Tόhoku Math. Journ. 20(1968), 346-354.

ON THE EQUIVALENCE OF *q* **MARTINGALES AND LOCALLY L^p-INTEGRABLE MARTINGALES**

NORIHIKO KAZAMAKI

(Received February 8, 1968)

K. E. Dambis studied q -martingales in [2]. Local martingales, which were defined somewhat differently from the definition of *q-*martingales, were discussed by K. Ito and S. Watanabe [1]. In the present paper we shall prove that the class of all q -martingales (resp. q -submartingales) concides with the class of all continuous locally L^p -integrable martingales (resp. locally L^p integrable submartingales) for all $p \ge 1$, under a general assumption.

As an application, we use this result to prove that the stochastic integral, which was defined for square integrable martingales by M. Motoo and S. Watanabe [6], can be extended to locally square integrable martingales.

1. In order to give a precise formulation of the theorems we need a series of definitions.

Let $(\Omega, \mathfrak{F}, P)$ be the basic P-complete probability space and ${\mathfrak{F}(t)}_{0 \leq t < \infty}$ a family of Borel subfields of \mathfrak{F} such that $\mathfrak{F}(s) \subset \mathfrak{F}(t)$ for $s < t$. We may, and do, suppose that each $\mathfrak{F}(t)$ contains all \mathfrak{F} -sets of P-measure zero. We write $a(b)=a_b$ and $a \wedge b = \min(a, b)$.

A submartingale (relative to the family $\mathfrak{F}(t)$) is a real valued process $\mathcal{F}(t)$ such that

(i)
$$
\forall t \geq 0, E[|x(t)|] < \infty
$$

and

(ii)
$$
\forall (s, t), s \leq t, x(s) \leq E[x(t)|\mathfrak{F}(s)] \quad \text{a.s.}
$$

If equality holds a.s. in (ii), the process is a martingale. If, moreover, $\mathbb{E}[|x(t)|^p] < \infty$ holds, then the process is an L^p -integrable martingale. We shall be concerned here only with sample continuous (sub)martingales.

A stopping time with respect to the family $\mathfrak{F}(t)$ is a positive, possibly infinite, random variable $\tau(\omega)$ such that, for every $a \ge 0$, $\{\tau \le a\} \in \mathfrak{F}(a)$. Given a stopping time τ we shall define $\mathfrak{F}(\tau)$ as the system of all sets $A \in \mathfrak{F}$ for which $A \cap {\tau \leq t} \in {\mathfrak{F}}(t)$ for every $t \geq 0$. To avoid constant repetition of qualifying phrases, we assume that τ , β , $\tau(n)$, $\beta(n)$, etc., denote stopping times.

We shall here assume that

$$
\mathfrak{F}(t) = \bigcap_{h>0} \mathfrak{F}(t+h) \quad \text{for every } t \ge 0
$$

and

$$
\mathfrak{F}(\tau(n))\uparrow \mathfrak{F}(\tau) \quad \text{for} \quad \tau(n)\uparrow \tau, \quad \text{a.s.}
$$

We sketch several concepts from [2]. By a φ -process, we mean a nonnegative right continuous nondecreasing random process $\{\varphi(t), \mathfrak{F}(t)\}$ possibly assuming infinite values. By a τ -process we mean a family $\{\mathfrak{F}(t), \tau(t)\}$ where $\tau(t)=\tau(t, \omega)$ is right continuous and nondecreasing in t for each fixed ω . We call a τ -process $T = {\mathfrak{F}(t), \tau(t)}$ (resp. φ -process ${\varphi(t), \mathfrak{F}(t)}$) normal if it is continuous, finite and increases strictly from 0 to ∞ .

For instance, let $X^a = \{x^a(t), \mathfrak{F}(t)\}\$, $a \in A$, where A is an arbitrary set, be a collection of continuous random processes such that

$$
\sup\{|x^a(s)-x^a(0)|;\ 0\leq s\leq t,\ a\in A\}
$$

is continuous (that is trivially satisfied if A is a finite set), and put

$$
\Lambda = \{\lambda(t), \mathfrak{F}(t)\}\ \text{where}\ \lambda(t) = t + \sup\{|x^a(s) - \pmb{x}^a(0)|\,;\ 0 \leq s \leq t,\ a \in A\}\,,
$$

then $\lambda(t)$ is $\mathfrak{F}(t)$ -measurable, finite and increases strictly from 0 to ∞ . Thus Λ is a normal φ -process. We call the *τ*-process $\Theta = {\mathfrak{F}(t), \theta(t)}$ where $\theta(t) = \inf\{u : \lambda(u) > t\}$, the stopping process for the processes X^a or the brake of the processes X^a . By the definition of Λ , $\theta(t)$ is continuous, finite and strictly increasing from 0 to ∞ . Moreover, from the continuity of Λ, we have $\lambda(\theta(t)) = t$ and so for each $t \geq 0$,

$$
\forall s \geq 0, \ [\theta(t) \leq s] = [t \leq \lambda(s)] \in \mathfrak{F}(s).
$$

Thus each $\theta(t)$ is a stopping time with respect to the family $\mathfrak{F}(t)$. In other words, $\Theta = {\mathfrak{F}(t), \theta(t)}$ is a normal τ -process. As $[\lambda(t) \leq s] = [t \leq \theta(s)] \in {\mathfrak{F}(\theta(s))}$, ${\mathfrak{F}(\theta(t))}, \lambda(t)$ is a normal τ -process.

Let $X = \{x(t), \mathfrak{F}(t)\}\)$ be a process that is continuous from the right and let $T=[\mathfrak{F}(t),\tau(t)]$ be a τ -process such that $x(\infty) = \lim x(t)$ is defined for all ω for **£-•00** which $\tau(t, \omega) = \infty$ for some $t, 0 \le t < \infty$.

Put $TX = \{x(\tau(t)), \mathfrak{F}(\tau(t))\}$. Then we say that the process TX is obtained from *X* by means of a random time change. If *T* is normal, then the random time change will be called normal.

DEFINITION 1. We call q -(sub)martingales those which are obtained by normal random time changes from continuous (sub)martingales.

DEFINITION 2. $X = \{x(t), \mathfrak{F}(t)\}\$ is called a locally L^p -integrable (sub)martingale if there exists a sequence $\tau(n)$ of stopping times with respect to the family $\mathfrak{F}(t)$ with $P[\tau(n) < \infty, \tau(n) \uparrow \infty] = 1$ such that each random process ${x(t \wedge \tau(n), \mathfrak{F}(t \wedge \tau(n))}$ is an *L*^{*n*}-integrable (sub)martingale.

We shall denote by $(SM)^p$ (resp. M^p , $(SM)_{loc}^p$, M_{loc}^p , QSM and $QM)$ the family of all continuous L^p -integrable submartingales (resp. L^p -integrable martingales, locally L^p -integrable submartingales, locally L^p -integrable martingales, *q-*submartingales and g-martingales).

2. In what follows, we may, and do, suppose that $x(0)=0$.

LEMMA 1. Let $X = \{x(t), \mathfrak{F}(t)\}\$ be a right continuous submartingale and $T = \{ \mathfrak{F}(t), \tau(t) \}$ *a* τ -process. Then:

(1) If X is uniformly integrable or there exists a "constant process" c_i *such that* $\tau(t) \leqq c_t < \infty$, then TX is also a submartingale. If, moreover, X *is a martingale, then TX is a martingale.*

(2) If, for any $a \in [0, \infty)$, the random variable $x^+(t \wedge \tau(a))$ is uniformly *integrable with respect to t, then TX is a submartingale. If* $x(t) \wedge \tau(a)$ *is uniformly integrable and X is a martingale, then TX is a martingale.*

Part (1) of Lemma 1 is proved in [4] (see Theorem 11.8, Chapter 7) and for the proof of part (2), see Theorems 4.1. and 4.1.s of Chapter 7 in [4].

LEMMA 2. For any random process $X = \{x(t), \mathfrak{F}(t)\}\in (SM)_{\text{loc}}^1$ (resp. M_{loc}^1), ΘX, where Θ is the brake of X, belongs to $(SM)_{loc}^p$ (resp. M_{loc}^p) for any $p \geq 1$.

PROOF. If $X = \{x(t), \mathfrak{F}(t)\}\in (SM)_{loc}^1$, there exists a sequence $\beta(n)$ of stopping times with respect to the family $\mathfrak{F}(t)$ such that

 $P[\beta(n) < \infty, \beta(n) \uparrow \infty] = 1$ and $\{x(t \wedge \beta(n)), \mathfrak{F}(t \wedge \beta(n))\} \in (SM)^1$.

Put $a(n) = \inf\{t : \theta(t) > \beta(n)\}\.$ It follows at once from the normality of Θ that $P[\alpha(n) < \infty, \alpha(n) \uparrow \infty] = 1$ and $\{\alpha(n) \leq s\} = {\beta(n) \leq \theta(s)} \in \mathfrak{F}(\theta(s))$ for any $s \ge 0$. Therefore each $\alpha(n)$ is a stopping time with respect to the family $\mathfrak{F}(\theta(t))$. By the definition of $(SM)_{loc}^n$, we have only to give the proof of the fact $\{x(\theta(t \wedge \alpha(n))), \mathfrak{F}(\theta(t \wedge \alpha(n)))\} \in (SM)^p$. Since $t = \lambda(\theta(t)) = \theta(t) +$ $0 \le u \le \theta(t)$ } from the definitions of $\lambda(t)$ and $\theta(t)$, we see

LOCALLY L^p-INTEGRABLE MARTINGALES 349

 $0 \le \theta(t) \le t$ and $\sup\{|x(u)|; 0 \le u \le \theta(t)\} \le t$.

On the other hand, since

$$
x(\theta(t \wedge \alpha(n))) = x(\theta(t) \wedge \theta(\alpha(n))) = x(\theta(t) \wedge \beta(n)) = x(\{\theta(t) \wedge \beta(n)\} \wedge \beta(n))
$$

and

$$
\{\theta(t)\wedge \beta(n)\leqq s\}=\{\theta(t)\wedge \beta(n)\leqq s\wedge \beta(n)\}\in \mathfrak{F}(s\wedge \beta(n))\quad \text{for all }s\geqq 0\ ,
$$

that is, $\theta(t) \wedge \beta(n)$ is a stopping time with respect to the family $\mathfrak{F}(t \wedge \beta(n))$, in view of Lemma 1(1), each $\{x(\theta(t \wedge \alpha(n)))\}$, $\mathfrak{F}(\theta(t \wedge \alpha(n)))\}$ belongs to $(SM)^p$. Hence ΘX belongs to $(SM)_{loc}^p$. This completes the proof.

LEMMA 3. For any random process $X = \{x(t), \mathfrak{F}(t)\}\in QSM$ (resp. QM), ΘX , where Θ is the brake of X, belongs to $(SM)^p$ (resp. M^p) for any $p \geq 1$.

PROOF. From the definition of *QSM*, $X = TY$, where $Y = \{y(t), \mathfrak{G}(t)\}\)$ is a continuous submartingale and $T = {\mathfrak{G}(t), \tau(t)}$ is a normal τ -process. As $\sup\{|x(u)|; 0 \le u \le \theta(a)\} \le a$ for any $a \ge 0$, we have

$$
\sup\{|y(t\wedge\tau(\theta(a)))|\,;\,0\leq t<\infty\}\leq a.
$$

This implies the uniform integrability of $\{y(t \wedge \tau(\theta(a)))\}_{0 \le t < \infty}$, hence by Lemma 1(2) $\Theta X = [\Theta T] Y$ belongs to $(SM)^p$. Thus the lemma is proved. (This proof is due to K. E. Dambis [2]).

 THEOREM 1. For any $p \geq 1$, $(SM)_{loc}^p$ (resp. M_{loc}^p) coincides with QSM *(resp. QM).*

PROOF. Let $X = \{x(t), \mathfrak{F}(t)\}\)$ be any random process of $\mathcal{Q}SM$ and Θ be the brake of X. Lemma 3 implies $\Theta X \in (SM)^p$ for any $p \ge 1$.

Put $X^n = \{x(t \wedge \theta(n)), \mathfrak{F}(t \wedge \theta(n))\}.$ Then clearly

$$
x(t\wedge \theta(n))=x(\theta(\lambda(t))\wedge \theta(n))=x(\theta(\lambda(t)\wedge n))
$$

and so each $X^n \in (SM)^p$ by Lemma 1(1). Hence $X \in$

Conversely $X = \{x(t), \mathfrak{F}(t)\}\$ is a locally L^p -integrable submartingale, then ΘX is a locally L^p -integrable submartingale by Lemma 2, that is, there exists a sequence $\tau(n)$ of stopping times with respect to the family $\mathfrak{F}(\theta(t))$, with $P[\tau(n) < \infty, \tau(n) \uparrow \infty] = 1$ such that $\{x(\theta(t \wedge \tau(n))), \mathfrak{F}(\theta(t \wedge \tau(n)))\}$ belongs to $(SM)^1$ for each *n*. By the assumption on $\mathfrak{F}(t)$, as $\mathfrak{F}(\theta(s \wedge \tau(n))) \uparrow \mathfrak{F}(\theta(s))$, for any $A \in \mathfrak{F}(\theta(s))$ there exists $A^n \in \mathfrak{F}(\theta(s \wedge \tau(n)))$ such that $P(A \triangle A^n)$ converges

to 0. Then for each n ,

$$
\int_{A^n} x(\theta(s\wedge \tau(n))) dP \leq \int_{A^n} x(\theta(t\wedge \tau(n))) dP, \quad s \leq t.
$$

In view of the Lebesgue bounded convergence theorem, we have

$$
\int_A x(\theta(s)) dP \leq \int_A x(\theta(t)) dP.
$$

Hence ΘX belongs to $(SM)^1$. Therefore as $X = \Lambda[\Theta X]$, X is a q-submartingale. This completes the proof.

COROLLARY. Let $X = \{x(t), \mathfrak{F}(t)\}\$ be a continuous local submartingale. *Then* $\lim x(t)$ exists and is finite almost surely where $\lim \sup x(t) < \infty$. *t-*OQ* **ί->OO**

PROOF. It is proved in [4] (see Theorem 3.1.s(iv) of Chapter 11) when X is a continuous submartingale. Then the proof is obvious from the fact $(SM)_{loc}^1 = QSM$.

3. Next we shall show that the equivalence of q -martingales and locally L^{*p*}-integrable martingales is also true in R^n .

DEFINITION 3. We call a process $X = \{x(t), \mathfrak{F}(t)\}\$ in R^n with $\{(h \circ x)(t), \mathfrak{F}(t)\}$ a continuous martingale, for each spherical harmonic polynomial *h* in *Rⁿ ,* a continuous martingale.

DEFINITION 4. We call q -martingales in R^n those processes which are obtained by normal random time changes from continuous martingales in *Rⁿ .*

DEFINITION 5. A process $X = \{x(t), \mathfrak{F}(t)\}\$ in R^n is called a locally L^p integrable martingales in R^n if $h \circ X = \{(h \circ x)(t), \mathfrak{F}(t)\}$ is a locally L^p -integrable martingale for each spherical harmonic polynomial *h* in *Rⁿ .*

We shall denote by $M^p(R^n)$ (resp. $M^p_{loc}(R^n)$ and $QM(R^n)$) the family of all continuous L^p -integrable martingales (resp. locally L^p -integrable martingales and g-martingales) in *Rⁿ .*

THEOREM 2. For any $p \ge 1$, $M_{loc}^p(R^n)$ coincides with $QM(R^n)$.

PROOF. If $X = \{x(t), \mathfrak{F}(t)\}\in QM(R^n)$, then $X=TY$, where $Y = \{y(t), \mathfrak{G}(t)\}\$

is a continuous martingale in R^n and $T = {\mathfrak{G}(t), \tau(t)}$ is a normal τ -process.

Let *h* be any spherical harmonic polynomial in R^n . Put $h \circ X = \{(h \circ x)(t),$ $\mathfrak{F}(t)$. Then $h \circ X = T[h \circ Y]$. As $h \circ Y$ is a continuous martingale, $h \circ X$ is a q-martingale. Theorem 1 implies that $h \circ X$ is a locally L^p -integrable martingale. Hence $X = \{x(t), \mathfrak{F}(t)\}\in M_{loc}^p(R^n)$ for any $p\geq 1$.

Conversely if $X = \{x(t), \mathfrak{F}(t)\}\in M_{loc}^p(R^n)$, $h \circ X = \{(h \circ x)(t), \mathfrak{F}(t)\}$ is a locally L^p-integrable martingale for each spherical harmonic polynomial h in Rⁿ. There exists a sequence $\mathcal{B}(n)$ of stopping times with respect to the family $\mathfrak{F}(t)$ such that $P[\beta(n) < \infty, \beta(n) \uparrow \infty] = 1$ holds and $\{(h \circ x)(t \wedge \beta(n)), \Im(t \wedge \beta(n))\}$ is a martingale for each *n.* This sequence *[β(n)}* may depend on A. Let Θ be the brake of X. Then $\{(h \circ x)(\theta(t)), \mathfrak{F}(\theta(t))\}$ is a locally L^p -integrable martingale in view of Lemma 2. Therefore there exists a sequence $\alpha(n)$ of stopping times with respect to the family $\mathfrak{F}(\theta(t))$ such that $\{(h \circ \mathfrak{X})(\theta(t \wedge \alpha(n)))\}$ is a martingale with $P[\alpha(n) < \infty, \alpha(n) \uparrow \infty] = 1$.

By assumption, as $\mathfrak{F}(\theta(s \wedge \tau(n))) \uparrow \mathfrak{F}(\theta(s))$, for any $A \in \mathfrak{F}(\theta(s))$ there exists $A^n \in \mathfrak{F}(\theta(s \wedge \tau(n)))$ such that P(A $\triangle A^n$) converges to 0. Then for each *n*,

$$
\int_{A^n} (h \circ x) (\theta(s \wedge \alpha(n))) dP = \int_{A^n} (h \circ x) (\theta(t \wedge \alpha(n))) dP, \quad s \leq t.
$$

As a harmonic function is bounded on every compact set, by the Lebesgue bounded convergence theorem we have

$$
\int_A (h \circ x)(\theta(s)) dP = \int_A (h \circ x)(\theta(t)) dP.
$$

This implies $h \circ \Theta X \in M^1$. Hence $\Theta X \in M^1(R^n)$. As $X = \Lambda[\Theta X]$, X belongs to *QM(Rⁿ).* This completes the proof.

4. We shall now apply the result obtained above to a generalization of the stochastic integral defined in [6].

Let N^+ be the set of all natural increasing processes $A(t)$ defined for $t \in [0, \infty)$ and write

$$
N = \{A(t) = A^{i}(t) - A^{i}(t); A^{i}(t) \in N^{+}, i = 1, 2\}.
$$

Let Ψ be the class of all (t, ω) -measurable real-valued processes $\psi(t, \omega)$ that are $\mathfrak{F}(\tau)$ -measurable for each stopping time τ with respect to the family *\$(t)* and let *Ψrc* be the class of all bounded right continuous process having left hand limits. We define for $\varphi \in N^+$ semi-norms $|| \psi(t)$ over Ψ by

$$
\|\psi\|_{\varphi}(t)=\mathrm{E}\left[\left(\int_0^t \psi(s)^2\,d\varphi(s)\right)^{1/2}\right],\quad \psi\in\Psi
$$

and put $L_2(\varphi) = \Psi \cap \Psi_{rc}$, where Ψ_{rc} is the closure of Ψ_{rc} with respect to semi-norms $\|\ \ \|_{\varphi}(t)$. Clearly $\|\psi\|_{\varphi}(s) \le \|\psi\|_{\varphi}(t)$ for $s < t$.

First we recall the followings.

THEOREM 3. For $X = \{x(t), \mathfrak{F}(t)\}\$, $Y = \{y(t), \mathfrak{F}(t)\}\in M^2$, there exists a *unique (up to equivalence)* $\langle X, Y \rangle \in N$ *such that for each t* $> s \in [0, \infty)$

$$
E[(x(t) - x(s))(y(t) - y(s)) | \mathfrak{F}(s)] = E[(t) - \langle X, Y>(s) | \mathfrak{F}(s)].
$$

THEOREM 4. For every $X = \{x(t), \mathfrak{F}(t)\}\in M^2$ and $\psi \in L^2(\langle X \rangle)$ $\langle X \rangle = \langle X, X \rangle$, there exists a unique $Y = \{y(t), \vartheta(t)\} \in M^2$ satisfying

$$
\langle Y, Z \rangle(t) = \int_0^t \psi(s) d\langle X, Z \rangle(s), \quad P\text{-}a.s. \quad \text{for any } Z = \{z(t), \mathfrak{F}(t)\} \in M^2.
$$

For the proof of these two theorems, see [5] or [6]. In M. Motoo and S.Watanabe [4], *Y* of the above Theorem 4 is called the stochastic integral of ψ by X and is denoted by

$$
y(t)=\int_0^t\psi(s)\,dx(s)\,.
$$

Now let $X = \{x(t), \mathfrak{F}(t)\}\)$ be any random process of M_{loc}^2 . In view of Lemma 4, $\Theta X = \{x(\theta(t)), \mathfrak{F}(\theta(t))\}$ belongs to M^2 for $X = \{x(t), \mathfrak{F}(t)\} \in M^2_{loc}$. It is easy to see that $\psi(\theta(t))$ is (t, ω) -measurable. As $\{\mathfrak{F}(\theta(t)), \lambda(t)\}\$ is a normal τ -process and $\lbrack \theta(\tau) \leq s] = [\tau \leq \lambda(s)]$ holds for any stopping time τ with respect to the family $\mathfrak{F}(\theta(t))$, we see $[\theta(\tau) \leq s] \in \mathfrak{F}(\theta(\lambda(s))) = \mathfrak{F}(s)$, that is, $\theta(\tau)$ is a stopping time with respect to the family $\mathfrak{F}(t)$.

Therefore $\psi(\theta(\tau))$ is $\mathfrak{F}(\theta(\tau))$ -measurable. Thus, from Theorem 4, there exists a unique $Y^* = \{y^*(t), \mathfrak{F}(\theta(t))\} \in M^2$ such that

$$
\langle Y^*, Z \rangle(t) = \int_0^t \psi(\theta(s)) \, d \langle \Theta X, Z \rangle(s), \text{ P-a.s. for any } Z = \{z(t), \mathfrak{F}(\theta(t))\} \in M^2.
$$

Put $H(X, \psi) = \Lambda Y^* = \{y^*(\lambda(t)), \mathfrak{F}(t)\}\$. Theorem 1 implies $\Lambda Y^* \in M_{loc}^3 = OM$. This mapping *H* coincides with the stochastic integral on M² . In fact, let $X = \{x(t), \mathfrak{F}(t)\}\)$ be an L^2 -integrable martingale. First we consider the case that $\psi(t)$ is a step function, that is, there exists an increasing sequence $\{\tau(n)\}$ of stopping times with respect to the family $\mathfrak{F}(t)$ such that $\tau(n) \uparrow \infty$ and $\psi(s) = \psi(\tau(n-1))$ if $\tau(n-1) \leq s < \tau(n)$. Then there exists an increasing sequence *β(n)* such that $\theta(\beta(n)) = \tau(n)$ and $\psi(\theta(s)) = \psi(\theta(n-1))$ if $\beta(n-1) \leq s < \beta(n)$. As

 $[\beta(n) \leq s] = [\theta(\beta(n)) \leq \theta(s)] = [\tau(n) \leq \theta(s)] \in \mathfrak{F}(\theta(s))$ for all $s \geq 0$, that is, each *β(n)* is a stopping time with respect to the family $\mathfrak{F}(\theta(t))$, $\psi(\theta(t))$ is also a step function.

Since, by the definition of the stochastic integral in [6],

$$
\int_0^t \psi(s) \, dx(s) = \sum_n \psi(t \wedge \tau(n-1)) \{x(t \wedge \tau(n)) - x(t \wedge \tau(n-1))\}
$$

and

 \cdot

$$
\begin{split} \mathbf{y}^*(t) &= \int_0^t \psi(\theta(s)) \, dx(\theta(s)) \\ &= \sum_n \psi(\theta(t \wedge \beta(n-1))) \{ x(\theta(t \wedge \beta(n)) - x(t \wedge \beta(n-1))) \} \\ &= \sum_n \psi(\theta(t) \wedge \tau(n-1)) \{ x(\theta(t) \wedge \tau(n)) - x(\theta(t) \wedge \tau(n-1)) \} \;, \end{split}
$$

we have

$$
y^*(\lambda(t))=\int_0^t\psi(s)\,dx(s)\,.
$$

In other words, $H(X, \psi)$ coincides with the stochastic integral of ψ by X if ψ is a step function.

Now let ψ be any element of $L^2(\langle X \rangle)$. Then we can choose a sequence of step function *{ψⁿ }* c Ψ such that

$$
\lim_{n\to\infty}\|\psi^n-\psi\|_{< x>}(t)=0.
$$

Put

$$
y^n(t)=\int_0^t\psi^n(s)\,dx(s)\,.
$$

Then we get $\lim_{t \to \infty} E[(\mathcal{Y}(t) - \mathcal{Y}^n(t))^2] = 0$ (see [5]). On the other hand, by the uniqueness of $\langle x \rangle$ in Theorem 3, we have $\langle \Theta X \rangle(t) = \langle X \rangle(\theta(t))$ for every $t \ge 0$. Since for any $\psi \in L^2(*X*)$

 \boldsymbol{J}_0

$$
\mathbb{E}\Big[\Big(\int_0^t \psi^2(\theta(s))\,d\big\langle\Theta X\big\rangle(s)\Big)^{\frac{1}{2}}\Big]\leq \mathbb{E}\Big[\Big(\int_0^t \psi^2(s)\,d\big\langle X\big\rangle(s)\Big)^{\frac{1}{2}}\Big],
$$
\nwe get

\n
$$
\lim \mathbb{E}[(y^*(t)-y^{**}(t))^2]=0 \quad \text{where} \quad y^{**}(t)=\int_0^t \psi^*(\theta(s))\,dx(\theta(s))\,.
$$
\nAs

 $\{(y^n(t)-y(t))^2, \mathfrak{F}(t)\}\; \text{is a submartingale, we have}\; \{f(t)-y(t)\}$

$$
E[(y^*(t) - y(\theta(t)))^2] \leqq \frac{1}{2} \{E[(y^*(t) - y^{**}(t))^2] + E[(y^{**}(t) - y(\theta(t)))^2]\}
$$

\n
$$
\leqq \frac{1}{2} \{E[(y^*(t) - y^{**}(t))^2] + E[(y^*(\theta(t)) - y(\theta(t)))^2]\}
$$

\n
$$
\leqq \frac{1}{2} \{E[(y^*(t) - y^{**}(t))^2] + E[(y^*(t) - y(t))^2]\}.
$$

hence $y^*(t) = y(\theta(t))$. This implies $y(t) = y^*(\lambda(t))$. Therefore if $X = (x(t), \mathfrak{F}(t))$ $\in M^2$, $H(X, \psi)$ coincides with the stochastic integral of ψ by X for any

REFERENCES

- [1] K. ITO AND S. WATANABE, Transformation of Markov processes by multiplicative **functional, Ann. Inst. Fourier (Grenoble), 15(1965), 13-30.**
- **[2] K. E. DAMBIS, On the decomposition of continuous submartingales, Teor. Verojatnost. i Primenen, 10(1965), 438-448. See also Theor. Probability AppL, 10(1965), 401-410.**
- **[3] G. DENZEL, The exit characteristics of Markov processes with applications to continuous martingales in** *R",* **Trans. Amer. Math. Soc, 129-1(1967), 111-123.**
- **[4] J.L. DOOB, Stochastic Processes, Wiley, New York, 1953.**
- **[5] H. KUNITA AND S. WATANABE, On square integrable martingales, Nagoya Math. J., 30(1967), 209-245.**
- **[6] M. MOTOO AND S. WATANABE, On a class of additive functionals of Markov process, J. Math. Kyoto Univ., 4(1965), 429-469.**

MATHEMATICAL INSTITUTE TOHOKU UNIVERSITY SENDAI, JAPAN