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1. Introduction. Let H be a Hubert space and B(H) the algebra of all
bounded operators on H and C{H) the uniformly closed ideal of all completely
continuous operators on H. If a is an element of C[H), then the positive operator
\a\ = (ά*a)1/2 is also a non-negative self adjoint operator of C(H). The eigenvalues
μι,μ2 of \a\, arranged in decreasing order and repeated according to the
multiplicities form a sequence of numbers approaching to zero. These numbers are
called the characteristic numbers of the operator a, and the n-th. characteristic
number of a is written μn(a) [3] . Furthermore, Dunford-Schwartz defines the

ί f V/p )
classes Cp by the following ;Cp=\az C{H) | a \ p = \Σ μn{a)p < °° . We show

I ( J J
n = l

the extension of CD-classes to type I von Neumann algebras. Let M be a type I
von Neumann algebra with the center Z and let CΌo(M) be the uniformly closed
ideal in M generated by all abelian projections in M. Then, CΌo(M) is a CCJR-ideal
in M and is the natural analogue in M of the ideal of completely continuous
operators on a Hubert space. By the above consideration, H. Halpern [ 6 ] has
showed that every positive element a in CΌo(M) may be written in the form

oo

a=Σaieί where {tfj is a sequence of mutually orthogonal abelian projections

such that e1>e2>: and [at] is a sequence of positive central elements such
that ax Ξg: α2 ̂  and lim at = 0. In this note, we shall define the characteristic
operators and argue some properties of the characteristic operators. Furthermore,
we shall set the classes CP(M) in a type I von Neumann algebra M by using the
characteristic operators and consider the dual spaces of the classes CP(M) by using
the center (Z)-module linear functional.

2. Spectral decomposition of positive elements in C^{M) and charac-
teristic operators. Let M be a type I von Neumann algebra with the center Z
and let X be the spectrum of Z. For each ζ € X, define [ξ] to be the closed ideal
given by
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[ζ] = the uniform closure of ] Σaizi > a%^M, zt^ Z and z^(ζ) = 0

There is for each ζ e X an irreducible representation 7r̂  of M whose kernel is

[ξ] on the Hubert space H(ζ). We denote the image of a in M under π^ by a(ξ).

Then the function £—> | \a(ξ)\ | of X into the positive real numbers is a continuous

function. The image of CΌo(M) under 7tζ is the ideal of all completely continuous

operators of H(ζ). We need the following result, which has been showed by H.

Halpern [ 6 ] .

THEOREM 1 (H. Halpern). Let M be a von Neumann algebra of type I

with the center Z and CΛJS/ί) the ideal generated by all abelian projections

in M. Let a be a positive element in CΌo(M). Then, there exist an at most

countable set {et}J"=1 of mutually ortlwgonal abelian projections such that

e1^,e2ί and at most countable set {<zjί=i of positive elements in Z such

that α x ^ α 2 ^ and such that \iτaai = 0 if {αj[=1 is infinitely many with
i

r

the property a =^2 aiei in the uniform topology.

Furthermore, the representation obtained in the above situation is unique.

That is, we have; let a be a positive element in CJyM) and let {αJΓ=1 (resp.

ί^ί} Γ=i) be a set of positive central elements and {^JΓ=I {resp. {/J5U) be a set

of orthogonal abelian projections with the following properties : ( 1 ) at Φ 0

(resp. biΦO) for all i; ( 2 ) a^a2^ ••• {resp. b^bi^ ) ; ( 3 ) if X is the

spectrum of Z, then [ζ € X\et(ξ) Φ 0} = closure of [ζ z X\at

A(ξ) Φ 0} {resp., {?€ X\
ft(ζ)Φ0] ^closure of [ζ s X\bf(ζ)Φθ)for every i ( 4 ) if m= + oo (resp., n= + <χ>),

m n

then lim ai = 0 (resp., lim bt = 0) ( 5 ) Σ atet = a (resP > Σ btft = a). Then m=n
*-"" * ^ β o ί=i ΐ=i

and a% = bt for every i.

PROOF. See [6 Theorem 2. 2 and 2. 3].

By Theorem 1, we set the following definition.

DEFINITION 1. We call the representation for positive element a of CΌo(M)

in Theorem 1 as a spectral representation for a and element of CΌo(M) as completely

continuous element. Furthermore, for any element a in COO[M)> we have the

spectral representation of \a\ \a\ =Σaίeί> t^ιen w e define the w-th characteristic
i = l

operator μn(a) of a to be an.

Then we can extend the properties of characteristic number for completely
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continuous operator on a Hubert space that is seen in [ 3 ].

LEMMA 1. For any element a in CΌo(M) and any element ξ of X, we

have the equality μn{a)A(ζ) = μn(a(ξ)) where μn{a(ζ)) is the n-th characteristic

number of the operator a[ζ) on H{ζ).

PROOF. By the definition of characteristic operetor, μn(a)A(ζ) = an

A(ξ). Fur-

thermore, we have;

\a(ζ)\ = (a(ζ)*a(ζ))1'* = ((α*α

and

The projection et is an abelian projection, so et{ζ) is a one-dimensional projection

on H(ζ). Furthermore, the sequence {ai

A{ζ)}t=ι is a monotone decreasing sequence

and \a(ξ)\ = Σ.a.^e^ζ). Therefore, μn(a(ξ)) = «»Λ(?) =μn(a)A(ξ).
i=ι

LEMMA 2. The characteristic operators of completely continuous elements

a and b in M satisfy the inequality

and

μn+m+1{ab) ^ μn+ι(a) μm+1(b) .

oo

PROOF. For each ζ z X, we have the equality (a*a)ί/*(ξ) = Σai

A(ξ
1 = 1

Since e^ζ) is a one-dimensional projection on H(ξ), by [3 p. 1089], we have

^ μn+1(a(ξ)) + μm+1(b(ξ))

Since ζz X is any element, we have: μn+m+1{a+b)^μn+ι(a) + μm+1(b).

By using the same argument, we can show the second inequality.
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LEMMA 3. For a,b € CΌo(M), we have

( a ) \\μn(a)-μn(b)\\^\\a-b\\;

(b) μn{at) ^ μn{a)\\t\\ and μn(ta) ^ \\t\\μn(a) for

(c) μn(au) = μn(a) if 1= \\u\\ = M

PROOF. At first, we show the assertion (a). For each ξ € X. By the Lemma
2, we have

\μn(a)A(ξ)-μn(l>nm = \μn(a(ξ))-μn(b(ξ))\.

Since /in(α(f)) is the n-th. characteristic number of completely continuous operator
a{ζ) on H(ζ), we can adopt the fact in [3; p. 1090] to yield that

I μn(a)A(ξ) - μn(b)Hϊ) I = I μn(a(ζ)) - μn(b(ξ)) |

which proves the assertion (a).
Similarly, for all ξ z X,

μn(at)A(ξ) = μn{a{ζ)t{ζ)) ^ Λ ( f l (0) | | ί (0 | | ^ μn(a)A(ξ)\\t\\

and

Λ ( ί α ) Λ ( ? ) = μn(t(ξ)a(ζ)) ^ μn(a(

Therefore we have: μn(α£) ^g /̂ nWll̂ ϋ and A' nί^)
We can similarly show the last assertion (c).

3. The classes CP(M) of completely continuous elements in the type I
von Neumann algebra M. In this section, we shall define the classes CP(M) of
completely continuous elements in M and show that these CP(M) are Banach
algebras.

In terms of the characteristic operators, we may define the various norms for
any class of completely continuous elements.

DEFINITION 2. We set the following definition.
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l

( a ) For each a z Go(M), \\a\\Ό=

(b) CP(M) is the set of all completely continuous elements a such that | |α| |p is
finite.

In particular, we provide CΌo(M) with the uniform operator norm.

The following result states some useful elementary property of the spaces
CP(M).

PROPOSITION 1.

( a) We have C,(M) C CP\M) if p^ p', | |α| | , I for P t

(b) If a,b are in CP{M), then a+b is in CP(M) and | |α+*| |,^| |α| |p+ll*llp;

(c) If a is CP(M) and b is in CQ(M), then ab is in d(M), where 1/p+l/q
= 1. Moreover Wabl^ \\a\\p\\b\\a

(d) If a is in CP{M) and t is in M, then at and ta are in CV(M) moreover,
\\at\\p^\\a\\p\\t\\ and \\ta\\p^\\t\\ \\a\\p.

The proof of Proposition 1 can be easily showed by using lemma 9 and lemma
14 in [3 p. 1098] and our Lemma 2, so we shall omit the proof.

By Proposition 1, the classes CP(M) are normed algebras. Furthermore, we
show in the following theorem that the normed algebras CP(M) are complete with
respect to this norm, that is, the classes CP(M) are Banach algebras.

THEOREM 2. / / {αn}~=1 is a sequence in CP(M) stick that \\an- αJ | p ->0
as m,n->oo, there exists a completely continuous element a of CP(M) such that

PROOF. By the fact | |α | | ^ \a\p for each azCp(M) and the fact that CΌo(M)

is closed in the uniform topology of operator, there exists a completely continuous

elements a such that \\an — a\\—>0 as n—>oo. Thus, by Lemma 3, |lA**(tfn — am)

— P*kan — °)\ - ^ 0 as m-+oot I t follows that, for each ξzX and each positive

integer N,

- a)"

i/pA

a)" (ξ) =
J

\/p

UP
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^ lim sup \\an — am\\p for all n .
7Π-+OO

Therefore, it follows that

ί N \l/p

Σ ! μMn -a)p\ ^ lim sup \\an - am\\Ό for all n .
{ *=1 J

Therefore, letting N—>oo, we fined

\\an - a\\p^ lim sup \\an - am\\p

so that

\mx\\an- a\\p^ lim \\an-am\\p = Q .

Thus the theorem is proved.

In stead of considering the operators of finite rank in a Hubert space, we shall

f N )
consider the subset F in C(M) defined by F = \azCoo{M); \a\ =s£Jaiei,N<oo\

N

where Σaiei ιs ^e spectral representation of \a\.

Then the following lemma will be useful in the sequel.

LEMMA 4. For each a € F and b € M, ab and ba are elements in F.

PROOF Since a is an element in CΌo(Λf), ab and ba are elements in Coa{M)y

N r

We shall show that ba is an element in F. Let y^aiei (resp., ^c}p5) be a
1 = 1 j=l

spectral representation for a (resp., ba) where N<oo and rrgoo. Let u\a\ be
the polar decomposition for a

If r = oo, then there exists an element ξ0 in X and positive integer s>N
such that c/(fo) Φ 0 and jfr(f0) ^ 0 for each s^j^l. For each ζz X, we have
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Therefore, the dimension of the range of {ba)*(ba)(ζ) is smaller than N for each
ξ € X. On the other hand, we have

(ba)*(ha)(ζo) = ΣcΛξo)pAξo)

so that the dimension of the range of (ba)*(ba)(ξ0) is larger than N. This is a
contradiction. Therefore, ba is an element in F. By the same argument, we can
show the fact that ab is an element in F.

PROPOSITION 2. For each az CΌo(M), there exists a sequence [bn}n=1 in F
such that

(a) bn—>a in the uniform topology as n-^oo
(b) \\bn-a\\p-^0 as n->oo if azCp{M);
(c) .||ftj|p-*||α||p as n-*oo if a*

PROOF. Let \a\=^aiei be the spectral representation of \a\. Put fn

n

= Σeι> fn = 1 ~/n> K = afn and bn' = afn\ Then we have

and

= Haiei = Haieifn =

1=1 ,

= (a*aY'*fΛ= \a\fn.

Therefore, it follows that \\bn— a\\p =
\lv

>0 as and

Since bn*bn = a*afn, it is plain that μm(bn) = μn(a) if ra^rc and μm(bn) =

= | |α n + 1 | |—»0 as n—>oo. This proves (a) and (b).
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if m^>n. Therefore we have

ιιι*x-ιι«u = (

1
f

i

n

i = l

oo

Σ a
= n + l

)l/P

)

) \lv
1

ί f

-
(

oo

/ Λ

i = l

as

J
Ti-

ll P

-•oo

This proves the assertion (c).

4. Duality of the classes CP(M) (oo Ξ> p ^ l ) of the type I von Neumann
algebra M. For a positive element a in CX{M) with the spectral representation

ei w e define the trace Tr(a) to be Then, if a is a positive element in

Ci(M), then Tr(α)Λ(ξ") = 7V(α(£)) for each £ in X where Tr[a{ζ)) is the semifinite
trace on B(H(ξ)). If α is an element in d(M), then there exist the positive
elements {an}i=ι in Cχ{M) such that a = ax — a2 + i(a3 — a±). Thus, we can define
Tr[a) = Tr(aι) — Tr{a2) + i{Tr(a3) — Tr{a±)) so that T r is a linear operator of
Ci(M) into Z. The trace thus defined on Cι(M) has the following properties
( 1 ) if a, b are elements of Cλ{M) and c, d are elements of Z then Ύr[ca +1/6)
= cTr(α) + dTr{b) ( 2 ) if a € d ( M ) , then Tr(u*au) = Tr(α) for every unitary
operator M in M ; (3)if α ^ C i ( M ) , the function φ{b) = Tr{ba) is continuous on
M. The classes Q,(M) are Banach algebras and may be considered as the spaces
module over Z. Therefore, a functional φ of CP(M) into Z may be called a
Z-linear functional if £/(cα + <i&) = cφ{a) + d< (̂&) for all c,d z Z and α,&ζ CP(M).
In this section, we shall consider the duality of CP(M) in the sense of the above
notation. At first, we show the following fact.

THEOREM
equality

3. For each O O > ^ > > 1 and each azCp{M), we have the

\\Tr(ab)\\
u 1

w h e r e T
1 -

~q = ι

PROOF. For each ξ <ί X, we have

su
\\Tr(ab
'1 Λ = s?"^' -
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Therefore, su l
up
€ J P | | | α

Next, we show the converse inequality. At first, we suppose that a is an
N

element in F and let a = u\a\ is the polar decomposition of a and ^daiei is the
1 = 1

spectral representation o f | α | . Put b — l ^ a t

p ^ J w then, by Lemma 4, i is an
\

element in F. Thuβ, we have

\\b\\ = Σ^ P

IIU=i J II

Since | 2 Z ^ i P [ and jX^α^r attain the maximum at the same point, we have
' ) ( ί=l )

\\Tr(ab)\\ II " ,\

II^II, " l l έ ί ^ f

l/p

= a

That is,

11 Trjab) 1

For each azCp(M), there exists a sequence [an}n=i in F such that \\an — α||

->0 as w->oo, \\an — a\\p—>0 as n ^ o o and | |^ n | | p -^ | |a | |p as w—>oo by Proposition

2. Thus, we have

\\a\\p = lim a, p ^ l i m s u p .Λ,̂  n = sup j l

 | | ^ | | -
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II rΎy ( T-t\ II

Therefore, H^||p = sup-—,,),, . This completes the proof of Theorem 3.
beF \\ϋ\}q

For the duality for the classes CΌo(M) and d ( M ) , H. Halpern has showed
that C4M)* = d(Λf) and CAM)" = M (see [ 6 ] Theorem 4. 8 and Theorem 4. 9).
Furthermore, by using Theorem 3, we can show that for p > 1 the dual space of
the class CP{M) is Cq{M) where 1/ρ + 1/q = 1.

THEOREM 4. For each aozCq{M) ( o o > g > l ) , the Z-linear functional
φ(a) = Tr(aa0) for a € CP{M) is a continuous ZΊinear functional of CP{M) into
Z where p is the dual number of q. Furthermore, if φ is a continuous Z-linear
functional of CP{M) (oo>p>l) into Z, there exists a unique aφeCq{M) such
that φ(a) = Tr[aaφ) for all azCp(M) and \φ\ = \\aφ\\q where q is the dual
number of p.

PROOF. Let a0 z Cq(M) and a z CP{M). Then we have

\\Tr(aao)\\ = | |Γr

where u\aao\ is the polar decomposition of aa0. The last inequality due to
Proposition 1. This completes the proof of the first.

Let φ be a continuous Z-linear functional of CP(M) into Z, then Proposition
l(α), the restriction of φ to CX(M) is a continuous Z-linear functional of Cλ{M)
into Z. Therefore, by ([6], Theorem 4.9), there exists an element aφ^M such
that <p(ά) = Tr(aaφ) for each a d{M). For each a € CP(M), there exists a sequence
{an}n=i in F such that \\an—a\\p->0, \\an\\p->\\a\\p and \\an—a\\->0. Each an is an
element of Cλ{M) so that φ{an) = Tr[anaφ). Since φ is a continuous Z-linear
functional of CP(M), φ[a) = lim φ{an) — lim Tr[anaφ) = Tr(aaφ). That is, φ(a)

7i-»oo n = oo

= Tr{aaφ) for all a*Cp(M).
Furthermore, by Theorem 4 in [ 4 ] and the properties of Tr, we can show

that aφ is an element of Coo(M).
Next, we shall show the equality \\φ\\ = \\aφ\\q.
By Theorem 3, we have

= sup W f = sup

11 Tr(aaφ) \\ .
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Therefore, we have the inequality \\<p\\ § : \\aφ\\Q so that aφ is an element of Cq{M).

We have showed the converse inequality in the first place in this proof. That is,

= \\aφ\\q. This completes the proof of Theorem 4.
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