Tôhoku Math. Journ. 23(1971), 301-311.

ON THE C_p -CLASSES IN THE MAXIMAL CCR IDEAL OF A VON NEUMANN ALGEBRA

HIDEO TAKEMOTO

(Received Dec. 24, 1970)

1. Introduction. Let H be a Hilbert space and B(H) the algebra of all bounded operators on H and C(H) the uniformly closed ideal of all completely continuous operators on H. If a is an element of C(H), then the positive operator $|a| = (a^*a)^{1/2}$ is also a non-negative self adjoint operator of C(H). The eigenvalues $\mu_1, \mu_2 \cdots$ of |a|, arranged in decreasing order and repeated according to the multiplicities form a sequence of numbers approaching to zero. These numbers are called the characteristic numbers of the operator a, and the n-th characteristic number of a is written $\mu_n(a)$ [3]. Furthermore, Dunford-Schwartz defines the classes C_p by the following; $C_p = \left\{ a \in C(H); |a|_p = \left\{ \sum_{n=1}^{\infty} \mu_n(a)^p \right\}^{1/p} < \infty \right\}$. We show the extension of C_p -classes to type I von Neumann algebras. Let M be a type I von Neumann algebra with the center Z and let $C_{\infty}(M)$ be the uniformly closed ideal in M generated by all abelian projections in M. Then, $C_{\infty}(M)$ is a CCR-ideal in M and is the natural analogue in M of the ideal of completely continuous operators on a Hilbert space. By the above consideration, H. Halpern [6] has showed that every positive element a in $C_{\infty}(M)$ may be written in the form $a = \sum_{i=1}^{\infty} a_i e_i$ where $\{e_i\}$ is a sequence of mutually orthogonal abelian projections such that $e_1 \geq e_2 \geq \cdots$ and $\{a_i\}$ is a sequence of positive central elements such that $a_1 \ge a_2 \ge \cdots$ and $\lim a_i = 0$. In this note, we shall define the characteristic operators and argue some properties of the characteristic operators. Furthermore, we shall set the classes $C_n(M)$ in a type I von Neumann algebra M by using the characteristic operators and consider the dual spaces of the classes $C_p(M)$ by using the center (Z)-module linear functionals.

2. Spectral decomposition of positive elements in $C_{\infty}(M)$ and characteristic operators. Let M be a type I von Neumann algebra with the center Z and let X be the spectrum of Z. For each $\zeta \in X$, define $[\zeta]$ to be the closed ideal given by

$$[\zeta] = \text{the uniform closure of } \bigg\{ \sum_{i=1}^n a_i z_i \text{ ; } a_i \in M, \ z_i \in Z \text{ and } z_i^{\wedge}(\zeta) = 0 \bigg\}.$$

There is for each $\zeta \in X$ an irreducible representation π_{ζ} of M whose kernel is $[\zeta]$ on the Hilbert space $H(\zeta)$. We denote the image of a in M under π_{ζ} by $a(\zeta)$. Then the function $\zeta \to ||a(\zeta)||$ of X into the positive real numbers is a continuous function. The image of $C_{\infty}(M)$ under π_{ζ} is the ideal of all completely continuous operators of $H(\zeta)$. We need the following result, which has been showed by H. Halpern [6].

THEOREM 1 (H. Halpern). Let M be a von Neumann algebra of type I with the center Z and $C_{\infty}(M)$ the ideal generated by all abelian projections in M. Let a be a positive element in $C_{\infty}(M)$. Then, there exist an at most countable set $\{e_i\}_{i=1}^r$ of mutually orthogonal abelian projections such that $e_1 \geq e_2 \geq \cdots$ and at most countable set $\{a_i\}_{i=1}^r$ of positive elements in Z such that $a_1 \geq a_2 \geq \cdots$ and such that $\lim_{t \to \infty} a_i = 0$ if $\{a_i\}_{i=1}^r$ is infinitely many with the property $a = \sum_{i=1}^r a_i$ in the uniform topology

the property $a = \sum_{i=1}^{r} a_i e_i$ in the uniform topology.

Furthermore, the representation obtained in the above situation is unique. That is, we have; let a be a positive element in $C_{\infty}(M)$ and let $\{a_i\}_{i=1}^{m}$ (resp. $\{b_i\}_{i=1}^{n}$) be a set of positive central elements and $\{e_i\}_{i=1}^{m}$ (resp. $\{f_i\}_{i=1}^{n}$) be a set of orthogonal abelian projections with the following properties: (1) $a_i \neq 0$ (resp. $b_i \neq 0$) for all i; (2) $a_1 \ge a_2 \ge \cdots$ (resp. $b_1 \ge b_2 \ge \cdots$); (3) if X is the spectrum of Z, then $\{\zeta \in X | e_i(\zeta) \neq 0\}$ = closure of $\{\zeta \in X | a_i^{\wedge}(\zeta) \neq 0\}$ (resp., $\{\zeta \in X | f_i(\zeta) \neq 0\}$ = closure of $\{\zeta \in X | b_i^{\wedge}(\zeta) \neq 0\}$ for every i; (4) if $m = +\infty$ (resp., $n = +\infty$), then $\lim_{i \to \infty} a_i = 0$ (resp., $\lim_{i \to \infty} b_i = 0$); (5) $\sum_{i=1}^{m} a_i e_i = a$ (resp., $\sum_{i=1}^{n} b_i f_i = a$). Then m = n and $a_i = b_i$ for every i.

PROOF. See [6; Theorem 2.2 and 2.3].

By Theorem 1, we set the following definition.

DEFINITION 1. We call the representation for positive element a of $C_{\infty}(M)$ in Theorem 1 as a spectral representation for a and element of $C_{\infty}(M)$ as completely continuous element. Furthermore, for any element a in $C_{\infty}(M)$, we have the spectral representation of |a|; $|a| = \sum_{i=1}^{\infty} a_i e_i$, then we define the *n*-th characteristic operator $\mu_n(a)$ of a to be a_n .

Then we can extend the properties of characteristic number for completely

C^p-CLASSES

continuous operator on a Hilbert space that is seen in [3].

LEMMA 1. For any element a in $C_{\infty}(M)$ and any element ζ of X, we have the equality $\mu_n(a)^{\wedge}(\zeta) = \mu_n(a(\zeta))$ where $\mu_n(a(\zeta))$ is the n-th characteristic number of the operator $a(\zeta)$ on $H(\zeta)$.

PROOF. By the definition of characteristic operator, $\mu_n(a)^{\wedge}(\zeta) = a_n^{\wedge}(\zeta)$. Furthermore, we have;

$$|a(\zeta)| = (a(\zeta)^*a(\zeta))^{1/2} = ((a^*a)(\zeta))^{1/2} = (a^*a)^{1/2}(\zeta)$$

and

$$(a^*a)^{_{1/2}}(\zeta) = \sum_{i=1}^\infty a_i^\wedge(\zeta) e_i(\zeta) \ .$$

The projection e_i is an abelian projection, so $e_i(\zeta)$ is a one-dimensional projection on $H(\zeta)$. Furthermore, the sequence $\{a_i^{\wedge}(\zeta)\}_{i=1}^{\infty}$ is a monotone decreasing sequence and $|a(\zeta)| = \sum_{i=1}^{\infty} a_i^{\wedge}(\zeta) e_i(\zeta)$. Therefore, $\mu_n(a(\zeta)) = a_n^{\wedge}(\zeta) = \mu_n(a)^{\wedge}(\zeta)$.

LEMMA 2. The characteristic operators of completely continuous elements a and b in M satisfy the inequality

$$\mu_{n+m+1}(a+b) \leq \mu_{n+1}(a) + \mu_{m+1}(b)$$

and

$$\mu_{n+m+1}(ab) \leq \mu_{n+1}(a) \cdot \mu_{m+1}(b)$$

PROOF. For each $\zeta \in X$, we have the equality $(a^*a)^{1/2}(\zeta) = \sum_{i=1}^{\infty} a_i^{\wedge}(\zeta)e_i(\zeta)$. Since $e_i(\zeta)$ is a one-dimensional projection on $H(\zeta)$, by [3; p. 1089], we have

$$\begin{split} \mu_{n+m+1}(a+b)^{\wedge}(\zeta) &= \mu_{n+m+1}(a(\zeta)+b(\zeta)) \\ & \leq \mu_{n+1}(a(\zeta)) + \mu_{m+1}(b(\zeta)) \\ & = \mu_{n+1}(a)^{\wedge}(\zeta) + \mu_{m+1}(b)^{\wedge}(\zeta) \,. \end{split}$$

Since $\zeta \in X$ is any element, we have: $\mu_{n+m+1}(a+b) \leq \mu_{n+1}(a) + \mu_{m+1}(b)$.

By using the same argument, we can show the second inequality.

H. TAKEMOTO

LEMMA 3. For $a,b \in C_{\infty}(M)$, we have;

(a)
$$\|\mu_n(a) - \mu_n(b)\| \leq \|a - b\|;$$

(b)
$$\mu_n(at) \leq \mu_n(a) ||t||$$
 and $\mu_n(ta) \leq ||t|| \mu_n(a)$ for $t \in M$;

(c)
$$\mu_n(au) = \mu_n(a) \quad if \quad 1 = ||u|| = ||u^{-1}|| \quad and \quad u \in M.$$

PROOF. At first, we show the assertion (a). For each $\zeta \in X$. By the Lemma 2, we have;

$$|\mu_n(a)^{\wedge}(\zeta) - \mu_n(b)^{\wedge}(\zeta)| = |\mu_n(a(\zeta)) - \mu_n(b(\zeta))|.$$

Since $\mu_n(a(\zeta))$ is the *n*-th characteristic number of completely continuous operator $a(\zeta)$ on $H(\zeta)$, we can adopt the fact in [3; p. 1090] to yield that

$$|\mu_n(a)^{\wedge}(\zeta) - \mu_n(b)^{\wedge}(\zeta)| = |\mu_n(a(\zeta)) - \mu_n(b(\zeta))|$$
$$\leq ||a(\zeta) - a(\zeta)||$$
$$= ||(a-b)(\zeta)||$$
$$\leq ||a-b||.$$

which proves the assertion (a). Similarly, for all $\zeta \in X$,

$$\mu_n(at)^{\wedge}(\zeta) = \mu_n(a(\zeta)t(\zeta)) \leq \mu_n(a(\zeta)) ||t(\zeta)|| \leq \mu_n(a)^{\wedge}(\zeta) ||t||$$

and

$$\mu_n(ta)^{\wedge}(\zeta) = \mu_n(t(\zeta)a(\zeta)) \leq \mu_n(a(\zeta)) ||t(\zeta)|| \leq \mu_n(a)^{\wedge}(\zeta) ||t||.$$

Therefore we have: $\mu_n(at) \leq \mu_n(a) ||t||$ and $\mu_n(ta) \leq ||t|| \mu_n(a)$.

We can similarly show the last assertion (c).

3. The classes $C_p(M)$ of completely continuous elements in the type I von Neumann algebra M. In this section, we shall define the classes $C_p(M)$ of completely continuous elements in M and show that these $C_p(M)$ are Banach algebras.

In terms of the characteristic operators, we may define the various norms for any class of completely continuous elements.

DEFINITION 2. We set the following definition.

Cp-CLASSES

(a) For each
$$a \in C_{\infty}(M)$$
, $||a||_{p} = \left\| \left\{ \sum_{n=1}^{\infty} \mu_{n}(a)^{p} \right\}^{1/p} \right\|; \infty > p \ge 1;$

(b) $C_p(M)$ is the set of all completely continuous elements a such that $||a||_p$ is finite.

In particular, we provide $C_{\infty}(M)$ with the uniform operator norm.

The following result states some useful elementary property of the spaces $C_p(M)$.

PROPOSITION 1.

(a) We have $C_p(M) \subset C_{p'}(M)$ if $p \leq p'$, $||a||_{p} \downarrow$ for $p \uparrow$;

(b) If a, b are in $C_p(M)$, then a+b is in $C_p(M)$ and $||a+b||_p \le ||a||_p + ||b||_p$;

(c) If a is $C_p(M)$ and b is in $C_q(M)$, then ab is in $C_1(M)$, where 1/p + 1/q = 1. Moreover $||ab||_1 \leq ||a||_p ||b||_q$;

(d) If a is in $C_p(M)$ and t is in M, then at and ta are in $C_p(M)$; moreover, $||at||_p \leq ||a||_p ||t||$ and $||ta||_p \leq ||t|| \cdot ||a||_p$.

The proof of Proposition 1 can be easily showed by using lemma 9 and lemma 14 in [3; p. 1098] and our Lemma 2, so we shall omit the proof.

By Proposition 1, the classes $C_p(M)$ are normed algebras. Furthermore, we show in the following theorem that the normed algebras $C_p(M)$ are complete with respect to this norm, that is, the classes $C_p(M)$ are Banach algebras.

THEOREM 2. If $\{a_n\}_{n=1}^{\infty}$ is a sequence in $C_p(M)$ such that $||a_n - a_m||_p \to 0$ as $m, n \to \infty$, there exists a completely continuous element a of $C_p(M)$ such that $||a_n - a||_p \to 0$ as $n \to \infty$.

PROOF. By the fact $||a|| \leq ||a||_p$ for each $a \in C_p(M)$ and the fact that $C_{\infty}(M)$ is closed in the uniform topology of operator, there exists a completely continuous elements a such that $||a_n - a|| \to 0$ as $n \to \infty$. Thus, by Lemma 3, $||\mu_k(a_n - a_m) - \mu_k(a_n - a)|| \to 0$ as $m \to \infty$. It follows that, for each $\zeta \in X$ and each positive integer N,

$$\begin{cases} \sum_{k=1}^{N} \mu_k (a_n - a)^p \end{cases}^{1/p\Lambda} (\zeta) = \left\{ \sum_{k=1}^{N} \mu_k (a_n(\zeta) - a(\zeta))^p \right\}^{1/p} \\ \leq \limsup_{m \to \infty} \left\{ \sum_{k=1}^{\infty} \mu_k (a_n(\zeta) - a_m(\zeta))^p \right\}^{1/p} \end{cases}$$

$$\leq \limsup_{m \to \infty} \|a_n - a_m\|_p \text{ for all } n.$$

Therefore, it follows that

$$\left\{\sum_{k=1}^N \mu_k (a_n-a)^p\right\}^{1/p} \leq \limsup_{m\to\infty} \|a_n-a_m\|_p \text{ for all } n.$$

Therefore, letting $N \rightarrow \infty$, we fined

$$\|a_n - a\|_p \leq \limsup_{m \to \infty} \|a_n - a_m\|_p$$

so that

$$\lim_{n\to\infty} \|a_n-a\|_p \leq \lim_{m,n\to\infty} \|a_n-a_m\|_p = 0$$

Thus the theorem is proved.

In stead of considering the operators of finite rank in a Hilbert space, we shall consider the subset F in C(M) defined by $F = \left\{ a \in C_{\infty}(M); |a| = \sum_{i=1}^{N} a_i e_i, N < \infty \right\}$ where $\sum_{i=1}^{N} a_i e_i$ is the spectral representation of |a|.

Then the following lemma will be useful in the sequel.

LEMMA 4. For each $a \in F$ and $b \in M$, ab and ba are elements in F.

PROOF Since *a* is an element in $C_{\infty}(M)$, ab and ba are elements in $C_{\infty}(M)$, We shall show that ba is an element in *F*. Let $\sum_{i=1}^{N} a_i e_i$ (resp., $\sum_{j=1}^{r} c_j p_j$) be a spectral representation for a (resp., ba) where $N < \infty$ and $r \leq \infty$. Let u|a| be the polar decomposition for *a*.

If $r = \infty$, then there exists an element ζ_0 in X and positive integer s > Nsuch that $c_j^{\wedge}(\zeta_0) \neq 0$ and $p_j(\zeta_0) \neq 0$ for each $s \ge j \ge 1$. For each $\zeta \in X$, we have

$$\begin{aligned} (ba)^*(ba)(\zeta) &= a^*(\zeta)b^*(\zeta)b(\zeta)a(\zeta) \\ &= a^*(\zeta)b^*(\zeta)b(\zeta)u(\zeta) \mid a \mid (\zeta) \\ &= a^*(\zeta)b^*(\zeta)b(\zeta) \left(\sum_{j=1}^N a_j^{\wedge}(\zeta)u(\zeta)e_j(\zeta)\right) \end{aligned}$$

C^p-CLASSES

Therefore, the dimension of the range of $(ba)^*(ba)(\zeta)$ is smaller than N for each $\zeta \in X$. On the other hand, we have

$$(ba)^*(ba)(\zeta_0) = \sum_{j=1}^{\infty} c_j^{\wedge}(\zeta_0) p_j(\zeta_0)$$

so that the dimension of the range of $(ba)^*(ba)(\zeta_0)$ is larger than N. This is a Therefore, ba is an element in F. By the same argument, we can contradiction. show the fact that ab is an element in F.

PROPOSITION 2. For each $a \in C_{\infty}(M)$, there exists a sequence $\{b_n\}_{n=1}^{\infty}$ in F such that

- (a) $b_n \rightarrow a$ in the uniform topology as $n \rightarrow \infty$;
- (b) $||b_n a||_p \to 0 \text{ as } n \to \infty \text{ if } a \in C_p(M);$ (c) $||b_n||_p \to ||a||_p \text{ as } n \to \infty \text{ if } a \in C_p(M).$

PROOF. Let $|a| = \sum_{i=1}^{\infty} a_i e_i$ be the spectral representation of |a|. Put f_n $=\sum_{i=1}^{n} e_{i}, f_{n}' = 1 - f_{n}, b_{n} = af_{n}$ and $b_{n}' = af_{n}'$. Then we have

$$b_n^* b_n = (af_n)^* (af_n) = f_n a^* a f_n$$

= $f_n \left(\sum_{i=1}^{\infty} a_i^2 e_i \right) f_n = \sum_{i=1}^{\infty} a_i^2 f_n e_i f_n$
= $\sum_{i=1}^{n} a_i^2 e_i = \sum_{i=1}^{\infty} a_i^2 e_i f_n = a^* a f_n$

and

$$\begin{aligned} |b_n| &= (b_n * b_n)^{1/2} = \sum_{i=1}^n a_i e_i = \left(\sum_{i=1}^\infty a_i e_i\right) f_n \\ &= (a * a)^{1/2} f_n = |a| f_n \,. \end{aligned}$$

Therefore, it follows that $||b_n - a||_p = \left\| \left\{ \sum_{i=n+1}^{\infty} a_i^p \right\}^{1/p} \right\| \to 0 \text{ as } n \to \infty \text{ and } \|b_n - a\|$ $= \left\| \sum_{i=1}^{\infty} a_i e_i \right\| = \|a_{n+1}\| \to 0 \text{ as } n \to \infty.$ This proves (a) and (b). Since $b_n * b_n = a * a f_n$, it is plain that $\mu_m(b_n) = \mu_m(a)$ if $m \leq n$ and $\mu_m(b_n) = 0$

if m > n. Therefore we have

$$|\|b_{n}\|_{p} - \|a\|_{p}| = \left| \left\| \left\{ \sum_{i=1}^{n} a_{i}^{p} \right\}^{1/p} \right\| - \left\| \left\{ \sum_{i=1}^{\infty} a_{i}^{p} \right\}^{1/p} \right\| \right|$$
$$\leq \left\| \left\{ \sum_{i=n+1}^{\infty} a_{i}^{p} \right\}^{1/p} \right\| \to 0 \text{ as } n \to \infty.$$

This proves the assertion (c).

4. Duality of the classes $C_p(M)$ ($\infty \ge p \ge 1$) of the type I von Neumann algebra M. For a positive element a in $C_1(M)$ with the spectral representation $\sum_{i=1}^{\infty} a_i e_i$ we define the trace Tr(a) to be $\sum_{i=1}^{\infty} a_i$. Then, if a is a positive element in $C_1(M)$, then $Tr(a)^{\wedge}(\zeta) = Tr(a(\zeta))$ for each ζ in X where $Tr(a(\zeta))$ is the semifinite trace on $B(H(\zeta))$. If a is an element in $C_1(M)$, then there exist the positive elements $\{a_n\}_{n=1}^4$ in $C_1(M)$ such that $a = a_1 - a_2 + i(a_3 - a_4)$. Thus, we can define $Tr(a) = Tr(a_1) - Tr(a_2) + i(Tr(a_3) - Tr(a_4))$ so that Tr is a linear operator of $C_1(M)$ into Z. The trace thus defined on $C_1(M)$ has the following properties; (1) if a, b are elements of $C_1(M)$ and c, d are elements of Z then Tr(ca+db)= cTr(a) + dTr(b); (2) if $a \in C_1(M)$, then $Tr(u^*au) = Tr(a)$ for every unitary operator u in M; (3) if $a \in C_1(M)$, the function $\varphi(b) = Tr(ba)$ is continuous on M. The classes $C_{v}(M)$ are Banach algebras and may be considered as the spaces module over Z. Therefore, a functional φ of $C_p(M)$ into Z may be called a Z-linear functional if $\varphi(ca + db) = c\varphi(a) + d\varphi(b)$ for all $c, d \in \mathbb{Z}$ and $a, b \in C_p(M)$. In this section, we shall consider the duality of $C_{\nu}(M)$ in the sense of the above notation. At first, we show the following fact.

THEOREM 3. For each $\infty > p > 1$ and each $a \in C_p(M)$, we have the equality;

$$||a||_{p} = \sup_{b \in F} \frac{||Tr(ab)||}{||b||_{q}}$$
, where $\frac{1}{p} + \frac{1}{q} = 1$.

PROOF. For each $\zeta \in X$, we have;

$$\sup_{b \in F} \frac{\|Tr(ab)\|}{\|b\|_q} = \sup_{b \in F} \frac{\sup_{\zeta \in \mathcal{X}} |Tr(ab)^{\wedge}(\zeta)|}{\sup_{\zeta \in \mathcal{X}} \left\{ \sum_{i=1}^N b_i^{\wedge}(\zeta)^q \right\}^{1/q}}$$

C^p-CLASSES

$$\leq \sup_{b \in F} \sup_{\zeta \in \mathcal{X}} \frac{|Tr(a(\zeta)b(\zeta))|}{\left\{\sum_{i=1}^{N} b_i^{\wedge}(\zeta)^q\right\}^{1/q}}$$

$$= \sup_{\zeta \in \mathcal{X}} \sup_{b \in F} \frac{|Tr(a(\zeta)b(\zeta))|}{\left\{\sum_{i=1}^{N} b_i^{\wedge}(\zeta)^q\right\}^{1/q}}$$

$$= \sup_{\zeta \in \mathcal{X}} ||a(\zeta)||_p = ||a||_p.$$

Therefore, $\sup_{b \in F} \frac{\|Tr(ab)\|}{\|b\|_q} \leq \|a\|_p$.

Next, we show the converse inequality. At first, we suppose that a is an element in F and let a = u|a| is the polar decomposition of a and $\sum_{i=1}^{N} a_i e_i$ is the spectral representation of |a|. Put $b = \left(\sum_{i=1}^{N} a_i^{p-1} e_i\right) u$ then, by Lemma 4, b is an element in F. Thus, we have;

$$ab = \sum_{i=1}^{N} a_i^{\ p} e_i, \ \|Tr(ab)\| = \left\|\sum_{i=1}^{N} a_i^{\ p}\right\| and \ \|b\|_q = \left\|\left\{\sum_{i=1}^{N} a_i^{\ p}\right\}^{1/q}\right\|.$$

Since $\left\{\sum_{i=1}^{N} a_i^p\right\}$ and $\left\{\sum_{i=1}^{N} a_i^p\right\}^{1/q}$ attain the maximum at the same point, we have

$$\frac{\|Tr(ab)\|}{\|b\|_{q}} = \left\|\sum_{i=1}^{N} a_{i}^{p}\right\}^{1/p} = \|a\|_{p}.$$

That is,

$$\|a\|_p \leq \sup_{b \in F} \frac{\|Tr(ab)\|}{\|b\|_q} \quad \text{for } a \in F.$$

For each $a \in C_p(M)$, there exists a sequence $\{a_n\}_{n=1}^{\infty}$ in F such that $||a_n - a|| \to 0$ as $n \to \infty$, $||a_n - a||_p \to 0$ as $n \to \infty$ and $||a_n||_p \to ||a||_p$ as $n \to \infty$ by Proposition 2. Thus, we have

$$\|a\|_{p} = \lim_{n \to \infty} \|a_{n}\|_{p} \leq \lim_{n \to \infty} \sup_{b \in F} \frac{\|Tr(a_{n}b)\|}{\|b\|_{q}} = \sup_{b \in F} \frac{\|Tr(ab)\|}{\|b\|_{q}}$$

Therefore, $||a||_p = \sup_{b \in F} \frac{||Tr(ab)||}{||b||_q}$. This completes the proof of Theorem 3.

For the duality for the classes $C_{\infty}(M)$ and $C_1(M)$, H. Halpern has showed that $C_{\infty}(M)^* = C_1(M)$ and $C_1(M)^* = M$ (see [6]; Theorem 4.8 and Theorem 4.9). Furthermore, by using Theorem 3, we can show that for p > 1 the dual space of the class $C_p(M)$ is $C_q(M)$ where 1/p + 1/q = 1.

THEOREM 4. For each $a_0 \in C_q(M)$ ($\infty > q > 1$), the Z-linear functional $\varphi(a) = Tr(aa_0)$ for $a \in C_p(M)$ is a continuous Z-linear functional of $C_p(M)$ into Z where p is the dual number of q. Furthermore, if φ is a continuous Z-linear functional of $C_p(M)$ ($\infty > p > 1$) into Z, there exists a unique $a_{\varphi} \in C_q(M)$ such that $\varphi(a) = Tr(aa_{\varphi})$ for all $a \in C_p(M)$ and $\|\varphi\| = \|a_{\varphi}\|_q$ where q is the dual number of p.

PROOF. Let $a_0 \in C_q(M)$ and $a \in C_p(M)$. Then we have

$$\|Tr(aa_0)\| = \|Tr(u|aa_0|)\| \le \|Tr(|aa_0|)\|$$
$$= \|aa_0\|_1 \le \|a\|_p \|a_0\|_q$$

where $u|aa_0|$ is the polar decomposition of aa_0 . The last inequality due to Proposition 1. This completes the proof of the first.

Let φ be a continuous Z-linear functional of $C_p(M)$ into Z, then Proposition 1(a), the restriction of φ to $C_1(M)$ is a continuous Z-linear functional of $C_1(M)$ into Z. Therefore, by ([6], Theorem 4.9), there exists an element $a_{\varphi} \in M$ such that $\varphi(a) = Tr(aa_{\varphi})$ for each a $C_1(M)$. For each $a \in C_p(M)$, there exists a sequence $\{a_n\}_{n=1}^{\infty}$ in F such that $||a_n - a||_p \to 0$, $||a_n||_p \to ||a||_p$ and $||a_n - a|| \to 0$. Each a_n is an element of $C_1(M)$ so that $\varphi(a_n) = Tr(a_na_{\varphi})$. Since φ is a continuous Z-linear functional of $C_p(M)$, $\varphi(a) = \lim_{n \to \infty} \varphi(a_n) = \prod_{n = \infty} Tr(a_na_{\varphi}) = Tr(aa_{\varphi})$. That is, $\varphi(a) = Tr(aa_{\varphi})$ for all $a \in C_p(M)$.

Furthermore, by Theorem 4 in [4] and the properties of Tr, we can show that a_{φ} is an element of $C_{\infty}(M)$.

Next, we shall show the equality $\|\varphi\| = \|a_{\varphi}\|_{q}$. By Theorem 3 we have

By Theorem 3, we have

$$\begin{aligned} \|\varphi\| &= \sup_{a \in C_{\mathfrak{p}}(M)} \frac{\|\varphi(a)\|}{\|a\|_{\mathfrak{p}}} = \sup_{a \in C_{\mathfrak{p}}(M)} \frac{\|Tr(aa_{\mathfrak{p}})\|}{\|a\|_{\mathfrak{p}}} \\ &\geq \sup_{a \in F} \frac{\|Tr(aa_{\mathfrak{p}})\|}{\|a\|_{\mathfrak{p}}} = \|a_{\mathfrak{p}}\|_{\mathfrak{q}} \,. \end{aligned}$$

C^{p} -CLASSES

Therefore, we have the inequality $\|\varphi\| \ge \|a_{\varphi}\|_q$ so that a_{φ} is an element of $C_q(M)$. We have showed the converse inequality in the first place in this proof. That is, $\|\varphi\| = \|a_{\varphi}\|_q$. This completes the proof of Theorem 4.

References

- [1] J. DIXMIER, Les algebres d'operateurs dans l'espace hilbertien, Gautiher-Villars, Paris, 1957.
- [2] J. DIXMIER, Les C*-algebres et leur representation, Gauthier-Villars, Paris, 1964.
- [3] N. DUNFORD AND J. T. SCHWARTZ, Linear operators, II, Pure and App. Math., 1964.
- [4] J. GLIMM, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math., 72(1960), 216-244.
- [5] J. GLIMM, Type I C*-algebras, Ann. of Math., 73(1961), 572-612.
- [6] H. HALPERN, A spectral decomposition for self-adjoint element in the maximal GCR ideal of a von Neumann algebra with applications to non-commutative integration theory, Trans. Amer. Math. Soc., 133(1968), 281-306.
- [7] S. SAKAI, The theory of W*-algebras, Lecture Note, Yale Univ., 1962.
- [8] R. SCHATTEN, Theory of cross spaces, Princeton Univ. Press, 1950.

MATHEMATICAL INSTITUKE TOHOKU UNIVERSITY SENDAI, JAPAN