA 1. Let X={x(), (&)} be a right continuous submartingale and
T={F@), )} a vprocess. Then:

Q) If X is uniformly integrable or there exists a “constant process” c,
such that v(t) = ¢, < oo, then TX is also a submartingale. If, moreover, X
is a martingale, then TX is a martingale.

(2) If, for any a<cl0, ), the random variable x*(t \v(a)) is uniformly
integrable with respect to t, then TX is a submartingale. If z(tA\7(a)) is
uniformly integrable and X is a martingale, then TX is a martingale.

Part (1) of Lemma 1 is proved in [4] (see Theorem 11.8, Chapter 7) and
for the proof of part (2), see Theorems 4.1. and 4.1.s of Chapter 7 in [4].

LEMMA 2. For any random process X = {z(t),F(t)} € (SM ). (resp. Miy.),
B®X, where ® is the brake of X, belongs to (SM)i. (resp. MB,) for any
p=1

PrROOF. I X = {z(t), &)} € (SM)k., there exists a sequence B(n) of
stopping times with respect to the family §(¢) such that

P[B(n) < o,B(n) 1 2] =1 and {z(EAB®)),FEABM)}  (SM)'.

Put a(n) = inf{z;0() > B()}. It follows at once from the normality of ®
that Pla(n) < oo,a(n)1 o] =1 and {ar) =75} = {B(n) =< 6(s)} < F(6(s)) for
any s=0. Therefore each a(n) is a stopping time with respect to the family
F(6()). By the definition of (SM)E., we have only to give the proof of the
fact {z(0(tA\a(n)), FOENa(n)} € (SM)”. Since t =N0(2))=0(¢) + sup{|x(x)|;
0=u=6(t)} from the definitions of M¢) and 6(¢), we see
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0=6()=t and sup{lz@)|;0=u=00)}=t.
On the other hand, since

z2(6(¢t Na(n))) = 2(6() Ab6(a(n))) = z(0() \B(n)) = z({6(t) \B(@)} AB(n))
and

{EONB(n) = s} = {0ENB(m) = sABn)} € F(sAB(m)) for all s=0,

that is, 6(£) AB(n) is a stopping time with respect to the family F(tAB(n)), in
view of Lemma 1 (1), each {x(6(¢Aa(n))),FOEAa(®))} belongs to (SM)e.
Hence ®X belongs to (SM)%.. This completes the proof.

LEMMA 3. For any random process X={x(t),F&)} € QSM (resp. QM),
®X, where O is the brake of X, belongs to (SM)? (resp. M?) for any p=1.

PROOF. From the definition of QSM, X=TY, where Y={y(¢),®()} is
a continuous submartingale and 7= {®(¢),7(¢)} is a normal =-process. As
sup{|xz(w)]; 0 =u = 6(a)} = a for any a =0, we have

sup{|yENTO@))]; 0=t < oo} =a.

This implies the uniform integrability of {y(z A 7(6(a)))}est<-, hence by
Lemma 1(2) ®X =[OT1Y belongs to (SM)?. Thus the lemma is proved.
(This proof is due to K. E. Dambis [2]).

THEOREM 1. For any p=1, (SM),. (resp. Mp,) coincides with QSM
(resp. QM).

PROOF. Let X={x(¢),F()} be any random process of QSM and ® be
the brake of X. Lemma 3 implies ®X < (SM)? for any p=1.
Put X"={x(t \6(n)), FEtNO())}. Then clearly

z(tNO(m) = 2(O(M@) NO(n)) = 2(6(M(E) An))

and so each X" ¢ (SM)? by Lemma 1(1). Hence X € (SM)5,..

Conversely X ={x(t),F({)} is a locally L*-integrable submartingale, then
0®X is a locally L*-integrable submartingale by Lemma 2, that is, there exists
a sequence 7(n) of stopping times with respect to the family F(6(¢)), with
Plr(n) < o0, 7(n) } o] =1 such that {x(6( A (n))), F(O(A7(n))} belongs to
(SM)! for each n. By the assumption on F(), as FO(s At(n))) T F(6(s)), for
any A e J0(s)) there exists A" e FO(sAv(n))) such that P(AAA") converges
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to 0. Then for each =,
f 2(0(s Ar(n)) dP = f HOEAT(n) dP, s=t.

In view of the Lebesgue bounded convergence theorem, we have

f 2(6(s)) dP = f 2(0(2)) dP .

4

Hehce ®X belongs to (SM)!. Therefore as X=A[0X], X is a g-submartingale.
This completes the proof.

COROLLARY. Let X = {x(¢), &)} be a continuous local submartingale.
Then }im x(t) exists and is finite almost surely where lir? sup z(2) < oo.

PROOF. It is proved in [4] (see Theorem 3.1.s (iv) of Chapter 11) when
X is a continuous submartingale. Then the proof is obvious from the fact

(SM)io: = QSM.

3. Next we shall show that the equivalence of g-martingales and locally
Lr-integrable martingales is also true in R™.

DEFINITION 3. We call a process X = {z(2), ()} in R* with {(hox)(t), F(#)}
a continuous martingale, for each spherical harmonic polynomial % in R”, a
continuous martingale.

DEFINITION 4. We call g-martingales in R™ those processes which are
obtained by normal random time changes from continuous martingales in R™.

DEFINITION 5. A process X = {x(¢), &F#)} in R™ is called a locally L?*-
integrable martingales in R® if ho X = {(hox)(2),F()} is a locally L*-integrable
martingale for each spherical harmonic polynomial A in R™.

We shall denote by M?(R™) (resp. MB(R™ and QM(R™)) the family of all
continuous L?-integrable martingales (resp. locally L*-integrable martingales
and g-martingales) in R".

THEOREM 2. For any p=1, Mi(R") coincides with QM(R").

PROOF. If X={x(z),3(£)} ¢ QM(R"), then X=TY, where Y = {y(2), ()}



LOCALLY L»INTEGRABLE MARTINGALES 351

is a continuous martingale in R* and 7= {8(),7(¢)} is a normal 7-process.

Let 2 be any spherical harmonic polynomial in R*. Put ho X = {(hox)(t),
F(@®)}. Then hoX =T[hoY]. As hoY is a continuous martingale, ho X is a
g-martingale. Theorem 1 implies that 20X is a locally L?-integrable martingale.
Hence X = {x(¢), ()} € Ma(R™) for any p=1.

Conversely if X={x(t), (&)} € Mp(R™), hoX = {(hox)(t),F(t)} is a locally
L*-integrable martingale for each spherical harmonic polynomial 2 iz R™.
There exists a sequence B(n) of stopping times with respect to the family F(z)
such that P[B(n) < o0,8(n)1 o] =1 holds and {(hox)(t AB(n)), FEABn))} is
a martingale for each n. This sequence {8(n)} may depend on h. Let ® be
the brake of X. Then {(hox)(6(2)), F(6(2))} is a locally L?-integrable martingale
in view of Lemma 2. Therefore there exists a sequence a(n) of stopping times
with respect to the family F(6(¢)) such that {(hox)(@(tAa(n))), FOEAa(n)))}
is a martingale with Pla(n) < oo, a(n) 1 ] = 1.

By assumption, as FO(sA7(n))) 1 FO(s)), for any A< F(0(s)) there exists
A" ¢ F(O(s A(n))) such that P(AAA™) converges to 0. Then for each n,

(hoz)(@(s At(n)))dP = f (hox)(B(E Na(n)) dP, s=¢.

As a harmonic function is bounded on every compact set, by the Lebesgue
bounded convergence theorem we have

f (hoz)(8(s)) dP = f (hox)(0(£)) dP.

This implies ho®X € M'. Hence ®X ¢ M'(R"). As X=A[BX], X belongs to
QM(R™. This completes the proof.

4. We shall now apply the result obtained above to a generalization of
the stochastic integral defined in [6].

Let N* be the set of all natural increasing processes A(Z) defined for
t e [0, ) and write

N={AQ@) = A'(¢) — A%2); A'(t)e N*, i =1,2}.
Let ¥ be the class of all (¢ w)-measurable real-valued processes Y(¢, )
that are @(7)-measurable for each stopping time + with respect to the

family &(¢) and let ¥,, be the class of all bounded right continuous process
having left hand limits. We define for @ € N* semi-norms | |[4(¢) over ¥ by

1. = E[( f VO dp©) |, ve¥
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and put Ly(@)=¥NV,, where ¥, is the closure of ¥, with respect to
semi-norms | [|5(¢). Clearly |[yr[,(s) = [¥[,(#) for s <z.
First we recall the followings.

THEOREM 3. For X = {x(t),F@)}, Y = {y&), F()} € M2, there exists a
unique (up to equivalence) <X,Y> e N such that for each t > s < [0, o)

E[(x(?) — (D& —y6))IFG)] = E[<X, Y >() — <X, Y>()|F$)] -

THEOREM 4. For every X = {z(t), §(t)} ¢ M? and ¥ < LA(<X>) where
<X>=<X, X>, there exists a unique Y ={y(t), 3()} € M? satisfying

<Y,Z>@) = f:p-(s)d<X, Z>(s), P-as. for any Z=1{z(t), (&)} ¢ M2

For the proof of these two theorems, see [5] or [6]. In M.Motoo and
S. Watanabe [4], Y of the above Theorem 4 is called the stochastic integral of
¥ by X and is denoted by

50 = [ da(s).

Now let X = {z(¢),3(2))} be any random process of M2, In view of
Lemma 4, 8X = {x(0(¢)), §(0(¢))} belongs to M? for X = {z(t), ()} € M2..
It is easy to see that y(6(z)) is (¢, w)-measurable. As {{(6(2), M2)} is a
normal 7-process and [6(7) = s] = [r = A(s)] holds for any stopping time =
with respect to the family J(6(¢)), we see [6(7) = 5] € F(O(M(s))) = F(s), that is,
6(r) is a stopping time with respect to the family (2).

Therefore (6(7)) is F(6(7))-measurable. Thus, from Theorem 4, there
exists a unique Y*= {y*(¢), F(6(2))} € M? such that

<Y* Z>(t) = fl Y(0(s)) d<B®X, Z>(s), P-as. for any Z={=(2), F(0())} e M2.

Put HX, ¢)=AY*={y*(\(¢)), F()}. Theorem 1 implies AY* ¢ M3, =QM.
This mapping H coincides with the stochastic integral on M?2. In fact, let
X={x(z), ()} be an L’-integrable martingale. First we consider the case that
Y(¢) is a step function, that is, there exists an increasing sequence {v(n)}
of stopping times with respect to the family () such that 7(%)1 oo and
V()= (m(n—1)) if H(n—1)=<s < 7(n). Then there exists an increasing sequence
B(n) such that 6(8(n))=7(n) and Y (6(s))=v(0(n—1))) if Bn—1)=<s<Bn). As
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[B() < 5] = [6(B(n)) =< 6(s)] = [v(n) =< 0(s)] « F(O(s)) for all s=0, that is, each
B(n) is a stopping time with respect to the family §(6(2)), ¥(6(¢)) is also a
step function.

Since, by the definition of the stochastic integral in [6],

f Y(s) dx(s) = 20 P Ar(n—1) {x(t Ar(n)) — 2t Ar(n—1))}

and
0= [ (65 d2(6(5)
= nZ\If(ﬁ(t/\B(n— 1)) {20 \B®n)) — 2z ABn—1)))}
= 3O Arn—1) {x(0(¢) A7) — 6B Ar(n—1))} ,
we have '

) = [Hs) dals).

In other words, H(X, ) coincides with the stochastic integral of 4 by X if
is a step function.
Now let ¢ be any element of L*<X>). Then we can choose a sequence
of step function {4"} C¥ such that
}ll_{g " —Yll<x-() =0.
Put

yE) = f Y(s) dx(s) .

Then we get lim E[((¥(2) — ¥"(#))?] =0 (see [5]). On the other hand, by the
uniqueness of <x> in Theorem 3, we have <®X>(t)=<X>(6(2)) for every
t=0. Since for any e L(<X>)

1
2

E[( j: () d<®X>(s))ﬂ§ E[( j: 3(s) d<X>(s)) ]

we get lim E[(y*() — (@)1 =0 where y*'(¢)= f YH(O(s)) dz(0(s)) . As
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{(y"(t)—y(2))%, &(¢)} is a submartingale, we have

E[(y*(&) —y(0@®))] = —;— {E[*(®)—y*' ()] + E[(y*" (&) —x(6(2))'1}
= —é— {E[(r*(®)—y*"(©)*] + El(y™(6(E)— (6]

= - (IO -y~ @O)] + B O -yO)] -

hence y*(t)=y(6(¢)). This implies y(£)=y*(A\(£)). Therefore if X = (x(¢), F(2))
e M?, H(X,+) coincides with the stochastic integral of 4 by X for any
e LA(<X>).
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