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1. Notation and Introduction. In this paper the Greek letters a, βy μ,
σ, and ω will always be Gaussian integers, the Greek letters T and X will be
complex numbers, the Greek letters γ and 7/ will always denote Gaussian
primes. Also in this paper the Latin letters c, d, j> h, k, m, n, r, 5, t, H
and j * will represent rational integers, the Latin letters />, q and q/s will
represent primes, and the Latin letters a, b, and C5 will represent real
constants. The Latin letter e is the base of the natural logarithms and i is
the imaginary unit.

Early in the century Vinogradov [13] considered the size of the smallest
quadratic non-residue modulo p and established

THEOREM A. If d is the smallest quadratic non-residue modulo p then

d = O(pa log2 p)

where

a =

In 1927 Vinogradov [14], [15] proved

THEOREM B. If k\p—l and if H5 is the class of kth power residues
or a class of k th power non-residues, modulo p, then the number of elements
of Hs that are t^x is x/k + Δ, where

x p/h

A transformation on the sum implies that
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and

THEOREM C. If p is a prime and k\p—l and k^mm, where ra ^ 8,
then the least kth power non-residue is less than pι/m for all sufficiently
large p.

In 1952 Davenport and Erdos [5] improved Theorem C by using the
positive continuous, strictly decreasing, function p defined on [1, 00] by

p(μ) = 1 - log u for 1 ^ u ^ 2

and

uρ\u) — —ρ(u—l) for u^2.

Asymptotically ρ(u) — exp( — ulog u—w log log ^ -f O(u)). This function is
apparently due to Dickman [6] but has been considerably condensed and
clarified by de Bruijn [1].

Davenport and Erdδs were able to prove

THEOREM D. If p is a prime and k\p—l and let d be the least kth
power non-residue then d=O(pat+*) for any fixed e > 0, where (2ak)~ι is the
unique solution to ρ{u) — k~ι.

All of these results lie quite heavily on the Polya [12]-Vinogradov [13]
inequality.

In 1957 Burgess [2] succeeded in improving the Polya-Vinogradov
inequality for the Legendre symbol. Specifically he established

THEOREM E. Let a and e be any fixed positive numbers. Then, for
all sufficiently large p and any N we have

Σ f <«H

provided H>p1/i+σ, where ( ) is the Legendre symbol.

Burgess improved Theorem A in the same paper by proving

THEOREM F. If d denotes the least positive quadratic non-residue
modulo p then d—O{pa) as p-+ 00 for any fixed α

In 1962 Burgess [3] generalized Theorem E with



500 J. H. JORDAN

THEOREM G. If p is a prime and if % is nonprincipal character,
modulo p, and if H and r are arbitrary positive integers then

Σ X(m) 4 H'-1^0 pι/ir log p
m=π+l

for any integer n, where A^B is Vίnogradov's notation for \ A| < CXB for
same constant Cγ and in this theorem Cx is absolute.

Burgess remarked that this theorem essentially halves the exponents of
Theorem D.

It is the purpose of this paper to investigate the analogous concepts in the
Gaussian integers. Specifically, if £th power non-residues modulo a Gaussian
prime are defined as expected:

DEFINITION. If the equation ηk = a (mod y) is solvable in Gaussian
integers, then a is called a kύi power residue modulo γ and if the equation
is not solvable in Gaussian integers then a is called a £th power non-residue
modulo γ.

The results of this paper are:

THEOREM 1. If <X is a quadratic non-residue modulo yy and \cί\^.\β\
for β a quadratic non-residue modulo γ, then \a\ < |γ | α + e , for all e > 0,

)~1> for all sufficiently large |γ | 's .

And:

THEOREM 2. Let k\\y\2-l and let (4a)'1 be the unique solution of
ρ(u) = k~1. If a is a kth power non-residue modulo y and | γ | :g \β\ for β
a kth power non-residue modulo y then | tf |<γα +% for all e > 0, and for
all sufficiently large \y\'s.

2. Lemmas. Let f be the Hardman Square [7] centered at the origin
with a vertex at (l-hz')τ/2 and the two half opsn line segments ((±1 —z)τ/2,
(—1 —ί)τ/2). Let L(τ) represent the number of lattice points in f.

It was shown in [8] that if r is a Gaussian integer, then L ( τ ) = | τ | 2 . A
less precise result is

LEMMA 1. L ( τ ) = | τ | 2 + O( |τ | ) .

Let Pi represent the set of Gaussian primes in the first quadrant except
1 + ί and let P2 represent the set of Gaussian primes on the positive real axis
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and denote

LEMMA 2. There is a natural two to one correspondence between Pι

and the positive real primes congruent to 1 modulo 4 and a natural one to
one correspondence between P% and the positive real primes congruent to 3
modulo 4.

Essentially a prime />= 1 (mod 4) can be expressed uniquely as p—
with c and d > 0. Then the Gaussian primes cΛ-di and d+ci are associated
with p. The one to one correspondence is the identity correspondence.

A well known result is

LEMMA 3. If (A, k) = l, then

Σq~ι = (log log x)(φ{k)Yι + K + O(l/log x)
QSx

<7sΛ(modfc)

where K is a constant independent of x and φ is the Euler function.

For the proof see Landau [11].
In [8] the following is established

LEMMA 4. If -Kb < 0 , then

Σqb = x1+b/({l+b)logx) + O(xb+ι/\og*x) .

Now following the pattern of [8], for n^a~ι <n + l, define

xa <7ι

Afx «/x/qi x/QiQt

J = Σ. Σ
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and

/•= ί y?dyl

Ja

,1/2 - I - , ,

Λ = I I Cyi^) * dy2 dyx

/.1/3 Ml-Vύ/2 pl-Vi-y»

h = I I I (^I^S^S) ' 1 ^ys ^ 2 dyxj a Jyx Jyt

/*i/y /«(i-yi)/(i-i) /»ι-Vι-yt'"-vj-ι

Ij = I I I (y&2' myj)~ιdyj <ίyi.

Implicit in the papers of Chowla and Vijayaragharan [4] and de Bruijn [1]
are the fomulas

and

Let Sf be Sj only the primes are to run only over the arithmetic

progression τvk+h where (k, h) = l.

Also in [8] is established

LEMMA 5. (φ{k))j Sf = Sj + O(l/\ogx), where φ is the Euler function.

Let Sj{2) and 5^(2) stand for Sά and Sf respectively only with the x's in

the limits of summation replaced by x2.

Also in [8] is

LEMMA 6. If l>a>0 then S,(2) = S, + O(X/logx) and Sf(2)

Let Ψ(a, μ) represent the set of Gaussian integers in fι that have a prime
factor that exceeds \μ\a.
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LEMMA 7. limψ(a,μ)/\μ\2 = 1-p{a~ι).
|μ|->oo

PROOF. Let yx be a Gaussian prime. Then the Gaussian integers in μ
that are multiples of γ,. are in one to one correspondence with the lattice

points in (ji/ji) and by Lemma 1 L(jι/yλ) = |/*/7i|2 + O(\μ/yx\).
B

Now set x=\μ,\ /V~2~ and adopt the notation that Σ F(Vj) means a
A

summation over all y5 in P x U P 2 with A< \ jj \ <B. Primes in other quadrants
are merely associates of primes in PiUP2. For n ^ a'1 < n + 1 one has

Inl

Σ Σ Σ
*a |Ti| |7tl

Now consider the first of these sums:

Σ,(L(μ/Ύl)-i) = χ;(\μ/ y i\>-l) + o

The first term on the right can be separated into those yx in Pi and those
in P 2, yielding

χ2« xa ac«β x α

flfSl(4) (7=3(4) (7=1(4) ( 7 = 3 ( 4 ;

5?(2) + \μ\2o(ΐ) + O(x*/logx) + O(x/\ogx)

where the progression indicated for Sf(2) is ί+4Jι.
The second term on the right is
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Σ^Γ 1) = O(\μ\x/\ogx> + \μ\
X* I

= o{\μV).

So combining it follows that

-1) =

Now the second of these sums yields to the same type of treatment.
Consider

Vx x/\Ύi\ *Jx xl\Ίx\ /Vx~ x/\Ύi\ \

Σ Σ (L(μ/yιy2)-l) = Σ Σ (l^/'/i72|
2-i)+o Σ Σ 1/Vτ.l

^ iγU x IT, I \χβ |τil /

The first term on the right can be broken into two cases.
Case one: Both yι and γ2 in Plm Then

Λ/X" x/\Ύι\ x x*/qt x x*/qt

05° |τ i |
T1.T2in.P1

Case two: At least one of 7χ or y2 is in P 2 . It follows that

/ X* \ / X \ I X \2

-i)^l/Ί ! Σ?Π Σ ϊ ί +IHM Σ?r"
i P Q in F i F

|Tιl \ x / \ a: / \ «
CΓi in Pi Qj in F f ρ, in F,

Hence the first term of the right hand side is

It is also a simple procedure to show that

O(ΣΣ'
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Therefore the entire second sum is

4\μ\*Sϊ+θ(\μ\*).

A similar general argument would show that

Σ Σ ••• Σ
& iTil iTi-il

Combining the results in

= Σ (-ir+l\μ\2{Φ(4)rs* +

or equivalently

which is the result of Lemma 7.

Define f 0 σ = [β: β = Λ+σ, tf in T}. A generalization of Theorem G
established in [9] is

LEMMA 8. If p is a prime congruent to 3 modulo 4, if X is a non-
principal Dirίchlet character defined for the non-zero elements of Z(i)/(p),
(p) the principal ideal generated by p, and if μ and r are arbitrary\ then

Σ X(CC) i\μ\ 2"4/(2r+3) pίr+l),r(2r+V J Q g p

for any <r, where ^ is Vinogradov's notation,

A result that follows from Lemma 8 that is a generalization of a theorem
in [10] is

LEMMA 9. If p is a prime congruent to 3 modulo 4, if k\p2 — l, if 7Ck
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is a Dirichlet kth power character defined for the non-zero elements of
Z(i)/(p), if Ko, Kly , Kfc-i are the class of k th power residues and the k—1
classes of k th power non-residues, and N(Kjy μ) is the number of Gaussian
integers in KjΠμ, then N{Kjyμ) = \μ\2/k+Ej where Eji\μ\2-^2r+3)p(r+1)/r(2r+3)

-log p.

P R O O F . Let E, = N(Kjfμ) - \μ\2/k. Now

( A )
j=o

Since X% is a non-principal Dirichlet character for s — 1,2, 3, , k—1 it
follows that

22 x&cc) < c β V i 2 - 4 / ( 2 r + 3 ) / > ( r + i ) M 2 r + 3 ) i o g / > .
a in μ

If we let λ be a primitive &th root of unity the above expression becomes

( B )

But

, μ) < C. I /* 12-4/(2r+3> ?'+»*»+*> log p .

Σ
.7=0

Examining a particular j , say j * , and multiplying through (B) by X~j*s

one has

( C ) 22 MS~r*
J "

Adding over 5 = 1,2, , k—1, throwing in expression (A) and using the
triangular inequality one has
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But

Σ Σ v ~ J " ' E J < Σ c»\μ\i~Wr+3)pw«»+* log/>

fc-1 fc-1 fc-1 J f c - 1

Σ Σ λ''~Λί £J = Σ ^ Σ

Hence

as claimed.

A parallel to Lemma 8 that can be established by identical arguments is

LEMMA 10. If y is in Px and X is a non-principal Dirichlet character
modulo y and if the Gaussian integer μ and the positive integer r are
arbitraryp, then

Σ, Wμ) 4 |/χ| 2- 4 / ( 2 r + 3 ) |γ | ( r + 1 ) / r ( 2 r + 3 )log|γ|, for any σ.
a € μφ<r

The slight difference in arguments for this Lemma and Lemma 8 occurs
specifically in Lemma 4, and the replacing of |y| and *y for p and $
respectively in article [9],

A parallel to Lemma 9 that is established in an identical manner is

LEMMA 11. If y is in Px and £ | | 7 | 2 - 1 and Xk is a Dirichlet kth
power character modulo y, if Ko, Kl9 , K)c-1 are the class of kth power
non-residues and N(Kj9 μ) is the number of Gaussian integers in K}C\μ,
then

N{Kjyμ)= \μ\*/k + E,

where

Ej 4 I μ I a-VOr+» I y I (r+l)/r(2r+3) j Q g | γ |

3. Proof of Theorem 1. Assume that Theorem 1 is false. That is,
there is an infinite set of Gaussian primes, {7}, such that for some £ > 0
every ω ^ O that satisfies the inequality |ω | fg 171α+ε is a quadratic residue
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modulo γ. Let γ, be one such Gaussian prime. Choose [£]"'+1 = r. Let μ
be such that

Now by Lemma 9 or 11

N(K}, μ) = \μ\ */2 + Es, i = 0 o r l ,

where

IE, \ < C} I μ 1 2 - ^ + 3 1 7 l I <"»/'<»+« log 1 7 l I

= C , I /* I S I y,tt+Vr)/4 (Jog I γ i I )«r+3)/2 I -4/2r+S | ̂  | (r+1,/r(2r+

= C ί |/»|Vlog|γ1 | .

Hence

£ , = O(\μ\ VlQg|/*l) = 0(!/ | l ) .

Also

I γ, I »+ε ^ (I μ I ̂ + V(log I γ, | )*•»•+»)/'«)•+•

__ I I 4α-4α/r+l+4rε/r+l//Jog | y | \2r(2r+3)(α+ε)/r+l

_. I I 4α+4(rε-α)/r+yQOg | ^ i | \2r(2r+3)(α+ε)/r+l

^\μ\4α+2e, for I γ11 sufficiently large.

The value 4α + 2^=^~1/2 + 28 can be assumed to be less than 2.
Now since the quadratic residues modulo γ are closed under multiplication

a quadratic non-residue in μ must have a prime factor that exceeds |/*|4α+2ε.
Therefore

= (-log(4α) - log(l+£/2α))|/*|2 + o(\μ\>)

since α = 1/4Ve . Therefore |μ\ 2 log(l4-8/2ά)^ —Eι

Jto\μ\2, which can happen
for only finitely many γ's to be consistent with Lemmas 9 and 11.
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4. Proof of Theorem 2. Assume that Theorem 2 is false. That is there
is an infinite set of Gaussian primes, {γ}, such that for some £ > 0 every
ω ^ O that satisfies the inequality |α>| ^ | γ | α + 6 is a &th power residue modulo
γ. Let Ύi be one of the primes of this set. Choose r^l + lS'1] and select
a μ such that

\μ\ = |y 1 |< 1 + ^ 4 ( log |γ 1 | )» r + M + &, with - 1 ^

Now by Lemma 9 or 11

N(Kj,μ) = \μ*\/k + Ej9 j = 0, 1, 2, . . . , * -

and in particular

where

E0=θ(\μ\*).

Also

|Ύi | α + e S|/^ | 4 α + 2 % for \y,\ sufficiently large.

Now since the £th power residues modulo γ are closed under multiplication
a kth power non-residue in μ must have a prime factor that exceeds !/*|4α+2e.
Therefore

+ o(\μ\*)

= (k-l)\μ\*/k + (p((4α)-) - d(Aa+26))-i\μ\* + o(\μ\>)

or equivalently

a n d c e < 0

since /) is a strictly monotonic decreasing function. But this can happen for
only finitely many γ's to be consistent with Lemmas 9 and 11.
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