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Introduction. Many theorems of the theory of approximation depend
upon the fact that a polynomial of degree n cannot change too rapidly; in
other words its derivative cannot be too large. We know from A. A. Markov's
inequality for polynomials that if \Pn(x)\ ^ M on [ —1, 1] then \Fn(x)\
5g Mn2 for — l ^ ^ ^ l where Pn(x) is an algebraic polynomial of degree
n. But this is an extreme case. For special polynomials, one can sometimes
improve the estimates of the derivative. For this we refer to papers of
P. Erdos [4], G. Lorentz [8], and P. Turan [11].

1.1. In 1958 J. Balazs and P. Turan [3] obtained certain interesting
inequalities which arise from their consideration of (0, 2) interpolation on
n-abscissas (τrw(.r)=(l—x2) P'n-1(x), Pn(x) being the Legendre polynomial of
degree = n). By (0, 2) interpolation they mean the problem of finding
interpolatory polynomials Rn(x) of degree fg2?2—1 for which

(1.1.1) Rn(xk) = ctjc,

are prescribed. From this consideration they proved the following:

THEOREM 1.1.1 (J. Balazs and P. Turan). Let n be even and further if
we are given for a polynomial Q2n-i(x) of degree fg 2n — 1

(1.1.2) I C n - i f o O I ^ A , \Q^-lxk)\^B9 k = l,2i --,n,

then for — 1 ^ x rg 1 we have

(1.1.3) \Q^1(x)\^π°nA+*^-,

and
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(1.1. 4) I Qίn-^x) I ^ π8n5/2A + π5Bn12.

The appearance of the exponent 5/2 in (1.1.4) is very significant. (1.1.3)

gives the estimate of Q2n-i(x) uniformly in [ —1, 1], whereas (1.1.4) gives

the estimate of Q^-iO^) uniformly in [ — 1. 1] which is far better than

what one can obtain from Markov's inequality applied on (1.1. 3). Moreover

(1.1. 3) and (1.1.4) are best possible in a certain sense explained there in.

We mention for the sake of orientation as remarked by P. Turan and

J. Balazs [4] that if in [ — 1,1] f"(x) exists everywhere and \f(x)\ ^kl,

\f\x)\ ^ 1 then we have \f(x)\ ^ 2 for [-1, 1]. This has been proved

after the first results of C.N.Moore and Hardy-Lit tlewood by E. Landau [7].

It would be of interest to point out that L. Fejer [6] in 1930 obtained the

following result. Let g(x) be an arbitrary polynomial of degree ^2n — l

satisfying

(1.1.5) \g{xd\^ A,

then uniformly in [ — 1, 1] we have

(1.1.6) \g(x)\^A + B.

Here x/s are the zeros of Tn(x) = cosnθ, cos0=:c and x t = cos^i, flt=^ l~--^-.
ΔJTI

1. 2. The object of this paper is to obtain analogous results when xk's

are taken to be the zeros of (1—x2)un(x), un(x) being the Tchebycheff

polynomials of the second kind. We prove the following:

THEOREM 1.2.1. Let Q^n+iix) be an arbitrary polynomial of degree
(n even) satisfying

(1.2.1) IΩ.«+i(**)l ^A, * = l , 2 , . . .

and

( 1 . 2 . 2 ) I Q^+1(xk) I ̂  -• B

Ύ , k = 2,3,..-,» + 1 .
_L — Xfc

Then for — 1 ^ x :g 1 we have

(1.2. 3) I Q2n+1(x)I ^ cίAn™ + BTΓ™) , (ct = 57)

and

(1.2. 4) I Q'in+1{x) I g clA n* + B n), (c2 = 108) .
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First we remark that the result (1. 2. 3) and (1. 2. 4) are essentially best

possible, i.e., we can find suitable polynomials fo(x) and fx(x) of degree

fg2n + l which satisfies (1.2.1) and (1.2.2) and for a numerical positive c3

and c4, we have

(1. 2. 5) |/0(0) I > c3(A n3'2 + B n~^),

and

(1.2.6) |/ί(l)| >c±(An* +Bn).

Here xk's mentioned in (1.2.1) and (1.2.2) are the zeros of (1 — x2)un(x)

given by

1 = xx > x2 > > xn+ί > xn+2 = - 1 .

Thus comparing the results on these two abscissas we find that (1. 2. 3)

and (1.2.4) are not as good as (1.1.3) and (1.1.4) although (1.2.3) and

(1.2.4) are proved to be best possible as explained above. But there is a

common feature between these two theorems, namely the growth of their

derivatives are of the order n3/2. If we apply Markov's theorem to (1.2. 3)

we will get

(1. 2. 7) I Qίn+ί(x) I ^ cx(A n7/* + B n^) in - 1 ^ x ^ 1 .

From this we may conclude that the result stated in (1.2.4) is far better

from (1.2.7) what we can obtain from Markov's theorem. For other

interesting inequalities of the author when nodes of interpolation are taken

as the zeros of (l—x2)Tn(x\ Tn(x) being the Tchebycheff polynomials of

the first kind we refer to [12].

1.3. In an earlier work [14] we proved that for n even there exists a

unique polynomial Rn(x) of degree fg 2n + l for which

(1.3.1) R n ( x i ) = ai9 £ = l , 2 , . . .

(1.3.2) £;'(*:,)=• ft*, i = 2, 3 , - . .

are prescribed in advance. Here as mentioned earlier

(1. 3. 3) l=x1>xi> --> xn+1 > xn+2 = - 1

are the zeros of the polynomial (1 — x2)un(x). We denote
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(1. 3.4) Rn(x) = Σ akr&ε) + ΐ > A ( x ) (» even)

where the fundamental polynomials rk(x) and pk(x) are stated in Theorem
2.1.1.

We now consider the sequence of points

(l 3. 5) 1 = Xhn > X2>n > > Xn+lyn > Xn+2,n = — 1

where xte,nS stand for the zeros of (1 — x2)un(x). (The notation (1.3.3) of the
zeros (1—x2)un(x) was more suitable when n was fixed). Then forming the
interpolatory polynomials (1.3.4) satisfying (1.3.1) and (1.3.2) for each n=2k
we shall write the fundamental functions rk(x) and pk{x) as rkn(x) and pkn{x)
respectively. Let now f{x) be defined for [—1, 1] we consider the
sequence of polynomials

(1. 3. 6) R,[x,f] = Σ.f(x*,n)rUx) + Σ, b*»PU*) (» even).
fc=l k=2

We will also prove the convergence theorem in a similar way as obtained
by J. Balazs and P. Turan [2].

THEOREM 1.3.1. Let f(x) have a continuous derivative in [—1, 1]
together with f\x) € Lip a, a > 1/2. Further let

(1.3.7) \ b k n \ = o ( ^

then the sequence of interpolatory polynomials Rn[x9 f] as defined in (1.3.6)
converges uniformly to f(x) in [ — 1,1]. The class / ' (x) <Ξ Lip <2, a > 1/2
cannot be replaced by f'(x) £ Lip 1/2 even if all bkn are zero.

2.1. The explicit forms of the fundamental polynomials were stated
without proof in our earlier work [14]. Here we will state these fundamental
polynomials with proof.

THEOREM 2.1.1. The explicit forms of the fundamental polynomials
are as follows.

(a) For k = 2,3, , n + 1 we have
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(O 1 o(r\
{ 2 Λ Λ ) Pk{x)- 2un(xk)

where qn.γ{x) is a polynomial in x of degree rg n—1 -which depends on k
also and is given by

(2.1.2) (1-xψtq^x) = Ak fun(t)w(t)dt + [Ίk(t)w(t)dt,

(2.1. 3) Ak f un(t)w(t)dt = - f lk(t)w(t)dt,
J-l J-l

(b) î or iέ = 2, 3, ,

(2.1.5) r , ^ ) -

where sn-!(x) is a polynomial in x of degree-g^n—1 which depends on k
also and is given by

(2.1. 6) ( l - ί T U * ) = A* J un{t)w(t)dt + f pk(t)w(t)dt,

(2.1.7) Ak ί un(t)w{t)dt = - ί pk{t)w(t)dt,

(2.1. 8) ρk(i) = (l-t2)Γk'(t) - 3tΓk(t) + n(n+2)lk(t)..

(2 l 9) Bk = f ^ k ~ l .

Lastly

(2.1.10) n(x) =

(2.1.11) rB+2(*) = 1 0 ( ^ ) T [5(1-Λ:)«,(Λ:) + 2( l-x 2 K(*) - 5(1-a?) «,_,(«
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where tn-2(x) is a polynomial in x of degree^ n — 2 and is given by

(2.1.12) (l-*aΓ*»-.(*) = f <(*) w{t)dt.

2. 2. In order to prove the above theorem we will require the following
Lemmas.

LEMMA 2.2.1. For x = cosθ we have

(2.2.1) [ u2r{t)w(t)dt = cr [ w(t)dt + ( l - f ) n 2 M W , r = 1,2,

where

(2. 2. 2) w(ί) - ( I-* 2 ) " 3 7 4 , Cr f w(t) dt= f ulr(t) w(t) dt

and h2r-i(x) is a polynomial of degree^ 2r— 1 in x.

PROOF. This follows from the recurrence relation

(2.2.3) (r-~)fu2r(

= (r+Ί~)S u*r-i(t)w(t)dt + (l-xψ'u^ix), r = 1, 2 , . . . .

Here, as usual uΐr(x) denote the Tchebycheff polynomials of the second kind.

LEMMA 2.2.2. For .r=cos θ we have

(2. 2. 4) Γ u,r_λ{t)w(t)dt = (1-xψ* m^lx), r = 1,2,
J -1

where m2r_2(^) is a polynomial in x of degree^ 2r—2.

PROOF. This follows from the recurrence relation

(2.2.5)
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LEMMA 2.2.3. For : r=cos θ9 k = 2y 3, , n + 1 we have

(2. 2. 6) ( lk(t)w(t)dt = dt[ w(t)dt + (1-xψ'e^x)
J - l J - l

where

(2. 2. 7) lk(t) = 7~Ψ^~r,, dk f w{t)dt - f lk{t)τv(t) dt,
\l~~xk) Un\Xk) J_χ J_χ

and en-ι(x) is a polynomial in x of degree^ n — 1.

PROOF. This is an easy consequence of formula (2.2.1), (2. 2. 3) and a

well known result of L. Fejer [9]

(2.2.8) lk(t) = ^lif^ Σ,ur(xk)uT(t), A = 2,3, , « + l .

For r even we use Lemma 2.2.1 and for r odd we use Lemma 2.2.2.

2. 3. Here we will give the proof for the determination of the fundamental

polynomials of the second kind. In view of uniqueness theorem stated on

page 345 as theorem 4 in [14], it remains to verify that the fundamental

functions are polynomials of degree ^2^2+1 and satisfy the following

conditions:

(2. 3.1) fo(;c,) = 0 , j = 1, 2, , rc + 2, A = 2, 3, - , n + 1

and

(2.3.2) P*(^)

Consider the function

(2.3.3) X ^ ) = ( 1 "

where for k = 2, 3, , n + 1

(2. 3. 4) (1-xJ^q^x) = Ak f un(t)w(t)dt + Γ lt(t)w(t)dt,

and
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(2. 3. 5) Ak J un(t)w(t)dt + J lk(t)w(t)dt = 0, k = 2, 3,. . ,

We observe from Lemma 2.2.1, Lemma 2.2.3 and formula (2. 3.5) that
qn-i(x) defined by (2.4.4) is indeed a polynomial in x of degree ^n — 1. It
is obvious that

(2.3.6) Xk(Xj) = 0, J = 1 , 2 , . . . , Λ + 2 , * = 2 , 3 , . . . , Λ + 1 .

On differentiating once with respect to x equation (2.3.4) and putting x=xjγ

j=2,3. , n + 1 we have

(2. 3. 7) 2(1-aή) q'^x,) - x, qn^(x3) = | ° j J * , y, * = 2, 3, , n + 1 .

A simple computation gives us

(2. 3. 8) [(l-x*)un(x)]'^Xj = -x5 un(x3) , j = 2, 3,. . . , n + 1

and

(2. 3. 9) [(l-x2)un(x)]'x=Xί = ( l - ^ ) « ; (^) , ./ = 2, 3, • ,

Here dash indicates differentiation with respect to x. From (2. 3. 3), (2. 3. 7\
(2. 3. 8) and (2. 3. 9) we get

(2.3.10) Xί'to)

Thus we have shown that ^k(x) is a polynomial in x of degree ^
and satisfies conditions (2. 3. 6) and (2. 3.10). Therefore we conclude in view
of the remark stated earlier

2.4. Here we will give the determination of rk(x). Again, in view of
the uniqueness theorem [14] it remains to verify that the fundamental
functions rk(x) are polynomials of degree ^ 2n 4-1 and satisfy the following
conditions, i.e.,

(2.4.1) r*fo) = |J j
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(2.4.2) r*fo) = 0 i , * = 2 , 3 , . . ,Λ + l .

We need the following lemmas.

LEMMA 2.4.1. Let x=cosθ, k = 2,3,- -,n + l, we have

(2. 4. 3) [ pk(t)w(t)dt =fj w(t)dt + (l-xψ* dn-t(x)
J - l J - l

where dn-2(x) is a polynomial in x of degree^ n—2. Here

(2. 4. 4) / , ί wit) dt = f pk{t) w(t) dt
J-l J-l

and pk(t) is a polynomial in t of degree^ n—1, given by

(2. 4. 5) Ht) = (I-*2) Kit) - 3* Γk(t) + n{n+2) lk(t)

^ Ξ 1 - r(r+2)) 11,

PROOF. We use the above representation of pk{t) (which can be easily-

seen on using (2. 2.8) and the differential equation of ur(t)), Lemmas 2.2.1

and 2.2.2.

LEMMA 2.4.2. Let :z=cos#, then tn-2(jZ) defined by the relation

(2.4.6) (l-x2)1/Atn-2(x)= ί un{t)w(t)dt (w even)

is a polynomial in x of degree^, n—2.

PROOF. For n even we have

nil

(2. 4. 7) un(x) = 1 + 2 ^ Ttr{x\ T2r{x) = cos 2rθy cos θ=x .

Differentiating (2.4. 7) with respect to x and using Lemma 2.2.2, we get the

above result.

LEMMA 2.4.3. Let x=cos^, k=2y 3, ,n + l 2/ιe/z s^Or) defined by
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(2. 4. 8) (l-x2)1/Asn^(x) = A; [ un(t)w(t)dt + f pk{t)vυ(t)dt
J-l J-l

zvith

(2.4.9) A; ί un{t)τv(t)dt + ί pk{t)τv(t)dt = 0

z*5 a polynomial in x of degree^, n — 1.

PROOF. The proof of this Lemma follows at once if we use Lemmas
2.2.1, 2.2.2 and (2.4.9). Here we equated to zero the coefficient of

I vυ{t)dt obtained from the right-hand side of (2.4.8) which gives us the

value of Ak.

Now let us consider the function

(2.4. lϋ) Mk{x) - ±

where sn-i(x) is defined in (2.4.8) and Bk is given by

(2.4.11) Bk = ff^3

In view of Lemma 2.4.3 and the fact that pk(x) is indeed a polynomial in x
of degree ^ 2 n + l , we have Mk(x) also a polynomial in x of degree ig 2/z + l.
It is also clear that

A simple computation shows that

(2.4.13) P ^ ^ L ^

From (2. 4. 5) we have

(2.4.14) / φ : , ) = (1 -x))i;{x}) - 3x,
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It can be easily verified that

(2. 4.15) [(l-xψ*un(x)γ^Xj = 0, j = 2, 3, - , n + 1.

On using (2. 4. 8), (2. 4.15) and (2. 4.14) we have

(2. 4.16) [ ( l - x * ) u n ( x ) s n - i x % = X j = 2 i φ c i ) p k ( x i ) , j Φ k

_ -4( l-^ )/;(^ )^(xj) . ,

(Xj-Xjc)

Therefore, from (2.4.10), (2. 4.13) and (2. 4.16) we get

(2.4.17) M'k(xj) = 0, . / = £ * since /;(*,) =

(X

Further Bk is determined by the fact that

(2.4.18) M'k\xk) = 0, * = 2 , 3 , . .

Thus Mk(x) is a polynomial in Λ: of degree fg 2n + l satisfying (2.4.12),

(2. 4.17) and (2. 4.18). Therefore, by the uniqueness theorem

Mk(x) = r^x) * = 2, 3, — ,

Proofs for rx(j:), ΓW+2(Λ;) are similar. Here one uses also Lemma 2.4.2.

3.1. Here we will mention those results concerning Tchebycheff poly-

nomials of second kind which are required for our purpose.

(3.1.1) | s i n ( ί + l ) « | ^ ( p + l ) | s i n « | , | up(x) \ ^ (p+1), - l ^ a r ^ l ,

(3.1. 2) — u ̂  sin u ̂  M , 0 ̂  // ̂  n-~ ,
7Γ 2

( 3 . 1 . 3) — - (τr — u) :g s in u ̂ u , ^ u ̂  7t .
re 2

F o r 0 5g 0 ίg 7τ/2 a n d on u s i n g ( 3 . 1 . 2 ) w e have

(3.1. 4) ί ( . λ

 v / 2 du ̂  τr(sin θ)1/2 = π(l-xψ*, ^=cos θ .
Jo ySin U)

From a well known result of L. Fejer [9] we have
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(3.1.5) lk(t)=2{l~f)ΣJuτ{xk)uτ{t), * = 2 , 3 , . . . ,
"*" r=0

It follows from (3.1. 5) on a simple computation (see [9]) that

(3.1.6) \lk(t)\^2 for - l ^ ί ^ l .

Following recurrence relations are easily verified.

(3.1.7) ( r - \ ) j u2r(t)τv(t)dt = (r + ~

(3.1. 8) (r + -^-)J u2r(t)(l-tψ* dt = (r- -~) f M2r_2(ί)(l-ί2)V4 dt,

r = l,2, .

3.2. Here we will prove certain lemmas which will lead us to the
estimation of the fundamental polynomials.

LEMMA 3.2.1. Following estimates are valid.

•'3.2.1) I uir(t)w{t)dt =

-1

(3.2.2)
Utr(tχi-

(3.2.3) I f iφ) w(t) dt I ̂  π(p+iχi - xψ*, 0 ̂  x ̂  1,

(3.2.4) I Γ = 2,3, , n + l .

PROOF. (3.2.1) and (3.2.2) follow from the recurrence relations (3.1.7)
and (3.1. 8) respectively. Using (3.1.1) and (3.1.4) we have (3.2.3). Similarly
on using (3.1.4) and (3.1. 6) we have (3.2.4) immediately. This proves the
lemma. When — 1 5ί x sΞ 0 then on using (3.1. 3) and (3.1. 6) we have
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f up(t) w(t) dt ^ τt(p+1)(1 - xψ*, - 1 ̂  x ^ 0

(3.2.4a) [ lk(t)w(t)dt ^ 2τr{l-x2)1/ί, - 1 ^ x ^ 0 .

LEMMA 3.2.2. Following estimates are valid

(3. 2. 5)

(3.2.6)

w(t) dtΓ uv(t)
•/I

[Ίk(t)zv(t)dt
•'I

V\ Org^fgl,

+(n + l)sin0Λ

for k = 2, 3 , , τz + 1 and 0 fg

(3.2.7) f lk{t)w(i)dt

PROOF. We observe that

(3.2.8) Γ uv(t)w(t)dt= [ -
Ji Jo

4- +A
2 4 , j fc=2,3,. . . ,n + l .

1 , ί = cos u .

If 0 ̂  ^ ̂  7t/(p+l) then using (3.1.1) and (3.1. 3) we have

(3. 2. 9) Γ* si^P+HU du < (/H-l) Γ , . -1

Jθ ( S l n U) ~ JQ ( S l n

W 2 ^ < ιl/2

In case n/{p-\-l) ̂ θ ^ π/2 then we have

(3. 2.10)

But

(3 2 n ) l / J

, / ( p + 1 )

χ/ip+1) (S^nUJ
3/2 "-"- =

277
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Therefore, on using (3. 2. 8)—(3. 2.11) we have

J uv{t)vu{t)dt

from which (3. 2. 5) follows. In a similar way we can easily prove that

4
(3. 2.12) fup(t)(l- tψ'dt

P+i •

As a consequence of (3.1. 5) and (3. 2.12) we have

(3.2.13) I f lk(i)(l-tjfidt ^8J^^y(l-xl)1/2.

But we know that

(3.2.14) ί lk(t)τv(t)dt

[ Γ l Γ

= (l-^l) ' 1 / lk(t)(l-t2)iμdt + ̂ T—V I

On using (3. 2. 5) and (3. 2.13) we have

which proves (3. 2. 6). Proof of (3. 2. 7) follows from (3.1. 5) and (3. 2.1) and
on using Abel's lemma.

3. 3. The above two lemmas lead us to formulate the estimation of the
fundamental polynomials of the second kind. First we observe as a con-
sequence of (2.1. 3), (3.2.1) and (3. 2. 7) we have

(3. 3.1) Ak\ ^ = 2,3, ,7 i+1.
n+1

On using (3. 2. 5), (3. 2. 6), (3. 3.1) and (2.1. 2) we have

(3.3.2) 28



POLYNOMIALS AND THEIR DERIVATIVES 279

Similarly from (2.1. 2), (3. 3.1), (3. 2. 3) and (3. 2.4) we have

(3. 3. 3) l?»-i(*)l ^-^-πin + l) + 2τr = 4τr .

Now we prove

LEMMA 3.3.1. For — l ^ α ^ l we have

(3.3.4) - 1 _ : r ί - ^ jn^ψϊ + (W + 1 ) 2 s i n ^ , * - 2 , 3 ,

(3. 3. 5) Σ, i _ i ^ 2 6 ( w + !)~1/2»

(3.3.6)

PROOF. We will obtain the estimates for 0 5g JΓ ^ 1, similarly it holds
for — 1 5g :r ^ 0. For in view of (2.1. 3) we can also write pk(x) in the form

From (2.1.1) and (3. 3. 2) we have immediately (3. 3.4) and (3. 3. 5). From
(2.1.1) and (2.1.2) we have

(3. 3. 7) P'k(x) = ^ ~

on using (3. 3. 3), (3.1.1), (3. 3.1) and (3.1. 6) we have

from which (3. 3. 6) follow.

3.4. The object here is to prove that the estimation that we have
obtained in Lemma 3.3.1 is best possible in a certain sense.
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LEMMA 3.4.1. There exists a positive number cx and c2 such that for
n> n0

(3.4.1)

and

(3.4.2)

ψ IMP)I ^ -1/2

(3.4.3)

where

PROOF. From (2.1.1) and (2.1.2) we have

lft(0)| _ 1 ( φk(t)w{t)dt
Jo

(3. 4.4)

First we note that owing to (3.4.4) and (3.2.12) we have immediately

, 16(1-;
(3.4.5)

and a simple computation shows that

= n+1
log n,

(3
11-?- + -?-

, 4.6) f «„_,(«) «<ί)Λ = ^ " 1 r
•'n TΠί n _L_ - 1

on using (3.4. 6) we have

(3.4. 7) Γ 2/ «,(«)«<<)Λ = ( («.+1(
Jo Jo

From the identity

1 - ji = 1 - ί2^ + ί2 -
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we have

(3.4.8) ί φk(t)w(i)dt
Jo

= (I-AT tUn(t)w(t)dt

Therefore, on using (3. 4. 7), (3. 4. 3) and (3.4. 5) we have

^ 1 — T 2 ===

w/4]

= [n/8]

n
4 (n

f o r w ^

This completes the proof of (3. 4.1). In order to prove (3. 4. 2) we use (3.3.7)
and we get

(3.4.9) = 2\(n+ΐ)Ak

On using (2.1. 3), (3. 2.1) and (3.1. 5) we have

(3.4.10) (n+l) Ak + xk

cos2rθk

Using Abel's Lemma we have

(3.4.11) I (n + l) A* + (-l)k+ι xk\ ^ c6 raisin 0*)"1 » 4=2,3, ,n + l .

From (3. 4. 9) and (3. 4.11) we have
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[n/4]

which proves (3. 4. 2).

4.1. Here we shall prove lemmas which will lead to the estimates of
the fundamental polynomials of the first kind.

LEMMA 4.1.1. We have

(4.1.1)

(4.1.2) fun(

(4.1.3) \fpt(t)w(t)dt

(4.1.4) \JXpk(t)w(t)dt

I dt ^ 14M 5 / ! , 0 ^ x ^ 1 ,

, O ^ r ^ l , k=2, 3, . . . M + l ,

-α; 2 ) 1 / 4 , O ^ Λ ^ I , A=2,3, , n + 1

(4.1.5) pk(t)w(t)dt

where pk(t) is defined by (2.1. 8).

PROOF. (4.1.1) is due to P. Szasz [10]. (4.1.2) follows from (3.2.5)
and

(4.1. 6) un{t) =
n/2

(n even).

Using (3.1. 6) and Markov and Bernstein inequalities we have

( 4. x. 7 ) 1^)1 .g 2 w

2 , |/;(x)| ^ 2 w

2 i 2
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respectively. Exactly in the way I proved (3. 2. 5) we have on using (4.1. 7)

(4.1. 8) If α ^ y / 4 dt ^ 8n3/\ £ = 2, 3, , w + 1, 0 ^ x ^ 1.

From (2.1. 8) and integration by parts we have

f PkV) w(t) dt = (1 - xψ* Γk(x) ~ \ \ t I'M w{t) dt + n(n + 2) J lk(t) w(i) dt.

Now using (4.1. 7), (4.1. 8) and (3. 2. 6) we have

pk(t)w{t)dt 25n3/2 = 55n3 / 2.

This proves (4.1.3). A simple computation shows that

(4.1.9) \pk(t)\^3(n + iy, jfe = 2,3, ,

Therefore on using (3.1. 4) we have

Γ pk(t) w(t) dt ^ 3(n +1)2 f(4.1.10) Γ pk(t) w(t) dt ^ 3(n +1)2 f w(t) dt ^ Zπ(n +1)2(1 - xjfi.

This proves (4.1. 4). Proof of (4.1. 5) follows from another representation of
pk(t) and (3.2.1),

(4.1.11) pk{t) - - ( J = f ^ Σ αr uT(t)ur{xk),

with αr — n(n + 2) — r(r+2). This proves the lemma. As a consequence of
the above lemma we have from (2.1. 7), (3. 2.1) and (4.1. 5)

(4.1.12) \A'k\ ^

Also on using (2.1. 6), (4.1.12), (3. 2. 5) and (4.1. 3) we get

(4.1.13) I (1-^ 2 ) 1 / 4 sn.1(x) I ̂  14(> + 1)3/2 + 55(n + l)3/2 = 69(>z + l) 3 / 2 .

Similarly from (4.1. 4), (2.1. 6), (4. 2. 3) and (3. 2. 3) we have



284 A. K. VARMA

(4.1.14) |*»-iCz)| ^2τr(w + l) 2 + 3τr(/z-bl)2 =

4.2. Here we shall give an estimate of the fundamental polynomials of

the first kind.

LEMMA 4.2.1. For — 1 ^ x 5g 1 we have

(4.2.1) £ |r,0r)| ίg 48/23\
λ:=2

(4.2.2) I rlx) I s£ 9n ι /2, | rn+2(x) |

(4.2.3) I ή{x) I ̂  18n5/2, | rn+ix) |

PROOF. On using (2.1.10), (3.1.1) and (4.1.2) we have

(4.2. 3) follows from (4. 2.2) on using Markov's inequality. (4.2.1) follows

from (2.1. 9), (3. 3.4), (4.1.1) and (4.1.13). This proves the lemma.

LEMMA 4.2.2. For — 1 ^ x ^ 1 we have

(4.2.4) ]Γ K ( * ) l ^ 5 5 n 3 .
fc=2

PROOF. From (4.1.1) and Schwarz inequality we have

(4.2. 5) Σ ( 1 ~ ? Ύ ( : r ) l ^ 4(72 + 1) .

Therefore on using (4.1. 7) and (4. 2. 5) we obtain

(4. 2. 6) U

From (2.1. 9) and (3. 3. 6) we have

(4.2.7) Σ I β t p (α ) | ^ 180 "£ - ^ - ^ ̂  90(n+1)2
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On using (2.1. 6), (4.1.14), (4.1.12) and (4.1. 9) we have

1(*) + (x/2)un(x)]sn.1(x)

So we get

(4. 2. 8)

Now (4. 2. 4) follows from (4. 2. 6), (4. 2. 2), (2.1. 5) and (4. 2. 8).

4.3. Here we will prove that the estimates obtained in Lemmas 4.2.1
and 4.2.2 are best possible in a certain sense.

LEMMA 4.3.1. There exist positive constants c6 and cΊ such that

(4.3.1)

and

(4.3.2)

jor n ^ nx.

PROOF. From (2.1. 5), (4.1.1) and (3. 3.4) we have

n+l [n/4] - [n/4]

(4.3.3) Σ k * ( ° ) l ^ Σ k»(0) |^-^| i Σ |5,_1(0)|-2-cβnf
fc=2 fc = [»/8] ^ * = [n/8]

on using (2.1. 6) and (2.1. 7) we have

(4. 3. 4) 5n_1(0) = - - | - J Λ4(ί) w(ί)Λ ,

where

>iΠ — τ*2\ n / 2

(4. 3. 5) xk(t) = />fc(ί) — ρk(-t) = •

Almost in a similar way as we proved (3. 4.1) it follows that

[n/4]

(4.3.6) Σ kn
fc = [n/8]
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using (4. 3. 3) and (4. 3. 6), (4. 3.1) follows. The proof for (4. 3. 2) is similar

as given for (3.4.2). Here we use (4.2.6), (4.2.7) and similar result as

given in (3. 4.10). This proves the lemma.

5.1. These lemmas proved above lead us easily to prove our main

Theorems 1.2.1 and 1.3.1. First we shall prove Theorem 1.2.1. Owing to

the uniqueness theorem we can write any arbitrary polynomial of degree

< 2n + l in the form

(5. 1. 1) Q2n + l(x) = Σ Qsn + l&k) rk(x) + Σ Qίή + lfofc) pk(x)

Now (1. 2. 3) follows from (4. 2.1), (3. 3. 5), (1. 2.1) and (1. 2. 2). That (1. 2. 3)

is essentially best possible can be shown by the polynomial

(5.1. 2) fo(x) = Σ A sign r*(0) rk(x) + Σ ^^ffiL Pk{χ)
k=i k=2 -L- Z*

at x = 0. Here we use (3.4.1) and (4. 3.1). Again (1. 2. 4) follows from

(5.1.1), (1.2.1), (1.2.2), (3.3.6), (4.2.3) and (4.2.4). That (1.2.4) is essentially

best possible is shown by the polynomial

(5.1. 3) /,(*) = £ A sign ή(x) + E i ! , T W P'fc)
fc=l k=2 ^ ^

at x = 1. This follows from (3. 4. 2) and (4. 3. 2). This completes the proof

of Theorem 1.2.1.

PROOF OF THEOREM 1.3.1. Here we follow the notations given in

section 1.3. From the uniqueness theorem it follows that any polynomial

<pn(x) of degree fg 2n + 1 can be written in the form

n+2 π+1

(5. 1. 4) φn{θC) = Σ ψn{Xk,n) rkn{x) + Σ <Pn(Xk,n)plcn(x)
A:=l k=2

We have from (1. 3. 6)

(5.1. 5) Rn{x,f) = Rn(x) = Σfixk,n)rkn(x) + Σ bknPkn(x).
k=l k=2

From Lemma 8.2 of my earlier work [13] it follows that under the conditions
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of Theorem 1.3.1 there exists a sequence of polynomials φn(x) of degree ig n

such that

(5.1. 6) \f(x) - φn{x)\ = O{n-^)[{l-x^ + n+% 0 < rt <1,

and

(5.1. 7) I ̂ »(**.«) I ̂  ^ ^ - α ( l - ^ n ) ^

Now writing

f(x) - Λn(x) = f{x) - φn(χ) + φn(χ) - #„(*).

On using (5.1. 4), (5.1. 5) and the estimates of the fundamental polynomials
we have at once

I Ψn{x) - BJx) I = o(l) for a > 1/2 .

From (5.1. 6) of course we have

\fix)-φ.(x)\ =o(l).

Therefore for α>l/2

\f(x)-Rn(x)\ =o(l).

This proves the theorem. Theorem 1.3.1 is essentially best possible follows
from (3.4.1), (4.3.1) and using the device given in the paper of P. Erdos
and P. Turan [5] entitled on the role of Lebesgue function in the theory of
Lagrange interpolation.
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