Tόhoku Math. Journ. 21(1969), 337-342

A NOTE ON SINGULAR IDEALS

R.YUE CHI MING

(Received February 24, 1969)

Introduction. In this note, A is a ring with identity, and modules are left, unitary.

Our object here is to answer (in the negative) the following question raised by F.L. Sandomierski in [5, p. 117] :

Does the condition $Z(M/Z(M)) = 0$ for every module M imply that A has a semi-simple maximal left quotient ring?

It is known that A has a semi-simple maximal left quotient ring if, and only if, $Z(A) = 0$ and the dimension of $_A A$ is finite (in the sense of Goldie) [5, Th. 1.6].

In fact, we characterize a ring with $Z(A) = 0$ by the above given condition.

This characterization also proves that the homomorphic image of an injective module over a ring A with $Z(A) = 0$ has its singular submodule as a direct summand.

Finally, we give a characterization of a self-injective regular ring and a characterization of a self-injective non-regular ring.

ACKNOWLEDGEMENT. We are indebted to Dr. G. Rinehart for many helpful comments.

Let us recall

DEFINITION. The closure of a submodule N in M is $Cl_M(N) = \{x \in M/N\}$ $(N \colon x)$ is essential in A }. Then $Cl_{\mathtt{M}}(0)$ is the singular submodule of M denoted by *Z(M).* Write *Cl(N)* when no ambiguity arises.

The fact that *Cl^M (N)* contains every essential extension of *N* in *M* follows from the following known

LEMMA 0. If P is an essential submodule of M, for any $x \in M$, $(P : x)$ *is essential in A.*

PROOF. Let $0 \neq b \in A$. If $bx = 0$, $b \in (P : x)$. If $bx \neq 0$, there is a $t \in A$

such that $0 \neq tbx \in P$. Hence $0 \neq tb \in (P:x)$ which proves the lemma.

LEMMA 1. *Let N be a submodule of M. Then ClCl(N) is the unique maximal essential extension of Cl(N) in M.*

PROOF. Since *ClCl(N)* contains every essential extension of *Cl(N)* in *M,* it is sufficient to prove that *Cl(N)* is essential in *ClCl(N).*

Suppose it is not : then there is a nonzero $x \in ClCl(N)$ such that $Ax \cap$ $Cl(N) = 0$. Since $(Cl(N): x)$ is essential in A, for any $0 \neq a_0 \in A$, there is a *t* ϵ *A* such that $0 \neq ta_0 \in (Cl(N) : x)$. Then $ta_0x \in Ax \cap Cl(N) = 0$ which proves that $x \in Z(M)$. Therefore $x \in Ax \cap Cl(N)$ which is a contradiction.

LEMMA 2. *Let N be a submodule of M. For any submodule P of N, N* is essential in $Cl_M(N)$ if, and only if, $Cl_N(P)$ is essential in $Cl_M(P)$.

PROOF. If N is essential in $Cl_M(N)$, then obviously $Cl_N(P)$ is essential in *cι^M {P).*

Conversely, suppose N is not essential in $Cl_M(N)$. There is a nonzero x ϵ *Cl_M*(*N*) such that $N \cap Ax = 0$. Then $(0:x) = (N:x)$ which implies $(0:x)$ is essential in A. Thus $x \in Z(M) \subseteq Cl_M(P)$. Now $Ax \cap Cl_N(P) \subseteq Ax \cap N = 0$ which proves that $Cl_N(P)$ is not essential in $Cl_M(P)$.

LEMMA 3. Let M be an A-module which contains an element whose *left annihilator is zero. If Z(M) is a direct summand of M, then Z(A) = 0.*

PROOF. Let $x \in M$ such that $(0 : x) = 0$. Since $M = Z(M) \oplus N$, where *N* is a submodule of *M*, let $x = z + y$, where $z \in Z(M)$, $y \in N$. *y* is nonzero since $x \notin Z(M)$. Now $(0 : z) \cap (0 : y) \subseteq (0 : z + y) = (0 : x)$ and therefore $(0 : z)$ $(0 : y) = 0$ by hypothesis. This implies that $(0 : y) = 0$ since $z \in Z(M)$. Let $0 \neq b \in A$. Since $0 \neq by \in N$, then $by \notin Z(M)$, which means there is a nonzero $c \in A$ such that $(0 : b\gamma) \cap Ac = 0$. This implies $(0 : b) \cap Ac = 0$ which proves that $b \notin Z(A)$, and therefore $Z(A) = 0$.

THEOREM 4. Le£ *M be a module, N a submodule of M. Consider the following statements* :

(1) $Z(A) = 0$;

(2) $ClCl(N) = Cl(N)$ (or equivalently, $Z(MCl(N)) = 0$);

(3) *M* injective implies $ClCl(N) = Cl(N)$;

(4) *M injective implies Cl(N) injective*

(5) $Cl(N)$ is essential in M implies $Cl(N) = M$.

Then, if (1) *is true,* (2) *through* (5) *hold for arbitrary M, N. Conversely, if one of* (2) *through* (5) *holds for arbitrary M when N=0, then* (1) *is true.*

PROOF. (1) implies (2). Suppose $Z(A) = 0$. It is sufficient to show $ClCl(N) \subseteq Cl(N)$. Let $x \in M$, $x \notin Cl(N)$. We prove $x \notin ClCl(N)$. Since $(N: x)$ is not essential in A, there is a nonzero $b \in A$ such that $Ab \cap (N : x) = 0$. We show $(Cl(N): x) \cap Ab = 0$ and this will prove that $x \notin ClCl(N)$.

Let $c \in (Cl(N) : x) \cap Ab$. Then $c = ab$, where $abx \in Cl(N)$. So for any $d \in A$, there is a $t \in A$ such that $0 \neq td \in (N: abx)$.

Hence $tdab \in (N: x) \cap Ab = 0$, which shows that $c = ab \in Z(A) = 0$.

(2) implies (3) obviously.

(3) implies (4). If *M* is injective, let £ be an injective hull of *Cl(N)* in *M.*

Then $E = ClCl(N)$ by Lemma 1, and hence $Cl(N) = ClCl(N) = E$ is injective.

(4) implies (5). Let $Cl_M(N)$ be essential in M. Let M be an injective hull fo M. Then $Cl_M(N) \subseteq Cl_M(N)$ and since $Cl_M(N)$ is essential in M, so is $Cl_M(N)$. By (4), $Cl_{\hat{M}}(N)$ is injective and therefore $Cl_{\hat{M}}(N) = \hat{M}$, which proves that $Cl_M(N) = M$.

Here, we remark that (4) for $N=0$ implies (5) for $N=0$.

Suppose now that (5) holds for $N = 0$. Let E be an injective hull of $Z(A)$ in \hat{A} , the injective hull of A .

Then $Z(A) \subseteq Z(E)$ and therefore $Z(E)$ is essential in E which implies $Z(E) = E$ by (5).

Since $Z(A)$ is essential in $Z(\widehat{A})$ by Lemma 2, and $Z(A) \subseteq Z(E) \subseteq Z(\widehat{A})$, $E = Z(E)$ is essential in $Z(\widehat{A})$ which proves that $E = Z(\widehat{A})$. By Lemma 3, $Z(A) = 0$, which shows that (5) implies (1).

REMARK 1. The equivalence of (1) and (2) in Theorem 4 (taking $N = 0$) answers in the negative a question raised by Sandomierski (see Introduction) since a ring with identity, having zero singular ideal, is not necessarily of finite dimension. (For an example, see [1, p. 219]).

Also this characterization provides the following generalization of [5, Corollary to Theorem 2.10] :

PROPOSITION 5. If $Z(A) = 0$ and $M \rightarrow Q \rightarrow 0$ is an exact sequence of *A-modules with M injective, then Z(Q) is a direct summand of Q.*

For a proof, see [5, Theorem 2.10].

Now what can we say about a ring with a non-zero singular ideal ?

LEMMA 6. Let M be a module with $Z(M) = 0$. For any $x \in M$, and *any ideal I of A, Ix is essential in* $Cl_A(I)x$ *.*

340 R. YUE CHI MING

PROOF. Let $0 \neq y \in Cl_A(I)x$. Then $y = bx$; $b \in Cl(I)$. Since $Z(M) = 0$, there is a nonzero $c \in A$ such that $Ac \cap (0 : y) = 0$.

Since $(I : b)$ is essential in A, there is a $t \in A$ such that $0 \neq t \in (I : b)$. Therefore $0 \neq tcy = tcbx \in Ix$, which proves that *Ix* is essential in $Cl(I)x$.

PROPOSITION 7. $Z(A) \neq 0$ *if, and only if, for any module M with* $Z(M) = 0$, $(0: x) \neq 0$ for every $x \in M$.

PROOF If $Z(A) \neq 0$, for a module M with $Z(M) = 0$, if $x \in M$, by Lemma 6, 0 is essential in $Z(A)x$, which proves that $(0 : x) \neq 0$.

Conversely, let $Z(A) = 0$. Then $(0:1) = 0$, where $1 \in A$.

Next we give a characterization of a ring with essential singular ideal (for example, when *A* is prime or uniform with $Z(A) \neq 0$.

PROPOSITION 8. *The following conditions are equivalent* :

(1) *Z(A) is essential in A;*

(2) *For any module M, Z(M) is essential in M;*

- (3) $Z(M) = M$ if $Z(M)$ is injective;
- (4) $Z(M) \neq 0$ for every non-zero module M.

PROOF. (1) implies (2). If $Z(M) = M$, there is nothing to prove. So let $x \in M$; $x \notin Z(M)$. Then there is a nonzero $b \in A$ such that $Ab \cap (0 : x) = 0$. Since $Z(A)$ is essential in A, there is a $t \in A$ such that $0 \neq tb \in Z(A)$. Now $Atb \cap (0 : x) = 0$ and therefore $(0 : tb) = (0 : tbx)$. Hence $0 \neq tbx \in Z(M)$, which proves that *Z(M)* is essential in M.

(2) implies (3) obviously.

(3) implies (4). If $Z(M) = 0$, then $M = Z(M) = 0$.

Finally, if $Z(A)$ is not essential in A, there is a nonzero ideal I such that $Z(I) = 0$. Hence (4) implies (1).

REMARK 2. A necessary and sufficient condition for *Z(A)* to be essential in *A* is that if *N* is a submodule of *M*, $Z(N)$ is essential in $Z(M)$ if, and only if, *N* is essential in *M.* (This follows from Lemma 2 and the fact that condition (2) in Proposition 8 implies *Cl(N)* is essential in *M).*

It is known that for any ring A , $Z(A) = 0$ if, and only if, A has a regular maximal left quotient ring Q. In that case, $_4Q$ is an injective hull of $_4A$. Also *^QQ* is injective. (see, for example, [4]).

We conclude this note with a characterization of a self-injective, regular ring.

THEOREM 9? *The following conditions are equivalent* :

(1) *A is a self-injective regular ring*

(2) If N is a submodule of M, for any $x \in M$, $(Cl(N): x)$ is injective

(3) $(0:b)$ *is injective for every b* \in *A*;

(4) *There is a faithful module M such that the annihilator of every element of M is injective.*

PROOF. Let us first remark that for any submodule *N* of *M* and any $x \in M$,

$$
Cl(N: x) = (Cl(N): x).
$$

(1) implies (2). Since $Z(A) = 0$, for a submodule N of M, $ClCl(N) = Cl(N)$ by Theorem 4. By the above remark, if $I = (Cl(N) : x)$, $I = Cl_A(I)$.

Since *A* is self-injective, *I* is injective.

(2) implies (3). Let $M = A$, $N = 0$. Then $Cl(N) = Z(A)$. Take $I = (Cl(N) : 1)$ $= Cl(N)$, where $1 \in A$. Then $Z(A)$ is injective and Lemma 3 implies $Z(A) = 0$. Hence $(0 : b)$ is injective for every $b \in A$.

(3) implies (4) evidently.

(4) implies (1). Since A annihilates $0 \in M$, A is self-injective.

Let $0 \neq x \in M$. Then $A = (0 : x) \oplus J$, where *J* is a nonzero ideal of *A*. Therefore $x \notin Z(M)$ which proves $Z(M) = 0$.

Since *M* is faithful, $Z(A) = 0$. (Otherwise let $0 \neq b \in Z(A)$. There is an $x \in M$ such that $0 \neq bx \in Z(M)$ since $(0 : b) \subseteq (0 : bx)$.

This proves that *A* is self-injective, regular.

REMARK 3. A is a self-injective ring if, and only if, for any module *M* with $Z(M) = 0$, the annihilator of every element of M is an injective module. (This is because if $Z(M) = 0$, for $x \in M$, $(0 : x) = Cl_A(0 : x)$ by the remark in the proof of Theorem 9).

REMARK 4. Combining Proposition 7 with Remark 3, we see that A is a self-injective, non-regular ring if, and only if, for any module *M* with *Z(M)* $= 0$, $(0: x)$ is non-zero injective for every $x \in M$.

REMARK 5. We would like to thank Dr. G. Renault who pointed out the following :

(a) Proposition 5 holds for M quasi-injective. In fact, if $Z(A) = 0$, $M \rightarrow Q \rightarrow 0$ is exact with *M* quasi-injective, then since $f^{-1}(Z(Q)) = Cl(Ker)$ f), by Theorem 4 and [3, prop. 1.5], $M=f^{-1}(Z(Q))\oplus N$. Hence $Q=f(M)$ $= Z(Q) \bigoplus f(N)$, where $f(N) \approx N$.

(b) $Z(A) = 0$ if, and only if, $Cl(I) = ClCl(I)$ for every left ideal I of A. The implication in one direction follows from Theorem 4. Conversely, suppose

342 R YUE CHI MING

 $ClCl(I) = Cl(I)$ for every *I* and $Z(A) \neq 0$. Let *J* be a complement ideal of $Z(A)$. Then since $J \oplus Z(A)$ is essential in A and $J \oplus Z(A) \subseteq Cl(J)$, $Cl(J) = ClCl(J)$ $=A$. This proves that $J=(J:1)$ is essential in A which contradicts $Z(A)\neq 0$.

REMARK 6. We may also add the following characterization : $Z(A) = 0$ if, and only if, for every quasi-injective module M , the closure of any submodule N is a direct summand of M.

REFERENCES

- **[1] A. W. GOLDIE, Semi-prime rings with maximum condition, Proc. London Math. Soα, 10(1960), 201-220.**
- **[2] A.W.GOLDIE, Torsionfree modules and rings, J. Algebra, 1(1964), 268-287.**
- **[3] M. HARADA, Note on quasi-injective modules, Osaka J.Math., 2(1965), 351-356.**
- **[4] J. LAMBEK, On Utumi's ring of quotients, Canad. J.Math., 15(1963), 363-370.**
- **[5] F. L. SANDOMIERSKI, Semi-simple maximal quotient rings, Trans. Amer. Math. Soc, 128 (1967), 112-120.**

INSTITUT DE RECHERCHE MATHEMATIQUE AVANC£E LABORATOIRE ASSOCIÉ AU C. N. R. S. RUE RENÉ DESCARTES, STRASBOURG, FRANCE