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1. Notation and Introduction. In this paper the Greek letters a, 8, p,
o, and o will always be Gaussian integers, the Greek letters 7 and A will be
complex numbers, the Greek letters v and 7, will always denote Gaussian
primes. Also in this paper the Latin letters ¢, d, j, h, k, m, n, 7, s, t, H
and j¥ will represent rational integers, the Latin letters p, ¢ and g,’s will
represent primes, and the Latin letters a, b, and C; will represent real
constants. The Latin letter e is the base of the natural logarithms and 7 is
the imaginary unit.

Early in the century Vinogradov [13] considered the size of the smallest
quadratic non-residue modulo p and established

THEOREM A. If d is the smallest quadratic non-residue modulo p then
d = O(p" log’ p)
where
a=2e)":

In 1927 Vinogradov [14], [15] proved

THEOREM B. If k|p—1 and if H; is the class of kth power residues
or a class of kth power non-residues, modulo p, then the number of elements
of H, that are = x is x/k+ A, where

x
éZ
h=1

P/xy +1).

i [\’J“

A transformation on the sum implies that

Al <A/ plogp
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and

THEOREM C. If pis a prime and k|p—1 and k= m™, where m =8,
then the least kth power non-residue is less than pY™ for all sufficiently

large p.

In 1952 Davenport and Erdés [5] improved Theorem C by using the
positive continuous, strictly decreasing, function p ‘defined on [1, o] by

pw) =1—logu for 1=u=2
and

up'(u) = —plu—1) for u=2.

Asymptotically p(x) = exp(—u log u—uloglogu + O(x)). This function is
apparently due to Dickman [6] but has been considerably condensed and
clarified by de Bruijn [1].

Davenport and Erdss were able to prove

THEOREM D. If pis a prime and k|p—1 and let d be the least kth
power non-residue then d=O(p**) for any fixed ¢ >0, where (2a,)™" is the
unique solution to p(u)=k™'.

All of these results lie quite heavily on the Polya [12]-Vinogradov [13]
inequality.

In 1957 Burgess [2] succeeded in improving the Polya-Vinogradov
inequality for the Legendre symbol. Specifically he established

THEOREM E. Let o and ¢ be any fixed positive numbers. Then, for
all sufficiently large p and any N we have '

N+H

E (3))<

n=N+1

provided H>p'**°, where ( ) is the Legendre symbol.
Burgess improved Theorem A in the same paper by proving

THEOREM F. If d denotes the least positive quadratic non-residue
modulo p then d=O(p*) as p— oo for any fixed a>(4/ e )"

In 1962 Burgess [3] generalized Theorem E with
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THEOREM G. If p is a prime and if X is nonprincipal character,
modulo p, and if H and r are arbitrary positive integers then

n+H

Z x(m) < Hl—l/(r+l)Pl/4r logp

m=n+1

for any integer n, where A4 B is Vinogradov’s notation for |A|<C,B for
same constant C, and in this theorem C, is absolute.

Burgess remarked that this theorem essentially halves the exponents of
Theorem D.

It is the purpose of this paper to investigate the analogous concepts in the
Gaussian integers. Specifically, if kth power non-residues modulo a Gaussian
prime are defined as expected :

DEFINITION. If the equation 7*=a (mod v) is solvable in Gaussian
integers, then « is called a kth power residue modulo ¥ and if the equation
is not solvable in Gaussian integers then « is called a kth power non-residue
modulo .

The results of this paper are:

THEOREM 1. If @ is a quadratic non-residue modulo vy, and |a|=|8)|
for B a quadratic non-residue modulo v, then |a| < |y|**s, for all ¢>0,
a=(4./e)7, for all sufficiently large |v|’s.

And:

THEOREM 2. Let k||v|2—1 and let (4da)™' be the unique solution of
plw)y=k™'. If a is a kth power non-residue modulo vy and |v| =< |B| for B
a kth power non-residue modulo vy then |a|<<v***, for all ¢>0, and for
all sufficiently large |v|’s.

2. Lemmas. Let + be the Hardman Square [7] centered at the origin
with a vertex at (1+¢)7/2 and the two half open line segments ((=1—z2)7/2,
(—1—4)7/2). Let L(v) represent the number of lattice points in .

It was shown in [8] that if + is a Gaussian integer, then L(7)=|7|%. A
less precise result is

LEMMA 1. L(®)=|7|? + O(|7]).

Let P, represent the set of Gaussian primes in the first quadrant except
1+i and let P, represent the set of Gaussian primes on the positive real axis
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and denote P, UP,=P.

LEMMA 2. There is a natural two to one correspondence between P,
and the positive real primes congruent to 1 modulo 4 and a natural one to
one correspondence between P, and the positive real primes congruent to 3
modulo 4.

Essentially a prime p=1 (mod 4) can be expressed uniquely as p=c?+d?
with ¢ and d > 0. Then the Gaussian primes c+di and d+ci are associated
with p. The one to one correspondence is the identity correspondence.

A well known result is

LEMMA 3. If (h, k)=1, then

2_q"' = (loglog z)(¢(k))™* + K + O(1/log x)

=z
q ah?mod k)

where K is a constant independent of x and ¢ is the Euler function.

For the proof see Landau [11].
In [8] the following is established

LEMMA 4. If —1<b<0, then

> ¢t = 2"/ ((1+b)log x) + O(x**'/log? x) .

q=z

Now following the pattern of [8], for n < a ! < n+1, define

S, = 291_1
~z z/q

Sz = Z Z (Q1 Q2)—1
z @

Mz /e a/nice

S = Zﬂ Z Z (919:95)7"

aQ as

z 1Yz Z/qiCy++51

Az
szé\—:: Z te Z (g1q2++- )"

' Q3-1
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and

1
I = f yitdy,
1/2 1-y;
I, =j f (1y:) " dy, dy,
a N

1/3  A(1-v1)/2  pPl-y1-Vs
I, = f f f (015:5) 7" dys dys dy,
: a Y1 Y2

17§ pQ-v)/(G-1 1=Y1=Yg°** ~Vi-1
1 =f f . f 1yeeeeyy)7'dys - - Ay
a Y1

Y1

Implicit in the papers of Chowla and Vijayaragharan [4] and de Bruijn [1]
are the fomulas

lim 3~ (1) S; = 3 (=1)*' I
T =1 j=1
and

; (=1 I, = 1—pa™).

Let S¥ be S, only the primes are to run only over the arithmetic
progression wk+h where (k, h)=1.
Also in [8] is established

LEMMA 5. (¢(k))’ SF=S;+0(1/log x), where ¢ is the Euler function.
Let S;(2) and S}(2) stand for S; and S} respectively only with the x’s in
the limits of summation replaced by 2.

Also in [8] is

LEMMA 6. If 1>a>0 then S,2)=3S,+O01Q/logx) and S}2)
= S¥ + O(1/log x).

Let W¥(a, p) represent the set of Gaussian integers in j that have a prime
factor that exceeds |u|®.
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LEMMA 7. lhlrn Y(a, w/|pl2 =1—pla).
oo

PROOF. Let vy, be a Gaussian prime. Then the Gaussian integers in
that are multiples of v, are in one to one correspondence with the lattice

S
points in (u/v,) and by Lemma 1 L(u/v,) = |p/7:|* + O(| p/m:1).
B
Now set z=|p|/~/"2 and adopt the notation that > F(y,) means a

A
summation over all v, in P,UP, with A<|y,|<B. Primes in other quadrants
are merely associates of primes in P,UP,. For n =< a ! < n+1 one has

WY(a, p) — 1= (L{p/v,) —1)

Nz z/|nl

=2 2 Lp/miv) =)

¢ Inl

Yz N/l 2/ |7ml

+2° 2 > L/ rravs) —1)

z*  ml |7l
1'/17- Wm z/|7173°**Yn-1]
+ (=13 >0 eee 30 (L(w/viYa et Vam) —1).
2 [l [7n-1]

Now consider the first of these sums:

xZﬂ (L(p/v,) —1) = i (lp/v*=1) + O (Z |I"/'Y;|) .

The first term on the right can be separated into those ¥, in P, and those v,
in P,, yielding

S (a1 =20plt S g +pl D + 231

x20 x x®
qs1(4) q=3(4) g=1(4) g=34)

=2|p|* S¥@2) + |pl*01) + O(x*/log x) + O(zx/log x)
= 2|p|* S¥2) + o(|p]?),

where the progression indicated for S}(2) is 1+4h.
The second term on the right is
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x? z
O(ZI#I quf‘” + | pl ZqI‘) = O(|p|z/log x* + |p| log(a™))

=o(|ul?).

So combining it follows that
2 (Lp/vy) —1) = 2| p|* S¥2)+o(|p]?) .

Now the second of these sums yields to the same type of treatment.
Consider

~a /| NE 2/l N
Z ‘2_.' (L(F'/'Yl'y‘z)'_l) Z ZI (l/"'/'Yl'Yzlz 1)+O(Z lzl ’I"/’Yl )
z¢  |nl ¢ |n z¢  In

The first term on the right can be broken into two cases.
Case one: Both v, and v, in P,. Then

VT z/|nl x Y| z /g

LIZ (p/rm|*=D=4[pl* 202 (419 27_‘,2

= 4|p|* 5¥(2) + O(z*/log x)
= 4[p|* S¥@2) + o(|p]?).

Case two: At least one of v, or v, is in P,. It follows that

Nz x/Im) T z 2
S5 (vl —1><|mz(qu )(Zq{")+ w( zq;z) + O&/log 2)

@ Inl qu: Py q,:‘l;:lP, qlxlun Py
= |p|2S¥2) o(1) + |a|%(o(1))? + O(x?/log x)
=o(|p|?).

Hence the first term of the right hand side is

4|p]?SH2) + o(pl?).

It is also a simple procedure to show that

VT z/|n)
O(Z Z |.‘-“/’Yl')’zl_l) = o(|p|?).

z¢  |ml
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Therefore the entire second sum is
41l St + o(|ul9).
A similar general argument would show that
Yz =/ Inl z/ e+ eal
202 e 2 L/vaveceev) = (@) pl? SH2) + o(|pl?).

Ea Iml 1764l

Combining the results in

Y(a, p) = 1= Z_ (=)™ pA)™ | p]* Sa2) + o(|pl?)

(=1 | * (@)™ Si + o(|pl®)

Il
™=

3
I

1

Il
M=

(=)™ w|* Sy + o(|p]?)

E]
||

1

or equivalently

Ya,p 1
[pl*  |pl?

+ Zn: (=D S, + o(1),

which is the result of Lemma 7.

Define + o = {8: B=a+o, @ in 4}. A generalization of Theorem G
established in [9] is

LEMMA 8. If pis a prime congruent to 3 modulo 4, if X is a non-
principal Dirichlet character defined for the non-zero elements of Z(i)/(p),
(p) the principal ideal generated by p, and if p and r are arbitrary, then

2 () |ty pirevirars Jog p

acpudo

for any o, where { is Vinogradov's notation.

A result that follows from Lemma 8 that is a generalization of a theorem
in [10] is

LEMMA 9. If pis a prime congruent to 3 modulo 4, if k|p*—1, if X,
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is a Dirichlet kth power character defined for the non-zero elements of
Z@)/(p), if Ko, Ky, + -+, Ky, are the class of kth power residues and the k—1
classes of kth power non-residues, and N(K,, u) is the number of Gaussian
integers in K;N fi, then N(K,, p)=|p|*/k+E; where E;{|p|*4@+9pr+nirarss
<log p.

PROOF. Let E; = NK;, p) — |p|?/k. Now

=

-1

(A) E,=

1

NK, ) — 3 |ul*/k = 0.
7=0

k-
Jj=0

<,
[
)

Since X§ is a non-principal Dirichlet character for s =1,2,3,---,k—1 it
follows that

Z xlsc(a) I < C8 |F‘I2'_4/(2r+3) p(r+l)/7‘(2r+3) log p'

ainp

If we let A be a primitive kth root of unity the above expression becomes

(B)

k-1
Z LHMK]‘, F’) [ < C.’ |F’|2—4/(21‘+3) P(r+l)/r(2r+3) log P‘
j=0

But

k-1 k-1

A NK;, p) = X AN (|ul*/k+E))
i=0

<.
o

a‘

-1

‘ k-1
N |k + 3N E,
0 j=0

1M

L

-

A E,.

0

<
Il

Examining a particular 5, say j*, and multiplying through (B) by a7
one has

(C ) ”Zﬂ )\'js—j's Ej ‘ é C’ [Plz—4/(2r+3) P(‘r+1)/7'(2'r+3) log P .
. i=0

Adding over s=1,2,...,k—1, throwing in expression (A) and using the
triangular inequality one has
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k—1k— k-1
Z Z jx j*s Ej < Z Cs ]/"] 2—-4/(2r+3) p(1'+l)/1'(21'+3) log P.
8=0 j=0

8=1
But
k-1 k-1 k-1 k-1
NIV E, =3 E; > Ay
s=0 j=0 j=0 3=0
= kEj-‘ .
Hence
k-1
| Ej*l < Z Cs/kll-blz—y(g'”) P{r+1)/’r(2r+3) log ?,
s=1
as claimed.

A parallel to Lemma 8 that can be established by identical arguments is

LEMMA 10. If v is in P, and X is a non-principal Dirichlet character
modulo v and if the Gaussian integer p and the positive integer r are
arbitrary, then

2> X@) & |p|verd|y| e Jog|y|, for any o.

«euea'

The slight difference in arguments for this Lemma and Lemma 8 occurs
specifically in Lemma 4, and the replacing of |y| and § for p and 3
respectively in article [9].

A parallel to Lemma 9 that is established in an identical manner is

LEMMA 11. If v is in P, and k||v|*—1 and X, is a Dirichlet kth
power character modulo v, if K, K,,--+,K,_, are the class of kth power
non-residues and N(K;, p) is the number of Gaussian integers in K;Np,
then

N(K;, p) = |u|*/k+E;
where
Ej < |F12—4/(2'r.+3) l,y! (r+1)/r(@r+3) loglfyl .
3. Proof of Theorem 1. Assume that Theorem 1 is false. That is,

there is an infinite set of Gaussian primes, {y}, such that for some &>0
every o * O that satisfies the inequality |w| = |v|**® is a quadratic residue
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modulo . Let v, be one such Gaussian prime. Choose [€]7!+1 =7r. Let p
be such that

|l = |y | Y4 log |y, | )@ +92 + b, —1<b<O.

Now by Lemma 9 or 11

where
|E;| < C,|p|>2%3 oy, | D/7ras Jog |y, |
= G| p|? [, @07 (log |y, | )97 423 |y, | r+D/r@re9) Jog |y, |
= C;|p|*/log|v.| .
Hence
E; = O(|p|*/loglu|) = o(|p|®) .
Also

!'71 ‘ a+e _Z_ (I#l#/ru/(log[,yl|)2712r+3)/r+1)a+s

— IF'l40,—4a/r+1+4rs/r+1/(log| ,yll)zr(zr+s)(a+s)/r+1
- I#l4a+4(r£—a.)/7+1/(logl,yl|)2r(2r+3)(a+e)/r+1
= |p|te**,  for |v,| sufficiently large.

The value 4a + 26=¢72 + 2€& can be assumed to be less than 2.

Now since the quadratic residues modulo vy are closed under multiplication
a quadratic non-residue in 4 must have a prime factor that exceeds |u|%*%,
Therefore

NKy, p) = |p|*/2 + E, = V(da+2¢, p)
= (1—p((4da+28)")N|pl* + o(|pl?)
= log((4a+28)™)| p|* + o[ pl*)
= — log(4a+2¢€)|p|* + o(|u|?)
= (—log(4a) — log(1+&/2a))|p|* + o|p|*)
= |p|?/2— | p|* log(1 +&/2a) + o(| p|?),

since a=1/4/¢ . Therefore |u|®log(l+&/2a)<—E,+o|p|? which can happen
for only finitely many %’s to be consistent with Lemmas 9 and 11.
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4. Proof of Theorem 2. Assume that Theorem 2 is false. That is there
is an infinite set of Gaussian primes, {y}, such that for some &> 0 every
o % 0 that satisfies the inequality |e| < |v|**® is a kth power residue modulo
v. Let v, be one of the primes of this set. Choose r=1+[&"!] and select

a p such that

lp| = |7 Y log|y,])**¥% + b, with —1=5b<0.

Now by Lemma 9 or 11
NK,p) = |p|/k+E;, j=0,1,2-+-,k—1,

and in particular

L

-1

N(K;, p) = (k=1)| p|*/k — E,

<
)
-

where
E, =o(|pul?).

Also
|y, %" = |p|®**, for |v,| sufficiently large.

Now since the kth power residues modulo y are closed under multiplication
a kth power non-residue in 4 must have a prime factor that exceeds |u|%+**,
Therefore

kf N(K;, p) = (k—1)|p|*/k — E,
"~ < V(4a+28, p)
= (L—-p((4da+28)™)|u|* + o(| p|*)
= 1=p((4a)™"NIpl* + (P(42)™) — p(4a+28))|p|* + o(|p]?)
= (k=D p|*/k + (((4a)™) — p(4a+28)7" | p]* + o(| p]*)
or equivalently

—E, = c|p|? + o(|pl|?) and ¢, <0

since p is a strictly monotonic decreasing function. But this can happen for
only finitely many ¥’s to be consistent with Lemmas 9 and 11.
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