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1. Let n=2 and Q be an open domain in the n-dimensional Euclidean space
R™. Suppose that u,(x), £ =1,2,3,- - - are eigenfunctions of the Laplace operator
Aand ), are the corresponding eigenvalues, that is,

A (x) + Maex) =0 in Q.
We assume that {u.(x)}ix; is a complete orthonormal system in L*Q), and
furthermore A, are non-decreasing and tend to infinity. These assumptions

will be satisfied if we impose some boundary conditions on eigenfunctions and (.
For a function f in L*(Q) let

f~22 faua)
k=1
be the Fourier expansion, where

fo= [ f@ut@ar.

We denote the a-th R(A;, §) mean by

sifha)= 2. (1 — 7;’” ) Srlx).

i<

f(x) is said to be regulated at x if there exists an approximate identity
{p(x)} of infinitely differentiable functions with supports contained in {x; | x| =&}
such that fx@,(x) tends to f(x).

Let @ = (n—1)/2 be the critical index and denote by | ||« the supremum

*) Supported in part by the Sakkokai Foundation.
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norm on the set K. Our aim is to prove the following.

THEOREM. Let D be an open subdomain of Q, f be a function in L*Q)
regulated in D and 8 = a + 2.
(i) It holds that

12 = fllx = o(1/N)

as n— oo for every compact set K in D, if and only if f is harmonic in D.
(11) It holds that

I3 f)— flx = OQ/N)

as An— = for every compact set K in D, if and only if Af in the sense of
distribution is bounded in every compact set of D.

REMARK. Let 8 = a and assume the condition of (i). Then we have
50 = fllx = ol
as A— oo for every compact set K in I). This inequality is valid under the
hypothesis of (ii) if 2>8—a=0

2. The local saturation problem for trigonometric expansions of a variable
is studied by [ 3], for example, but for our case a difficulty arises mainly from
the fact that we fail to find any (quasi-) positive summability kernels like the
Cesaro or the Poisson kernels, and some different devices will be needed.

Let 8 >—1 and x be any point in Q. If R>0 is so small that the sphere
S(x, R) of radius R with the center at x is contained in {2, then we have

si(fo x) = viB(fox) + wiB(f, x),
where

amp oy ZDE+D) 1 f Ty V)
Uz \f,x)— (27[)"/2 NN - |ylg o f(‘r y)dy

and

Wi f, ) =2T@ + DA T fanda) —=te, [ s ATy
k=1 Kk 2 R
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(see [4; p.205]).

The order of wi®(f,x) is given in [2] and [4], but we shall need more
accurate estimation.

LEMMA 1. If fe L¥Q), 8 >0 and K s a compact set in (), then
lwd (Pl x = (/2"
as n—oo for every R such that 0 < R < dis(K, Q°).
PROOF. Put

Ikz = f J.;L +8 (\/7\'7‘)‘]%5—1 (/V/xk 7.)’.._,; (l}
R

By integration by parts and an asymptotic formula for the Bessel function we
have

LA < AN 4 A ¢
for all positive A and A4,

—‘7 3 1
| L\<A Y CAANTOMTT we <),

— VM

and

[I*i<AJN ’“LJVLAN AT (>0,

where A denotes a constant and may be different in each occasion (see [4; p.
202)).

Divide the summation w3®(f, x) into three sums; ~/Ax <A/A—1, |/ M

— AN =1 and /N +1 < A/A, and denote by 3, 3, 3; the corresponding
terms respectively.

In 3, we have |I,})| < AN 7. By Schwarz inequality

15, = AN X [ fanl@)]

I/ 2k—=a/ X[ =1

=avv (S 1) (S

1/2

But
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2 jwd@)]? = O

I/ e - M| =L
uniformly on every compact set (see [ 11). Thus
3, = o(/N).

For 3, we have

> a—d-1 1 1
lzl é A A I + - - 2. ) .
= o ~/1';¢<Z:~/1—1 (7\:1{4—_ TWAN—A M) At 'T) | frze() |

The first term on the right hand side is dominated by

—a=-5-1 —a—5-1 X 12 l’l‘k(x) I 9 )1/2
4 A Kk ? n_ 3 —— po—
VA AV (loz\ lf | ) (\/z,;<Z«/I~1 M2 T (WA — A M)t

1/2

=oWA N+ VN Ty 2 (Mn_,,wly_M)g 2 \m(:c)l‘“’)

1=M=V/A-1 | /2 -M|s1

= oW AT + /N8,

where N is an arbitrarily fixed number and &y, & — 0 as N— oo, The second

term is o(»/N" ") in the similar way. Hence =, = o(s/x" ).
%, is bounded by

1

A N .
— a— o+ k<n—")|f.‘u (@ .
VR RN OV, WUV, RV RS A

ol

=AY T (

Vii>A/Tx1

The first term on the right hand side is dominated by

A«/)T“Z-’-L ey (Z Lfel z)“ (z L(2) | )

Mt (VMg — AN 5

which is o(5/A ! by the same way as in the X, case. The order of the second
term is rather easily estimated and o(w/A"""). Thus the lemma is proved.

3. PROOF of (i). First assume that f is harmonic in D. Let K be a
compact set contained in D. If x< K and 0 < R < dis(K, Q°), then

” . B no
A f @) = evn T [ T A U f '(’3"“’)‘1“’) @

o=
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5 " — 251
=ca/ N T_ownf(x)f o (VAP rt T dr,
0

where ¢=2I (8 +1)/a/27" and w, is the surface area ~/27 /I'(n/2) of the unit
ball in R*. If 8§ > a —1,

Cwm/xraf I (VA7) rr " dr =1.
0

Thus
) @) = — ¢ oA TS @ [ T2 (A T

By the asymptotic formula (see [5; p.199])

J 2\ i 1
W(8) = s Ccos S—(2v+l)“z +OW

—a=§=1

B f, 2) — f(2) = F@OWR"T)

as N— oo. Therefore |s3(f) —Fllx = o(/X"") for 8> a—1.

Next we assume that |sj(f)—fllx = o(1/A) for a compact set K in D. Let
@ be an infinitely differentiable function whose support is contained in K. Then
the integral

[ Msitr, 2~ @) gt

tends to zero. But the last integral equals

T

k=1

where (1 — £)* = max(1 — ¢,0). Since 3A,| fi@r| < oo and the function [(1 — £)**
—1]/t_is bounded, the above sum tends to

— 53 fohg = — [ f@agaz=o.

k=1
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By the arbitrariness of @, we conclude that f is almost everywhere equal to a
harmonic function in K. Thus f is harmonic in K or more strongly in D,

4. To treat (ii) we shall use the following lemma. We give a proof of it
passing the Fourier transformation.

LEMMA 2. Let f be a function in L*(R™) and D be an open domain in
R". Suppose that f is regulated in D and that the Laplacian Af of f in the
sense of distribution is bounded in D. If the sphere of radius r with the
center at x is contained in D, then we have

L fe=roxdo-f) = ( ) f ds [ afta—ysndy.

lyl=s

|w|=1

PROOF. We may assume that f is infinitely differentiable and rapidly
decreasing approximating f by such functions. Then the interchanges of integrations
in the following calculations are legitimate.

Let f(f) be the Fourier transform of £, i.e,

1€ = g | f@eteda,

By Fourier inversion formula

f@=ro)=f@) == [ F@re - e,

Integrating on the unit sphere we get

2 narodo—fw =i [ F@| o[ ean—ieeas
27%;7'[1?"];(5)[ 3 I‘( ) (rlE(lglf‘) ]eif“df.

Now by the Lommel’s formula ([5; p.45])
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fr J,+1‘S'£)ds =:_1_ J,(ﬂr)

®or

ms U\ 1 [EGIED 1 [t (e \Je¥rlED
? P(Z)rzfo SIEDE =~ e |2 F( )mfl)“* 1
Its Fourier transform is, by Bochner’s formula,
o7 1,1 Ja(sIED) L.
r(Q),_gfus ds = fn(sm)_;efds

R

where X,(x) is the characteristic function of the ball {z : |x| =s}.

—1—-T f |E12f(E)e**dE = — Af(x), by the convolution relation
N2a" Jg,

f X (x)s~"*'ds,

Since

L fa-redo—s@

On Jjgi=1

n-2

2o ) [ ([ ase—smoar)sas.

If the sphere of radius » with the center at x is contained in D, then the
last term is dominated in absolute value by

PLafl L Fe [ [ roras)sroas = rians.

PROOF of (ii). Suppose fe L*(Q) and Af in the sense of distribution is
bounded in a compact set K of . We prove that

183() = f e = OQ/N)

for a closed subset K’ strictly contained in K.
By Lemma 1 it suffices to see that
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R B(f) = fllx = A/N

for A > 1. To prove this inequality we chose R so small that 0 < R <dis(K’, K°).
By the similar way to the case (i) we have

v (fs 1) — fl2)

- a R NV P

7 w]=1

flx—ro)do —f(x)]dr

231‘(8 + 1)
2n" Onn/

f(x)f J-H(«/XT)r?Tz_H dr.

Since Af is bounded in K, so is f in K'. Thus the second term on the right

hand side is O(s/A*"%"?) by the same method as in (i).
The first term is, up to a constant multiple, equal to

R n r
[ r e ar [ e [ afee- oy
0 0 R®

n

/M2 B R n
=V (f *f )S'"“"sf Af(x = y)X()dy f Tn WA "N dr (%)
0 YN R» s -
Changing a variable we get

i 7 n_s pRVT -
f J%w(*/x")’"i__a_l dr = <T/17»_) 2 "f I 50" .

By the asymptotic formula before-mentioned the last term is O(J/N ""g's““"") if
3> a—1 and sa/A > 1. Since J,(t) = O@*) as t—0, it is also O(V/A’"7) if
8> a—1 and sa/A = 1. Thus (%) is dominated in K by

" AN/ n ®
AV N Ak (f s st/ AT ds +f s AT dS)
0 YJZ

which is not greater than A|Af ||xa/A*"7Mif @+1>8>a—1, A|Af|xN"logh
if d=a+1 and A|Af|xN! if 8 >a+1 respectively.

Next we assume ||s3(f)—fllx = OQ/A). For an infinitely differentiable
function @ whose support is contained in K, we have
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~ ) Mfipr A plng,
h=1

which is proved similarly to the case (i). Thus
| <fide>|=|<Afip> | =Alelnx.

Therefore Af is (essentially) bounded in K.
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