Tôhoku Math. Journ. 22(1970), 536-540.

ON A RIEMANNIAN SPACE ADMITTING MORE THAN ONE SASAKIAN STRUCTURES

SHUN-ICHI TACHIBANA AND WEN NENG YU

(Rec. Nov. 18, 1969)

Introduction. Let M^n be a connected *n*-dimensional Riemannian space. A unit Killing vector field ξ^h is called a Sasakian structure if it satisfies

$$abla_{\mathbf{j}}
abla_{\mathbf{i}} \xi^{h} = \xi_{\mathbf{i}} \delta_{\mathbf{j}}{}^{h} - \xi^{h} g_{\mathbf{j}\mathbf{i}}$$
 ,

where g_{ji} is the Riemannian metric and \bigtriangledown_j means the Levi-Civita covariant differentiation¹⁾. Recently Y. Y. Kuo proved that if M^n admits two Sasakian structures orthogonal to each other it admits one more Sasakian structure orthogonal to them²⁾.

Our interest and purpose of this paper are to study M^n admitting (i) r(>3)Sasakian structures orthogonal to one another and (ii) 2 Sasakian structures not orthogonal to each other.

1. Preliminaries. Consider a Riemannian space M^n with a Sasakian structure ξ^h . If we put $\varphi_i{}^h = \nabla_i \xi^h$, the following relations hold good:

(1)

$$\xi^{r}\xi_{r} = 1, \qquad \varphi_{i}^{r}\xi_{r} = 0, \qquad \xi^{r}\varphi_{r}^{h} = 0,$$

$$\varphi_{ji} \equiv \varphi_{j}^{r}g_{ri} = -\varphi_{ij},$$

$$\varphi_{i}^{r}\varphi_{r}^{h} = -\delta_{i}^{h} + \xi_{i}\xi^{h},$$

$$\nabla_{j}\varphi_{i}^{h} = \xi_{i}g_{jh} - \xi^{h}g_{ji}.$$

Let $M^{n+1} = M^n \times R$ be the product manifold of M^n with a line, and define a tensor Φ of type (1, 1) by

$$\Phi = egin{pmatrix} arphi_i^h & -\xi^h \ \xi_i & 0 \end{pmatrix},$$

¹⁾ We follow the notations in [5] and [6].

²⁾ Y. Y. Kuo, [1].

then Φ is an almost complex structure on M^{n+1} , i.e., $\Phi^2 = -I$ holds good, where I means the unit tensor³.

Suppose a Riemannian space M^n admits 2 Sasakian structures ξ^h and η^h which are orthogonal to each other (at every point). Putting $\varphi_i{}^h = \nabla_i \xi^h$ and $\psi_i{}^h = \nabla_i \eta^h$ we know that ζ^h defined by $\zeta^h = \xi^r \psi_r{}^h$ is Sasakian too and constitutes an orthonormal field together with ξ^h and η^h . We shall represent this process by $\{\xi, \eta\} = \zeta$. They satisfy the following equations:

$$\begin{split} \xi^{h} &= \eta^{r} \theta_{r}{}^{h} = -\xi^{r} \psi_{r}{}^{h}, \text{ where } \theta_{r}{}^{h} = \nabla_{r} \xi^{h}, \\ \eta^{h} &= \xi^{r} \varphi_{r}{}^{h} = -\xi^{r} \theta_{r}{}^{h}, \\ \xi^{h} &= \xi^{r} \psi_{r}{}^{h} = -\eta^{r} \varphi_{r}{}^{h}, \\ \varphi_{i}{}^{h} &= \psi_{i}{}^{r} \theta_{r}{}^{h} - \eta_{i} \xi^{h} = -\theta_{i}{}^{r} \psi_{r}{}^{h} + \xi_{i} \eta^{h}, \\ \psi_{i}{}^{h} &= \theta_{i}{}^{r} \varphi_{r}{}^{h} - \xi_{i} \xi^{h} = -\varphi_{i}{}^{r} \theta_{r}{}^{h} + \xi_{i} \zeta^{h}, \\ \theta_{i}{}^{h} &= \varphi_{i}{}^{r} \psi_{r}{}^{h} - \xi_{i} \eta^{h} = -\psi_{i}{}^{r} \varphi_{r}{}^{h} + \eta_{i} \xi^{h}. \end{split}$$

Here ξ, η and ζ appear symmetrically. Hence if $\{\xi, \eta\} = \zeta$, then $\{\eta, \zeta\} = \xi$ and $\{\zeta, \xi\} = \eta$. We call the collection $\{\xi, \eta, \zeta\}$ of such properties a Sasakian 3-structure. This case the dimension n must be of the form n = 4p+3 for a non-negative integer p^{49} .

We need the following lemma later.

LEMMA. Let M be a differentiable manifold with an almost quaternion structure $\Phi_{(\lambda)}$, $(\lambda = 1, 2, 3)$, i.e., three almost complex structures satisfying $\Phi_{(1)}\Phi_{(2)} = -\Phi_{(2)}\Phi_{(1)} = \Phi_{(3)}$. Then there does not exist an almost complex structure $\Phi_{(4)}$ such that $\Phi_{(\lambda)}\Phi_{(4)} = -\Phi_{(4)}\Phi_{(\lambda)}$, $\lambda = 1, 2, 3$.

In fact, we have

$$\Phi_{(3)}\Phi_{(4)} = \Phi_{(1)}\Phi_{(2)}\Phi_{(4)} = -\Phi_{(1)}\Phi_{(4)}\Phi_{(2)} = \Phi_{(4)}\Phi_{(1)}\Phi_{(2)} = \Phi_{(4)}\Phi_{(3)} .$$

2. More than one Sasakian structures.

THEOREM 1. There does not exist a Sasakian structure $\xi_{(4)}$ which is orthogonal to every $\xi_{(\lambda)}$ of a Sasakian 3-structure $\{\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\}$.

PROOF. Assume the existence of $\xi_{(4)}$ and let $\Phi_{(\lambda)}$ be the almost complex

³⁾ S. Sasaki and Y. Hatakeyama, [4].

⁴⁾ Y. Y. Kuo, [1].

S. TACHIBANA AND W. N. YU

structures on $M^{n+1} = M^n \times R$ corresponding to $\xi_{(\lambda)}, \lambda = 1, 2, 3, 4$. Then $\Phi_{(\lambda)}$ for $\lambda = 1, 2, 3$ gives an almost quaternion structure. As $\xi_{(.)}$ and $\xi_{(4)}$ produce another Sasakian 3-structure, we have $\Phi_{(1)}\Phi_{(4)} = -\Phi_{(4)}\Phi_{(1)}$ and similarly $\Phi_{(\lambda)}\Phi_{(4)} = -\Phi_{(4)}\Phi_{(1)}$ hold good for $\lambda = 1, 2, 3$. Thus we have a contradiction by virtue of Lemma.

REMARK. The corresponding theorem holds good for the case of almost contact 3-structures.

Now suppose that M^n admits r Sasakian structures $\xi_{(\lambda)}$, $(\lambda = 1, \dots, r \ge 3)$, which are orthogonal to one another and that there exist no more Sasakian structures orthogonal to every $\xi_{(\lambda)}$. Consider $\eta = \{\xi_{(1)}, \xi_{(2)}\}$ and put $f_{(\lambda)} = \langle \eta, \xi_{(\lambda)} \rangle$ for $\lambda = 3, \dots, r$, where $\langle \rangle$, \rangle denotes the inner product. We assume that all $f_{(\lambda)}$ are constant.

If η is of the form

(2)
$$\eta = \sum_{\lambda=3}^{r} f_{(\lambda)} \xi_{(\lambda)},$$

we can find a Sasakian structure ζ orthogonal to each member of the 3-structure $\{\xi_{(1)}, \xi_{(2)}, \eta\}$ for r > 3 which lead us to a contradiction, and for the case r = 3 we have $\eta = \pm \xi_{(3)}$.

If η is not of the form (2), we define ζ by

$$\zeta = \left(\eta - \sum_{\lambda=3}^{r} f_{(\lambda)}\xi_{(\lambda)}\right) / \left|\eta - \sum_{\lambda=3}^{r} f_{(\lambda)}\xi_{(\lambda)}\right|,$$

where |A| means the length of A. ζ is Sasakian and orthogonal to $\xi_{(\lambda)}, \lambda = 1, \dots, r$, which is a contradiction too.

Thus our structures reduce to a Sasakian 3-structure except the case when at least one of $f_{(\lambda)}$ is not constant.

Hence it comes into a problem to study a Riemannian space admitting 2 Sasakian structures whose inner product is not constant.

3. Condition to be a sphere. Consider a Riemannian space M^n which admits 2 Sasakian structures ξ and η . Assuming that $\rho = \langle \xi, \eta \rangle$ is not constant, we shall get the differential equation for ρ to satisfy. We have

$$egin{aligned} &
ho_{j}\equiv \bigtriangledown_{j}
ho=\eta^{i}\bigtriangledown_{j}\xi_{i}+st, \ & \bigtriangledown_{k}
ho_{j}=\bigtriangledown_{k}\eta^{i}\bigtriangledown_{j}\xi_{i}+\eta^{i}\bigtriangledown_{k}\bigtriangledown_{j}\xi_{i}+st, \end{aligned}$$

where * means the sum of terms which are obtained from terms written exactly

538

in the same side by interchanging ξ and η .

$$\nabla_{l} \nabla_{k} \rho_{j} = \nabla_{l} \nabla_{k} \eta^{i} \nabla_{j} \xi_{i} + \nabla_{k} \eta^{i} \nabla_{l} \nabla_{j} \xi_{i} + \nabla_{l} \eta^{i} \nabla_{k} \nabla_{j} \xi_{i} + \eta^{i} \nabla_{l} \nabla_{k} \nabla_{j} \xi_{i} + *.$$

As ξ , η satisfies (1) and the equation

$$\bigtriangledown_{l}\bigtriangledown_{k}\eta_{i}=\eta_{k}g_{li}-\eta_{i}g_{lk}$$
 ,

we can get

(3)
$$\nabla_{\iota} \nabla_{k} \rho_{j} + 2 \rho_{\iota} g_{kj} + \rho_{k} g_{\iota j} + \rho_{j} g_{\iota k} = 0.$$

On the other hand the following theorem is known.

THEOREM (Obata [2]). Let M be a complete simply connected Riemannian space of dimension n. In order that M admit a non-trivial solution ρ for the system of differential equations

$$\nabla_{l}\nabla_{k}\rho_{j}+c(2\rho_{l}g_{kj}+\rho_{k}g_{lj}+\rho_{j}g_{lk})=0, \quad c>0, \ \rho_{j}=\nabla_{j}\rho,$$

it is necessary and sufficient that M is isometric with a sphere S^n of radius $1/\sqrt{c}$ in the Euclidean (n+1)-space E^{n+1} .

Thus we get

THEOREM 2. Let M be a complete simply connected Riemannian space of dimension n. If M admits Sasakian structures ξ and η with non-constant $\langle \xi, \eta \rangle$, then M is isometric with a sphere of radius 1 in E^{n+1} .

Taking account of the argument in \$2 we have

THEOREM 3. Let M^n be a complete simply connected Riemannian space. If M^n admits r (>1) Sasakian structures orthogonal to one another, then either r = 3 and n is equal to 4p+3 for a non-negative integer p or M^n is isometric with a unit sphere in E^{n+1} .

REMARK. The equation (3) has appeared in Okumura's paper [3], in which he states that if a Sasakian space admits an infinitesimal projective transformation $X = (\xi^h)$ then its associated function (= div X) satisfies (3).

We shall generalize the above theorem, by taking notice of the fact that the constancy of $|\xi|$ (or $|\eta|$) did not play any role in the proof.

S. TACHIBANA AND W. N. YU

Let $u_{i_1...i_r}$ be a Killing tensor field in a Riemannian space. It is defined as a skew symmetric tensor whose covariant derivative is skew symmetric⁵.

We call a Killing tensor $u_{i_1\cdots i_r}$ is special if it satisfies

$$\nabla_a \nabla_b u_{i_1 \cdots i_r} = -c \left(g_{ab} u_{i_1 \cdots i_r} + \sum_{h=1}^r (-1)^h g_{ai_h} u_{bi_1 \cdots i_h} \cdots i_r \right),$$

where c is a constant and \hat{i}_h means that i_h is omitted.

In a space of constant curvature, any Killing tensor is special with c = R/n(n-1), where R is the scalar curvature.⁶⁾

By the similar way as the proof of Theorem 2, we can get the following

THEOREM 4. Let a complete simply connected Riemannian space M^n admit special Killing tensor $u_{i_1\cdots i_r}$ and $v_{i_1\cdots i_r}$ with a positive constant c. If $u_{i_1\cdots i_r}v^{i_1\cdots i_r}$ is not constant, M^n is isometric with a sphere of radius $1/\sqrt{c}$ in E^{n+1} .

COROLLARY. If a complete simply connected Riemannian space M^n admits a special Killing tensor with c > 0 of non-constant length, it is isometric with a sphere of radius $1/\sqrt{c}$ in E^{n+1} .

BIBLIOGRAPHY

- [1] Y.Y.KUO, On almost contact 3-structure, Tôhoku Math. J., 22(1970), 325-332.
- [2] M. OBATA, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. of the United States-Japan seminar in differential geometry, 1965, 101-114.
- [3] M. OKUMURA, On infinitesimal conformal and projective transformations of normal contact spaces, Tôhoku Math. J., 14(1962), 398-412.
- [4] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure, II, Tôhoku Math. J., 13(1961), 281-294.
- [5] S. TACHIBANA, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17(1965), 271-284.
- [6] S. TACHIBANA AND T. KASHIWADA, On the integrability of Killing-Yano's equation, J. Math. Soc. Japan, 21(1969), 259-265.

Department of Mathematics Ochanomizu University Tokyo, Japan

AND

DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI, TAIWAN, THE REPUBLIC OF CHINA

5), 6) S. Tachibana and T. Kashiwada, [6].

540