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In the previous paper [9], we proved the following theorem.

THEOREM 1. For any integer N, there exist only a finite number of
imaginary abelian number fields whose first factors hx of class numbers are
not greater than N.

We give here another proof derived from Landau's estimate for L(l, X) and
Siegel's theorem. By applying Tatuzawa's estimate for L(l,%) with real character
X, we can also prove

THEOREM Γ. For any integer N, we can compute an upper bound of
the conductors of the imaginary abelian number fields for which hχ^Ny

except following two cases :

( i) imaginary quadratic fields.
(ii) imaginary biquadratic fields with Galois groups of type (2,2).

Let I be an odd prime number and let Kt be the field of the Z-th roots of
unity. It has been conjectured that the class number of Kt is greater than 1 if / ^ 2 3 .
An upper bound for I such that hλ of Kt is equal to 1 is computable by Theorem
1'. This has been known by [1] and [7]. We now compute an upper bound, i. e.,
we have

THEOREM 2. Let Kt be the field of the l-th roots of unity. Then its first
factor hi of the class number is greater than 1 if I > 2400.

Let K be an imaginary abelian number field. Let L(s, X) be an L-function
with character X corresponding to K. We put

Xi

where Xx runs over characters such that Xi{ — 1)=— 1. Also we put
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L,{s)= Π I ( i . X « ) .
X2

where X2 runs over non-trivial characters such that %2( —1) = 1. Let ξ(s) be
Riemann f-function. Then

ξκ(s) = ζ(s)Lι(s)Lι(s)

is Dedekind ^-function of K. Theorem 2 will be proved by an estimate for Li(l),
i. e.,

PROPOSITION. Let 1 = 1 (mod A), and Kt be as above. Then it holds

for Z>410.1)

1. Proofs of Theorems. Let K be an imaginary abelian number field of
degree n = 2n0. Let Ko be its maximal real subfield. Let hx and h0 be first and
second factors of the class number of K. Let R and Ro be regulators of K and
Ko respectively. Then R = q'1 2n°-1R0 holds for q = l or 2 [3]. Let d and d0 be
absolute values of discriminants of K and Ko respectively. Let w be the number
of the roots of unity in K. Then it is known

Ul)L2(l) = \ϊm(s-l)ξκ(s) =
S-»l

and

Then it holds

or

1) Z/i(l) is positive real. See section 1.
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LEMMA 1. Let k be the conductor of K, i. e., the smallest positive integer
such that K is contained in the field of the k-th roots of unity. Then it holds

PROOF. Let p be a prime divisor of k. Then d is divisible by p. The p-part
dp of d satisfies an inequality

p -1 = p n a ~ 1 / e ) ^ p n > ,

where ®p is the p-part of the different of K and p is a divisor of p in K with
ramification index e^2. If k is just divisible by ps and s§:2, K contains a cyclic
subfield Kp whose degree is a power of p and conductor is divisible by p\ Then
the conductor-discriminant formula [2, Chap. VI. § 4. 4] shows that the discriminant
of Kp is divisible by pst/2, where t is the degree of Kp. Then it holds

Therefore

Landau's estimate for L(l, X) shows [3]

|L( l ,X) |- 1 <ClogA

for non-real character %, where C is a computable constant. Real character X
corresponds to a quadratic subfield of K. SiegeΓs theorem [5] shows that for any
£ > 0

holds for almost all X. Let £ be equal to 1/5, and let

where the product is taken over finite X not satisfying the above inequality. Then

( £1/4 \ n o / £i/20 \»β

2πClogk kιη 'b=\2πClogk) 'b'
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and the right hand side becomes large with k. This proves Theorem 1. Tatuzawa's
theorem [8] shows that there exists a computable constant C{8) for any £ > 0 such
that

L{l,X)>C(S)k-

holds for any (with at most one exception) real character X. As

for any real character %, it holds

If 7202^3, we take £<1/12. Then hλ becomes large with k, and C and C(S) are
computable. In the case that K is cyclic of degree 4, there exist no real character
X with %(-l) = - 1 . So it holds

h l >

/ £i/4

\2πClogk

This completes the proof of Theorem 1Λ Next we assume the Proposition and
deduce Theorem 2. If Z^3(mod4), KL contains an imaginary quadratic subfield
whose class number is greater than 1 if / > 163. Then the following lemma shows
that hλ>l if 1>16S.

LEMMA 2. Let K be an imaginary subfield of Kt. If hx—\y *o is the
first factor of the class number of K.

PROOF. Let Klt0 and Ko be maximal real subfields of Kt and K respectively.
Let E be HCF(Hilbert class field) of Kι§Q, and let F be HCF of K. By assumption
E Kt is HCF of Kt. So F1=F-Kι is contained in E Kt. As the Galois group of
E/Klt0 and that of E Ki/Ki are isomorphic, there exists unique subfield F2 of
E corresponding to Fx. Fλ is normal over Ko, as F is normal over Ko. The Galois
group of Fι/K is abelian which is isomorphic to the product of the Galois group
of F/K and that of KJK. F2 is totally real as a subfield of E. As [Fx: F2] = 2,
F2 is normal over Ko. Then the Galois group of F2/Ko is abelian which is
isomorphic to that of Fλ/K. Let F 3 be inertia field of I in F2/K0. Then F3 is
HCF of KQ and F=K F3. This proves the lemma.
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We now assume / = 1 (mod 4). In this case,

-D/2

> 108
λ_l y / V 1)/2

08 \2τrlog//

Then A! > 1, if

This inequality holds for / = 2417, as

2 π 1081/1208 log 2417 < 6.284 x 1.004 x 7.791 < 49.16 < V24Ϊ7.

Then it holds for Z^2417. As 2417 is the least prime number over 2400 such
that / = 1 (mod 4), this proves Theorem 2.

2. Lemmas. The rest of this paper is devoted to the proof of Proposition.
Techniques of the proof are almost equal to those of Landau [4]. But complete
proofs are given for the convenience of reader. In this section K denotes an
imaginary abelian number field with conductor k.

LEMMA 3. (Landau [5, Hilfssatz]). Let s0 be a complex number. Let f(z)
be a hoiomorphic function on \z—so\^r such that f{z) Φ 0 if 9 te>9tv If

\fM=eU

in this circle for some positive constant M, we have

Moreover if f(z) has zero points in the circle \z—so\^-^—, we have

Σ>
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where p runs over zero points in the circle \z—so\^-^- with their multiplici-

ties.

PROOF. We put

g(z)=f(z)/H(z-p).

T h e n g(z) i s h o l o m o p h i c o v e r \z—so\^r a n d h a s n o z e r o i n \z—so\^ - = - . ^

\z—so\ = r, it holds

r
Then this inequality also holds in \z—sQ\^-^- by Maximum Principle. There

exists a holomorphic function h(z) over \z—so\^—^- such that
Zl

If we put

it holds

Hz)
2M- h{z)

^l, φ(so) =

for \s— <ol^~^~. By Schwarz's theorem it holds

As

and as 9ϊ — ^ 0 , Lemma follows at once from above inequality.
S — p
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LEMMA 4 (Landau [4, Hilfssatz]). Let so = l + £, where £ is positive real

such that £ < 1 n n n . Let f(z) be holomorphic over\z—sQ\^=r such that f(z)Φθ

for 3 Ϊ 2 ^ 1 . We assume fM rg e^ in this circle. Let b ~ Max 91 - where

p runs over all zeros of f(z) such that \ρ— ?0|^~~^~. / / w>e put

= 1 + xS, O ^ ^ r ^

we have

ls

f W

PROOF. Let h(z) and φ(z) be as in the proof of Lemma 3. Then by Schwarz's

theorem we have

Hence

Therefore

If we put

\h(s)\ =

m(h(z) - h(s))

2Mφ{s)
l + φ(s)

2M
4 9 9

1.005 M.

Hz) - Ms)
~ 2.01M-h{z) + h(s)'

ψ (z) is h o l o m o r p h i c o v e r \z—so\ Ξϋ=~τr~ and

\f(z)\<l, ψ(s) =

By Schwarz's theorem

h'(s)
\ψ'(s)\ =

2.01 M 'r/2-6^ r
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Then

and

Hence it suffices to show

for any root p, where

If we put

p = σ 4- it, σ < 1,

it holds

m 1 s — σ 5—σ

S-p (S-C

s—σ

2(s-so)(s-σ)-(s-so)
2

This attains the greatest value when σ=sQ — l/bp and t = 0. Hence it holds

ςg 1 ^
J l s p =

ls-p=bp{s-s0) + l bp(x-l)6+l'

LEMMA 5. For any real s > 1,

(1 ) log f (Λ) + 9t log 1̂ (5) + $R log L,(s) ̂  0,

and
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( 2 )

PROOF. For any character X (including the case X — 1),

and

hold for any real s > l , where sums are taken over all prime numbers. Inequalities
(1) and (2 ) are obtained from above equalities by summing up for all characters.

LEMMA 6. Let the conductor k be greater than 410. Let s o > l be real.
Let L(s,X) be an L-function with non-trivial character X. Then for any complex

2
number s such that\s—so\^-^-9 it holds

o

\L{s,X)\<2W\

PROOF. Let s=σ+it be such that | s - s o | ^ - g - . We put S(n) =

Then it holds Max | 5 ( w ) | ^ - | - . It holds

\L(s)\<
n"

Σ,S(n)-sf dx
xs+1

Desired inequality is obtained if we show

or



344 K. UCHIDA

This inequality is shown by replacing t2

with respect to <r, because log k>6.

> o .
σ2 "~

-^ (σ—50)
2 and examining its derivative

LEMMA 7. For α/ry non-trivial character X, it holds

\L(s,X)\ <logk

for any real 5grl.

k

PROOF. AsΣ%{n) = 0, it holds

[k/2] 9 \s

[*/2] + 2 ks

< log k (This holds for k > 50).

LEMMA 8 (Landau [4]). For α/ίy real s>l

5 - 1 5 - 1

and
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PROOF. They are easily seen by

345

ns xs
5—1

and

3. Proof of Proposition. We now apply above lemmas for Lι(s) and L2{s)

From now on we put

v z=z ~τ^ , c — j and SQ = 1 -h ^ 7.
3 a log Z α log /

We assume

Z > 410 and a ^ 250.

Then Li(s) and L2(ί) satisfy conditions of Lemmas 3,4 and 6, as the conductor
k = I in the situation of the Proposition. We now calculate corresponding M.
Lemmas 5(1), 6, 7 and 8 give

Mi = Max log Us)
a log/

If we put

+ log a + — ^ - log log / .

M2 = Max log
L2(s0) '

it holds

( 4 ) Mι + M2 = Max log | Li(ί) | + Max log | Us) \ - 5R logUs0) - fR log L2(s0)

< (1-2) log 2 + -J-(/-2) log/ + ^ - ^ + log α + log log/
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Now we estimate LX{1). Lemmas 3,5(2) and 8 give

( 5 )

j a log / + 6(Mi + M 2 ) ,
a iog£

where p runs over all zeros of L^s) such that \ρ—50|^~o~. We put

Λ = ~ - ^ + αlog/ + 6(Mi + M«).

If p is a zero of L^s), i. e., a zero of some L[s, %). p also is a zero of Lχ{s)9 as

it is a zero of L{s,X).As / = l(mod4), XΦX for any % such that %( — l ) = — 1.

As every 3ϊ is positive, and as 3t = 9ΐ ^, it holds

for every p. By Lemma 4 and ( 5 )

2αlog//A+.r- l

for

" - " αlogZ' "

For x = 0, the right hand side of the above inequality takes the smallest value

near a = 4{l + */2)(l-2). If we put

a = 4(1 + V2~)(/ - 2),

+ a log/ + 4(1 - 2) log/ + 6(1 - 2) Iog2 + 6log4(1++/2)
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+ 6log(2-2) + 61oglog 2

< 4(2 + V2")(ί - 2)log 2 + 4.16(2 - 2) + 7.8 log I + 13.61

< 13.66(2 - 2)log 2 + 0.694(2 - 2)log 2 + 10.07 log 2

< 14.4(2-2)log 2

and

Mι < ^ log 2 + ̂  log 2 + - j ^ j + log 4(1 + V2")

+ log/ + -^-log log/

< ^ log / + 0.15(1 - 2) log / + 0.347(Z - 2) + - | - log I

+ 0.15 log / + 0.347 + 2.268 + 0.001

< 0.484(Z - 2) log / + 0.058(Z - 2)log / + 1.93 log I

< 0.547(2-2) log I.

In the above estimate we use

log 2 > 6 and log log 2 < 0.3 log 2

for 2 > 410. Therefore

Then

-logZ.1(l)= -m\ogL1(s,)+ (mψ-{

+ log 4(1 + V2") + log(/ - 2) + ̂ l o g log I

1.34 , 3.4
" i υ s 0.34 τ 4(1 + V2)

< log(Z - 2) + ̂ l o g log I + 0.001 + 2.268
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+ 2 X 1.374 + 0.353

= log(Z - 2) + ^ l o g log I + 5.37

Therefore

This completes the proof.
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