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1. Introduction. Let H be a Hilbert space and B(H) the algebra of all
bounded operators on H and C(H) the uniformly closed ideal of all completely
continuous operators on H. If a is an element of C(H), then the positive operator
la| = (a*a)"? is also a non-negative self adjoint operator of C(H). The eigenvalues
My e o+ of |a|, arranged in decreasing order and repeated according to the
multiplicities form a sequence of numbers approaching to zero. These numbers are
called the characteristic numbers of the operator a, and the #z-th characteristic

number of a is written p,(a) [3]. Furthermore, Dunford-Schwartz defines the
ll/p

classes C, by the following ; C,= {ac C(H); |al|,= Z Bala oo |, We show

the extension of Cj-classes to type I von Neumann algebras. Let M be a type I
von Neumann algebra with the center Z and let C.(M) be the uniformly closed
ideal in M generated by all abelian projections in M. Then, C.(M) is a CCR-ideal
in M and is the natural analogue in M of the ideal of completely continuous
operators on a Hilbert space. By the above consideration, H. Halpern [6] has
showed that every positive element a in C.(M) may be written in the form
a= Zatei where {e,} is a sequence of mutually orthogonal abelian projections
i=1

such that e, ze,Z <+« and {a,} is a sequence of positive central elements such
that ¢y=a,=+++ and lim q;=0. In this note, we shall define the characteristic
operators and argue some properties of the characteristic operators. Furthermore,
we shall set the classes C,(M) in a type I von Neumann algebra M by using the
characteristic operators and consider the dual spaces of the classes C,(M) by using
the center (Z)-module linear functionals.

2. Spectral decomposition of positive elements in C.(M) and charac-
teristic operators. Let M be a type I von Neumann algebra with the center Z

and let X be the spectrum of Z. For each ¢ < X, define [¢] to be the closed ideal
given by
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[¢] = the uniform closure of {3 a2;; a;€ M, z,€ Z and 2,M§) = 0}-

i=1

There is for each &< X an irreducible representation 7, of M whose kernel is
[¢] on the Hilbert space H({). We denote the image of a in M under =, by a(f).
Then the function {—||a(¢)|| of X into the positive real numbers is a continuous
function. The image of C.(M) under =, is the ideal of all completely continuous

operators of H({). We need the following result, which has been showed by I
Halpern [6].

THEOREM 1 (H. Halpern). Let M be a von Neumann algebra of type I
with the center Z and C.(M) the ideal generated by all abelian projections
in M. Let a be a positive element in C.(M). Then, there exist an at most
countable set f{e])i., of mutually orthogonal abelian projections such that
e, e, X « -+ and at most countable set {a}i_, of positive elements in Z such
that a,=a,= -+ -+ and such that %im a,=0 if {a]}i, is infinitely many with

the property a=)_ae, in the uniform topology.
i=1

Furthermore, the representation obtained in the above situation is wunique.
That is, we have; let a be a positive element in C.. (M) and let {a}™, (resp.
(b)) be a set of positive central elements and {e,}T, (resp. {f;}71) be a set
of orthogonal abelian projections with the following properties: (1) a,+0
(resp. b,#0) for all i; (2) ay=a,=+-- (resp. by=by,=---); (3) if X is the
spectrum of Z, then (£ < X|e, (&) # 0} = closure of {{ € X|a,"(¢) + 0} (resp., {{ < X|
Si(&)#0} =closure of {¢ € X|b,\§)+0) for every i; (4)if m=+ oo (resp., n=+ o),

then llm a;=0 (resp., limb,=0); (5) > ae,=a (resp., >_b,fi=a). Then m=n
e imee i=1 i=1
and a,= b, for every i.
PROOF. See [6; Theorem 2.2 and 2. 3].

By Theorem 1, we set the following definition,

DEFINITION 1. We call the representation for positive element a of C.(M)
in Theorem 1 as a spectral representation for a and element of C..(M) as completely
continuous element. Furthermore, for any element a in C.(M), we have the
spectral representation of |a|; |a| =) as; then we define the n-th characteristic

i=1

operator u,(a) of a to be a,,.

Then we can extend the properties of characteristic number for completely
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continuous operator on a Hilbert space that is seen in [3].

LEMMA 1. For any element a in C.(M) and any element ¢ of X, we
have the equality p,(a) (&) = w,(a(C)) where p,(a(t)) is the n-th characteristic
number of the operator a(f) on H(C).

PROOF. By the definition of characteristic operetor, w,(a)"(¢)= a,"(¢). Fur-
thermore, we have;

la()| = (a(£)*a(£))"* = ((a¥a)(£))"* = (a*a)"*({)

(a*a)"2(8) = 3" a (eit) .

i=1

The projection e; is an abelian projection, so €;({) is a one-dimensional projection
on H(¢). Furthermore, the sequence {a,"(¢)}7, is a monotone decreasing sequence

and |a(f)| = gai“(f)ei(ﬁ). Therefore, w,(a(£)) = a,"(£) = pa(a)"(£).

LEMMA 2. The characteristic operators of completely continuous elements
a and b in M satisfy the inequality

/"'n+m+1(a + b) = /"'n+1(a) + ,U'm+1(b)

and
Bnim+1(aD) = pns1(@) * P11 (D) .

PROOF. For each £cX, we have the equality (a*a)"*(¢) =3 a (¢)ei(t).
i=1

Since ¢,(¢) is a one-dimensional projection on H(¢), by [3; p.1089], we have

Frnme1(@t0)(E) = pnemsi(al€) +6(8))
é l“‘n+l(a(§)) + /"m+1(b(§))
= tna(@)(§) + pna(B)M(E) .

Since ¢ € X is any element, we have: fi,,ni1(@+8) = pnir(@)+ pns1(0).
By using the same argument, we can show the second inequality.
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LEMMA 3. For abeC.(M), we have;

(a) I #ala@) — pa (D) = lla—0bll 5
(b) Halat) = pa(a)|2]l and  pa(ta) = |tlpala) for te M;
(c) palaw)=pa(a) if 1=|u|=lu"| and weM.

PROOF. At first, we show the assertion (a). For each { e X. By the Lemma
2, we have;

| #a(@)(8) — paO)ME) | = | alal§)) — palB(E))] .

Since w,(a(f)) is the n-th characteristic number of completely continuous operator
a(¢) on H(¢), we can adopt the fact in [3; p. 1090] to yield that

| a(@)(§) — ka(D)ME) | = | alall)) — malB(E))]
= la(8) — a(®)l
= [{a=8)(@)I
= [a—bll.

which proves the assertion (a).
Similarly, for all ¢ e X,

paat)(§) = pa(alf) (£)) = pala(@)E)] = pala) ()12

mata)(§) = palt(§) al)) = palal@)EE)] = pa(@™ME)2] .

Therefore we have: p,(at) = p,(a)|z)] and w,(ta) = | 2| p.la).
We can similarly show the last assertion (c).

3. The classes C,(M) of completely continuous elements in the type I
von Neumann algebra M. In this section, we shall define the classes C,(M) of
completely continuous elements in M and show that these C,(M) are Banach
algebras.

In terms of the characteristic operators, we may defne the various norms for
any class of completely continuous elements.

DEFINITION 2. We set the following definition,
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; o>p=1;

{Z,u,. }I/D

(b) C,M) is the set of all completely continuous elements a such that |al|, is

finite,
In particular, we provide C.(M) with the uniform operator norm.

(a) For each a<cC.(M), |al,=

The following result states some useful elementary property of the spaces
C,(M).

PROPOSITION 1,

(a) We have C,(M)CC,(M) if p=p', lall,| for p1;
(b) If a, b are in C,(M), then a+b is in C,(M) and |a+b|,=|al,+|,;

(c) If ais C(M) and b is in C(M), then ab is in C\(M), where 1/p+1/q
=1. Moreover |ab|,= |al,|bl,;

(d) If aisin C\M) and t is in M, then at and ta arein C,(M); moreover,
latl, = lal,lt]l and |tal,<|t|-|al,.

The proof of Proposition 1 can be easily showed by using lemma 9 and lemma
14 in [3; p.1098] and our Lemma 2, so we shall omit the proof.

By Proposition 1, the classes C,(M) are normed algebras. Furthermore, we
show in the following theorem that the normed algebras C,(M) are complete with
respect to this norm, that is, the classes C,(M) are Banach algebras,

THEOREM 2. If {a,}%.. is a sequence in C,(M) such that |a,— a,l|,—0
as m,n— oo, there exists a completely continuous element a of C,(M) such that
”an_ a”p_)o as n-—» oo,

PROOF. By the fact |a| =< |al, for each ae C,(M) and the fact that C..(M)
is closed in the uniform topology of operator, there exists a completely continuous
elements a such that ||a@, —al| >0 as n—oco, Thus, by Lemma 3, |m(a,— a.)
— pila, — a)| =0 as m— oo, It follows that, for each {< X and each positive

integer N,

{i pulan = a>”}mm - {ém(an(é‘) - a<c>>ﬂ}”"

o 1/p
é llI;I"l_’So}'lp {Z_ ,‘"Ic(an(g) - am(t))p}
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= limsup |@, — a,|, for all n.

Therefore, it follows that

N 1/p
{Z wela, — a)"} =limsup |a, — a,l|, for all .
k=1 mee

Therefore, letting N— oo, we fined

Han - a”pé 11171"2._'8;1[) Han - am”p

so that

lim Han - a”pé lim ”an_am”p =0.
Thus the theorem is proved.

In stead of considering the operators of finite rank in a Hilbert space, we shall
N
consider the subset F in C(M) defined by F={acC.(M); |la| =2 ae,N< ool

i J
N
where > ae, is the spectral representation of |al.
i=1

Then the following lemma will be useful in the sequel.
LEMMA 4. For each ae F and < M, ab and ba are elements in F.

PROOF Since a is an element in C.(M), ab and ba are elements in C.(M),
: N r

We shall show that ba is an element in F. Let > ae, (resp., D cip;) be a
i=1 Jj=1

spectral representation for a (resp., ba) where N<<co and r=oco, Let u|a| be
the polar decomposition for a

If r = oo, then there exists an element ¢, in X and positive integer s>N
such that ¢;*(&,) 0 and ps(&,) 0 for each s=j=1. For each ¢ < X, we have

(ba)*(ba)(§) = a*(£)6*(£)b(E)alf)
= aX(£)6*(£)b(E)u(&) || (£)

= a*(E)b*(€)b(¢) (Z a:“(é‘)it(é‘)@(é‘)) :

J=1
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Therefore, the dimension of the range of (ba)*(ba)(¢) is smaller than N for each
t<X. On the other hand, we have

(ba)*Ba)(Ls) = 3 e, E)pi(Es)

Jj=1

so that the dimension of the range of (ba)*(ba)(f,) is larger than N. This is a
contradiction. Therefore, ba is an element in F. By the same argument, we can
show the fact that ab is an element in F.

PROPOSITION 2. For each a< C.(M), there exists a sequence {b,}5., in F
such that

(a) b,—a in the uniform topology as n— co;

(b) lba—all,—0 as n—co if acCyM);

(c) lbalo—llal, as n— o0 if ac C,(M).

PROOF. Let |al =) ae, be the spectral representation of |a|. Put f,

i=1

=3, fn =1—f0 bo=af, and b, =af,. Then we have
=1

bn*bn = (afn)*(afn) :fna*afn
= fn (i; aizei)fn = iai%fneifn

n

Z e, = Zai e, fn = a*af,
i=1

i=1

1ba] = (Bykb)2 = Zaei (iaiet)fn
= (@)f, = |alf,.

£

i=n+1

—0 as n—oo and b, —al

Therefore, it follows that |6, —a],=

oo

Z ae;

i=n+2

Since 4,*b, = a*af,, it is plain that p,(b,) = p.(a) if m=n and w,(b,) =0

= ||@p+1l| =0 as n— oo, This proves (a) and (b).
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if m>n, Therefore we have

n 1/p £ 1/p
1821, ~ lal | =) {za} -] {Zaf
oo 1/p
BT .

i=n+1

This proves the assertion (c).

4. Duality of the classes C,(M) (co= p=1) of the type I von Neumann
algebra M. For a positive element a in C,(M) with the spectral representation

> ae; we define the trace Tr(a) to be > a, Then, if a is a positive element in
i=1 i=1
Cy(M), then Tr(a)M¢) = Tr(a(f)) for each ¢ in X where T7(a(¢)) is the semifinite
trace on B(H(¢)). If @ is an element in C;(M), then there exist the positive
elements {a,}7; in C,(M) such that a =a, — a, + i(a; — a,). Thus, we can define
Tr(a)=Tr(a,) — Tr(a,) +i(Tr(a;) — Tr(a,)) so that Tr is a linear operator of
C,\(M) into Z. The trace thus defined on C,(M) has the following properties ;
(1) if a, b are elements of C,(M) and ¢, d are elements of Z then T7(ca+ db)
=cTr(a)+dTrb); (2) if acC,(M), then Tr(u*au)=Tr(a) for every unitary
operator # in M; (3)if a<C,(M), the function @(b)=Tr(ba) is continuous on
M. The classes C,(M) are Banach algebras and may be considered as the spaces
module over Z. Therefore, a functional @ of C,(M) into Z may be called a
Z-linear functional if @(ca + db) = cpla) + de(b) for all ¢,d € Z and a,b < C,(M).
In this section, we shall consider the duality of C,(}M) in the sense of the above
notation, At first, we show the following fact.

THEOREM 3. For each co>p>1 and each acC,M), we have the
equality ;

_ ol Trlab)]- R
H(l”p—sblﬁlg 2, where » + q 1.

PROOF. For each ¢ <€ X, we have;

| Lrlad)] sup! Tr(ab)"¢)!|

ver |6l blélg d q
121 sup {zbﬂz)q}

i=1
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| Tr(a(£)b(¢))|

=g
e
— supgup L TPAlOME)]

{gbmmq}”q

= sup la(o)l, = lal,.

Therefore, sup |Tr(ab)| = lal,.
ver |10,
Next, we show the converse inequality. At first, we suppose that a is an
N
element in F and let @ =u|a| is the polar decomposition of a and > a.e; is the
i=1

N

spectral representation of |a|. Put b= (Zai”“ei)u then, by Lemma 4, b is an
i=1

element in F. Thus, we have;

ab = Zai and |b||, =

N 1/q
i=1

N N 1/q
Since {Zat”} and wlz a,”} attain the maximum at the same point, we have

1/p
"T”rbuq Zaa l = lall,.
That is,
lat,=sup THAOL for aeF.

For each a < C,(M), there exists a sequence {a,}n; in F' such that |a,— al
—0 as n—oo, la,—all,—0 as n—oco and |a,|,— |lal, as n—oco by Proposition
2. Thus, we have

o, = i el = Jim 7 = qup
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Therefore, |al, = sbug%@. This completes the proof of Theorem 3.
< a

For the duality for the classes C.(M) and C;(M), H. Halpern has showed
that C.(M)*=C(M) and C,(M)* =M (see [6]; Theorem 4.8 and Theorem 4. 9).
Furthermore, by using Theorem 3, we can show that for p>1 the dual space of
the class C,(M) is C,(M) where 1/p+1/qg=1.

THEOREM 4. For each a,< Cy (M) (o0 >q>1), the Z-linear functional
@la) = Tr(aa,) for ac C,(M) is a continuous Z-linear functional of C,(M) into
Z where p is the dual number of q. Furthermore, if @ is a continuous Z-linear
Sunctional of C,(M) (o0 >p>1) into Z, there exists a unique a,< C,(M) such
that @(a) = Tr(aa,) for all ac C,(M) and || = la,|, where q is the dual
number of p. ’

PROOF. Let a,€ C(M) and a< C,(M). Then we have

ITr(aao)ll = | T7(u|aa.|)| = [ T7(]aa, )|

= llaao|: = llal,laoll,

where u|aa,| is the polar decomposition of aa,. The last inequality due to
Proposition 1. This completes the proof of the first.

Let @ be a continuous Z-linear functional of C,(M) into Z, then Proposition
1(a), the restriction of @ to C;(M) is a continuous Z-linear functional of C,(M)
into Z. Therefore, by ([6], Theorem 4.9), there exists an element a,< M such
that @(a) = Tr(aa,) for each a C,(M). For each a < C,(M), there exists a sequence
{a,}wo in F such that |a,—al,—0, la,ll,—lal, and |a,—al —0. Each a, is an
element of C,(M) so that ¢(a,)=Tr(a,a,). Since @ is a continuous Z-linear
functional of C,(M), @(a) =£im <p(an)=lnim Tr(aza,) = Tr(aa,). That is, @(a)

= Tr(aa,) for all aeC,(M).

Furthermore, by Theorem 4 in [ 4] and the properties of 77, we can show
that a, is an element of C..(M).

Next, we shall show the equality |@| = lla,|,.

By Theorem 3, we have

_ lela)] | T7(aa,)|
lel = 5o el = a9, al.
= sup I Trlaell _ gy,

B al,
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Therefore, we have the inequality ||@| = la,|, so that a, is an element of C,(M).
We have showed the converse inequality in the first place in this proof. That is,
lell = la,ll,. This completes the proof of Theorem 4.
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