Tδhoku Math. Journ. 23(1971), 301-311.

ON THE C_v -CLASSES IN THE MAXIMAL CCR IDEAL OF A VON NEUMANN ALGEBRA

HIDEO TAKEMOTO

(Received Dec. 24, 1970)

1. Introduction. Let H be a Hilbert space and $B(H)$ the algebra of all bounded operators on *H* and *C{H)* the uniformly closed ideal of all completely continuous operators on *H.* If a is an element of *C[H),* then the positive operator $|a| = (a^*a)^{1/2}$ is also a non-negative self adjoint operator of $C(H)$. The eigenvalues $\mu_1, \mu_2 \cdots$ of $|a|$, arranged in decreasing order and repeated according to the multiplicities form a sequence of numbers approaching to zero. These numbers are called the characteristic numbers of the operator a , and the n -th characteristic number of a is written *μⁿ (a)* [3]. Furthermore, Dunford-Schwartz defines the $\left[\frac{1}{p} \left(\frac{I}{p} \right) \right]$ $\left[\frac{1}{p} \left(\frac{I}{p} \right) \right]$ $\left[\frac{I}{p} \left(\frac{I}{p} \right) \right]$ classes C_p by the following $C_p - \begin{cases} a \in C(H) \\ 0 \end{cases}$, $|a|_p - \begin{cases} \sum_{n=1}^p \mu_n(a)^r \end{cases} \sim \infty$. We show the extension of C_p -classes to type I von Neumann algebras. Let M be a type I von Neumann algebra with the center Z and let $C_{\infty}(M)$ be the uniformly closed ideal in M generated by all abelian projections in M. Then, $C_{\infty}(M)$ is a CCR-ideal in *M* and is the natural analogue in *M* of the ideal of completely continuous operators on a Hubert space. By the above consideration, *H.* Halpern [6] has showed that every positive element a in $C_{\infty}(M)$ may be written in the form $a = \sum^{\infty} a_i e_i$ where $\{e_i\}$ is a sequence of mutually orthogonal abelian projections such that $e_1 \geq e_2 \geq \cdots$ and $\{a_i\}$ is a sequence of positive central elements such that $a_1 \ge a_2 \ge \cdots$ and lim $a_i = 0$. In this note, we shall define the characteristic operators and argue some properties of the characteristic operators. Furthermore, we shall set the classes $C_p(M)$ in a type I von Neumann algebra M by using the characteristic operators and consider the dual spaces of the classes $C_p(M)$ by using the center (Z) -module linear functionals.

2. Spectral decomposition of positive elements in $C_{\infty}(M)$ and charac**teristic operators.** Let *M* be a type I von Neumann algebra with the center *Z* and let X be the spectrum of Z. For each $\zeta \in X$, define $[\zeta]$ to be the closed ideal given by

$$
[\zeta] = \text{the uniform closure of } \bigg\{ \sum_{i=1}^n a_i z_i \, ; \, a_i \in M, \ z_i \in Z \text{ and } z_i \wedge (\zeta) = 0 \bigg\}.
$$

There is for each $\zeta \in X$ an irreducible representation π_{ζ} of M whose kernel is *[ζ]* on the Hilbert space $H(\xi)$. We denote the image of *a* in *M* under π_ξ by $a(\xi)$. Then the function $\xi \rightarrow ||a(\xi)||$ of X into the positive real numbers is a continuous function. The image of $C_{\infty}(M)$ under π_{ζ} is the ideal of all completely continuous operators of $H(\xi)$. We need the following result, which has been showed by H. Halpern [6].

THEOREM 1 (H. Halpern). *Let M be a von Neumann algebra of type I* with the center Z and $C_{\infty}(M)$ the ideal generated by all abelian projections *in* M. Let a be a positive element in $C_{\infty}(M)$. Then, there exist an at most *countable set* $\{e_i\}_{i=1}^r$ *of mutually orthogonal abelian projections such that* $e_1 \gtrsim e_2 \gtrsim \cdots$ and at most countable set $\{a_i\}_{i=1}^r$ of positive elements in Z such *that* $a_1 \ge a_2 \ge \cdots$ and such that $\lim_{i \to \infty} a_i = 0$ if $\{a_i\}_{i=1}^r$ is infinitely many with

the property $a = \sum_{i=1}^{r} a_i e_i$ *in the uniform topology.*

Furthermore, the representation obtained in the above situation is unique. That is, we have; let a be a positive element in $C_{\infty}(M)$ *and let* $\{a_i\}_{i=1}^m$ (resp. ${b_i}^n_{i=1}$ *be a set of positive central elements and* ${e_i}^n_{i=1}$ (*resp.* ${f_i}^n_{i=1}$ *be a set of orthogonal abelian projections with the following properties*: (1) $a_i \neq 0$ $(resp. \ b_i \neq 0)$ for all i ; (2) $a_1 \geq a_2 \geq \cdots$ $(resp. \ b_1 \geq b_2 \geq \cdots)$; (3) if X is the $spectrum of Z, then \{\xi \in X | e_i(\xi) \neq 0\} = closure of \{\xi \in X | a_i'(\xi) \neq 0\}$ (resp., $\{\xi \in X | a_i'(\xi) \neq 0\}$ $f_i(\zeta) \neq 0$ } = closure of { $\zeta \in X|b_i{}^{\wedge}(\zeta) \neq 0$ } for every i; (4) if $m=+\infty$ (resp., $n=+\infty$), *m n* then $\lim_{i \to \infty} a_i = 0$ (resp., $\lim_{i \to \infty} b_i = 0$); (5) $\sum_{i=1} a_i e_i = a$ (resp., $\sum_{i=1} b_i f_i = a$). Then $m = n$ and $a_i = b_i$ for every *i*.

PROOF. See $[6;$ Theorem 2.2 and 2.3].

By Theorem 1, we set the following definition.

DEFINITION 1. We call the representation for positive element a of $C_{\infty}(M)$ in Theorem 1 as a spectral representation for a and element of $C_{\infty}(M)$ as completely continuous element. Furthermore, for any element a in $C_{\infty}(M)$, we have the spectral representation of $|a|$; $|a| = \sum_{i=1} a_i e_i$, then we define the *n*-th characteristic operator $\mu_n(a)$ of *a* to be a_n .

Then we can extend the properties of characteristic number for completely

O-CLASSES 303

continuous operator on a Hilbert space that is seen in [3].

LEMMA 1. For any element a in $C_{\infty}(M)$ and any element ξ of X, we *have the equality* $\mu_n(a)^\wedge(\zeta) = \mu_n(a(\zeta))$ where $\mu_n(a(\zeta))$ is the n-th characteristic *number of the operator a(ζ) on H(ζ).*

PROOF. By the definition of characteristic operetor, $\mu_n(a)^\wedge(\zeta) = a_n^\wedge(\zeta)$. Fur thermore, we have;

$$
|a(\xi)| = (a(\xi)^* a(\xi))^{1/2} = ((a^* a)(\xi))^{1/2} = (a^* a)^{1/2}(\xi)
$$

and

$$
(a^*a)^{1/2}(\zeta)=\sum_{i=1}^\infty a_i{}^\wedge(\zeta)e_i(\zeta)\ .
$$

The projection e_i is an abelian projection, so $e_i(\zeta)$ is a one-dimensional projection on $H(\zeta)$. Furthermore, the sequence $\{a_i^{\wedge}(\zeta)\}_{i=1}^{\infty}$ is a monotone decreasing sequence and $|a(\xi)| = \sum_{i=1} a_i^{\wedge}(\xi) e_i(\xi)$. Therefore, $\mu_n(a(\xi)) = a_n^{\wedge}(\xi) = \mu_n(a)^{\wedge}(\xi)$.

LEMMA 2. *The characteristic operators of completely continuous elements a and b in M satisfy the inequality*

$$
\mu_{n+m+1}(a+b) \leq \mu_{n+1}(a) + \mu_{m+1}(b)
$$

and

$$
\mu_{n+m+1}(ab) \leq \mu_{n+1}(a) \cdot \mu_{m+1}(b) .
$$

PROOF. For each $\zeta \in X$, we have the equality $(a^*a)^{1/2}(\zeta) = \sum_{i=1}^{\infty} a_i^{\wedge}(\zeta)$ Since $e_i(\zeta)$ is a one-dimensional projection on $H(\zeta)$, by [3; p. 1089], we have

$$
\mu_{n+m+1}(a+b)^{\wedge}(\zeta) = \mu_{n+m+1}(a(\zeta) + b(\zeta))
$$

\n
$$
\leq \mu_{n+1}(a(\zeta)) + \mu_{m+1}(b(\zeta))
$$

\n
$$
= \mu_{n+1}(a)^{\wedge}(\zeta) + \mu_{m+1}(b)^{\wedge}(\zeta).
$$

Since $\zeta \in X$ is any element, we have: $\mu_{n+m+1}(a+b) \leq \mu_{n+1}(a) + \mu_{m+1}(b)$.

By using the same argument, we can show the second inequality.

LEMMA 3. For $a,b \in C_{\infty}(M)$, we have;

(a)
$$
\|\mu_n(a) - \mu_n(b)\| \leq \|a - b\|;
$$

(b)
$$
\mu_n(at) \leq \mu_n(a) ||t||
$$
 and $\mu_n(ta) \leq ||t|| \mu_n(a)$ for $t \in M$;

(c)
$$
\mu_n(au) = \mu_n(a) \quad \text{if} \quad 1 = ||u|| = ||u^{-1}|| \quad \text{and} \quad u \in M.
$$

PROOF. At first, we show the assertion (a). For each *ξ* € *X.* By the Lemma 2, we have

$$
|\mu_n(a)\wedge(\zeta)-\mu_n(b)\wedge(\zeta)|=|\mu_n(a(\zeta))-\mu_n(b(\zeta))|.
$$

Since $\mu_n(a(\zeta))$ is the *n*-th characteristic number of completely continuous operator $a(\xi)$ on $H(\xi)$, we can adopt the fact in [3; p. 1090] to yield that

$$
|\mu_n(a)^\wedge(\xi) - \mu_n(b)^\wedge(\xi)| = |\mu_n(a(\xi)) - \mu_n(b(\xi))|
$$

\n
$$
\leq ||a(\xi) - a(\xi)||
$$

\n
$$
= ||(a - b)(\xi)||
$$

\n
$$
\leq ||a - b||.
$$

which proves the assertion (a). Similarly, for all $\xi \in X$,

$$
\mu_n(at) \wedge (\zeta) = \mu_n(a(\zeta) t(\zeta)) \leq \mu_n(a(\zeta)) \|t(\zeta)\| \leq \mu_n(a) \wedge (\zeta) \|t\|
$$

and

$$
\mu_n(ta)\wedge(\zeta)=\mu_n(t(\zeta)a(\zeta))\leq \mu_n(a(\zeta))\|t(\zeta)\|\leq \mu_n(a)\wedge(\zeta)\|t\|.
$$

Therefore we have: $\mu_n(at) \leq \mu_n(a) ||t||$ and $\mu_n(ta)$

We can similarly show the last assertion (c).

3. The classes $C_p(M)$ of completely continuous elements in the type I **von Neumann algebra** *M*. In this section, we shall define the classes $C_p(M)$ of completely continuous elements in M and show that these $C_p(M)$ are Banach algebras.

In terms of the characteristic operators, we may define the various norms for any class of completely continuous elements.

DEFINITION 2. We set the following definition.

C^p -CLASSES 305

(a) For each
$$
a \in C_{\infty}(M)
$$
, $||a||_p = ||\left\{\sum_{n=1}^{\infty} \mu_n(a)^p\right\}^{1/p} || \; ; \; \infty > p \ge 1$;

(b) $C_p(M)$ is the set of all completely continuous elements a such that $\|a\|_p$ is finite.

In particular, we provide $C_{\infty}(M)$ with the uniform operator norm.

The following result states some useful elementary property of the spaces $C_p(M)$

PROPOSITION 1.

 (a) We have $C_p(M) \subset C_{p'}(M)$ if $p \leq p'$, $||a||_p \downarrow$ for $p \uparrow$

(b) If a, b are in $C_p(M)$, then $a+b$ is in $C_p(M)$ and $||a+b||_p \leq ||a||_p+||b||_p$;

(c) If a is $C_p(M)$ and b is in $C_q(M)$, then ab is in $C_1(M)$, where $1/p+1/q$ $= 1.$ *Moreover* $||ab||_1 \leq ||a||_p ||b||_q$;

(d) If a is in $C_p(M)$ and t is in M, then at and ta are in $C_p(M)$; moreover, $\|a t\|_p \leq \|a\|_p \|t\|$ and $\|t a\|_p \leq \|t\| \cdot \|a\|_p$.

The proof of Proposition 1 can be easily showed by using lemma 9 and lemma 14 in $[3; p, 1098]$ and our Lemma 2, so we shall omit the proof.

By Proposition 1, the classes *C^P (M)* are normed algebras. Furthermore, we show in the following theorem that the normed algebras $C_p(M)$ are complete with respect to this norm, that is, the classes $C_p(M)$ are Banach algebras.

THEOREM 2. If $\{a_n\}_{n=1}^{\infty}$ is a sequence in $C_p(M)$ such that $\|a_n - a_m\|_p \to 0$ a s m,n \rightarrow ∞ , there exists a completely continuous element a of $C_p(M)$ such that $||a_n - a||_p \rightarrow 0 \text{ as } n \rightarrow \infty.$

PROOF. By the fact $||a|| \leq ||a||_p$ for each $a \in C_p(M)$ and the fact that $C_\infty(M)$ is closed in the uniform topology of operator, there exists a completely continuous elements a such that $\|a_n - a\| \to 0$ as $n \to \infty$. Thus, by Lemma 3, $\|\mu_k(a_n - a_m)\|$ $\| - \mu_k (a_n - a) \| \rightarrow 0$ as $m \rightarrow \infty$. It follows that, for each $\xi \in X$ and each positive integer *N,*

$$
\left\{\sum_{k=1}^N \mu_k (a_n - a)^p \right\}^{1/p \Lambda} (\zeta) = \left\{\sum_{k=1}^N \mu_k (a_n(\zeta) - a(\zeta))^p \right\}^{1/p}
$$

$$
\leq \limsup_{m \to \infty} \left\{\sum_{k=1}^\infty \mu_k (a_n(\zeta) - a_m(\zeta))^p \right\}^{1/p}
$$

$$
\leqq \limsup_{m\to\infty} \|a_n-a_m\|_p
$$
 for all n .

Therefore, it follows that

$$
\left\{\sum_{k=1}^N \mu_k (a_n-a)^p\right\}^{1/p} \leqq \limsup_{m\to\infty} \|a_n-a_m\|_p \text{ for all } n.
$$

Therefore, letting $N \rightarrow \infty$, we fined

$$
||a_n - a||_p \leq \limsup_{m \to \infty} ||a_n - a_m||_p
$$

so that

$$
\lim_{n\to\infty}||a_n-a||_p\leq \lim_{m,n\to\infty}||a_n-a_m||_p=0.
$$

Thus the theorem is proved.

In stead of considering the operators of finite rank in a Hubert space, we shall $\int_{a}^{N} f(x) dx$ $\int_{a}^{N} f(x) dx$ consider the subset *F* in C(*M*) defined by $F = \left\{a \in C_\infty(M) ; \ |a| = \sum_{i=1} a_i e_i, N < \infty\right\}$ where $\sum_{i=1}^{N} a_i e_i$ is the spectral representation of $|a|$.

Then the following lemma will be useful in the sequel.

LEMMA 4. For each $a \in F$ and $b \in M$, ab and ba are elements in *F*.

 $P(X \cup Y) = \int P(x) \cdot P(x) dx$ is an element in $C_{\infty}(M)$, ab and ba are elements in $C_{\infty}(M)$, $\sum_{i} a_{i} e_{i}$ (resp., $\sum_{i} a_{i} e_{i}$ $\frac{1}{\sqrt{2}}$ **b** $\frac{1}{2}$ **c** $\frac{1}{2}$ **c** $\frac{1}{2}$ **p** $\frac{1}{2}$ spectral representation for a (resp., ba) where $N < \infty$ and $r \leq \infty$. Let $u|a|$ be the polar decomposition for a^t

If $r = \infty$, then there exists an element ζ_0 in X and positive integer $s > N$ that c_1 ['](ζ_0) \neq 0 and $p_1(\zeta_0)$ \neq 0 for each $s \ge i \ge 1$. For each $\zeta \in X$, we have $s = \sum_{i=1}^{n} a_i$ $s = \sum_{i=1}^{n} a_i$. $s = \sum_{i=1}^{n} a_i$

$$
(ba)^*(ba)(\zeta) = a^*(\zeta)b^*(\zeta)b(\zeta)a(\zeta)
$$

= $a^*(\zeta)b^*(\zeta)b(\zeta)u(\zeta) |a|(\zeta)$
= $a^*(\zeta)b^*(\zeta)b(\zeta)\left(\sum_{j=1}^N a_j(\zeta)u(\zeta)e_j(\zeta)\right)$

C^p -CLASSES 307

Therefore, the dimension of the range of *{ba)*(ba)(ζ)* is smaller than *N* for each $\xi \in X$. On the other hand, we have

$$
(ba)^*(ba)(\zeta_0)=\sum_{j=1}^\infty c_j\wedge(\zeta_0)p_j(\zeta_0)
$$

so that the dimension of the range of $(ba)^*(ba)(\zeta_0)$ is larger than N. This is a contradiction. Therefore, ba is an element in F . By the same argument, we can show the fact that ab is an element in *F.*

PROPOSITION 2. For each $a \in C_{\infty}(M)$, there exists a sequence ${b_n}_{n=1}^{\infty}$ in F *such that*

- (a) $b_n \rightarrow a$ in the uniform topology as $n \rightarrow \infty$;
- (b) $\|b_n a\|_p \to 0$ as $n \to \infty$ if $a \in C_p(M)$;
- (c) $||b_n||_p \rightarrow ||a||_p$ as $n \rightarrow \infty$ if $a \in$

PROOF. Let $|a| = \sum a_i e_i$ be the spectral representation of $|a|$. Put f_n $=\sum_{i=1}^{n} e_i, f_n' = 1 - f_n, b_n = af_n$ and $b_n' = af_n'$. Then we have

$$
b_n * b_n = (af_n) * (af_n) = f_n a * af_n
$$

= $f_n \left(\sum_{i=1}^{\infty} a_i^2 e_i \right) f_n = \sum_{i=1}^{\infty} a_i^2 f_n e_i f_n$
= $\sum_{i=1}^n a_i^2 e_i = \sum_{i=1}^{\infty} a_i^2 e_i f_n = a * af_n$

and

$$
|b_n| = (b_n * b_n)^{1/2} = \sum_{i=1}^n a_i e_i = \left(\sum_{i=1}^\infty a_i e_i\right) f_n
$$

$$
= (a^* a)^{1/2} f_n = |a| f_n.
$$

Therefore, it follows that $\|b_n - a\|_p = \left\| \left\{\begin{array}{c} \infty & a_i^p \end{array} \right\}^{1/p} \right\| \to 0$ as $n \to \infty$ and Since $b_n * b_n = a * af_n$, it is plain that $\mu_m(b_n) = \mu_m(a)$ if $m \leq n$ and $\mu_m(b_n) =$ $=\bigg\|\sum_{k=1}^{\infty}a_{k}e_{k}\bigg\|=\|a_{n+1}\|\rightarrow 0$ as $n\rightarrow\infty$. This proves (a) and (b).

if $m > n$. Therefore we have

$$
\|\|b_n\|_p - \|a\|_p\| = \left\|\left\|\left\{\sum_{i=1}^n a_i^p\right\}^{1/p}\right\| - \left\|\left\{\sum_{i=1}^\infty a_i^p\right\}^{1/p}\right\|\right\|
$$

$$
\leq \left\|\left\{\sum_{i=n+1}^\infty a_i^p\right\}^{1/p}\right\| \to 0 \text{ as } n \to \infty.
$$

This proves the assertion (c).

4. Duality of the classes $\textit{C}_p(\textit{M})$ $(\infty\geqq p\geqq 1)$ of the type I von Neumann \mathbf{a} lgebra \boldsymbol{M} . For a positive element a in $C_1(M)$ with the spectral representation e_i we define the trace $Tr(a)$ to be $\sum a_i$. Then, if *a* is a positive element in $C_1(M)$, then $Tr(a)\hat{}(z) = Tr(a(\zeta))$ for each ζ in X where $Tr(a(\zeta))$ is the semifinite trace on $B(H(\zeta))$. If a is an element in $C_1(M)$, then there exist the positive elements ${a_n}_{n=1}^4$ in $C_1(M)$ such that $a = a_1 - a_2 + i(a_3 - a_4)$. Thus, we can define $Tr(a) = Tr(a_1) - Tr(a_2) + i(Tr(a_3) - Tr(a_4))$ so that Tr is a linear operator of $C_1(M)$ into Z. The trace thus defined on $C_1(M)$ has the following properties; (1) if *a, b* are elements of $C_1(M)$ and c, *d* are elements of Z then $Tr(ca + db)$ $= cTr(a) + dTr(b)$; (2) if $a \in C_1(M)$, then $Tr(u^*au) = Tr(a)$ for every unitary operator u in M; (3)if $a \in C_1(M)$, the function $\varphi(b) = Tr(ba)$ is continuous on *M.* The classes $C_p(M)$ are Banach algebras and may be considered as the spaces module over Z. Therefore, a functional φ of $C_p(M)$ into Z may be called a Z-linear functional if $\varphi (ca + db) = c\varphi (a) + d\varphi (b)$ for all $c, d \in \mathbb{Z}$ and $a, b \in C_p (M)$. In this section, we shall consider the duality of $C_p(M)$ in the sense of the above notation. At first, we show the following fact.

THEOREM 3. For each $\infty > p > 1$ and each $a \in C_p(M)$, we have the *equality*

$$
\|a\|_{p} = \sup_{b \in F} \frac{\|Tr(ab)\|}{\|b\|_{q}} \quad \text{where } \frac{1}{p} + \frac{1}{q} = 1.
$$

PROOF. For each $\xi \in X$, we have;

$$
\sup_{b \in F} \frac{\|Tr(ab)\|}{\|b\|_q} = \sup_{b \in F} \frac{\sup_{\zeta \in X} |Tr(ab)^\wedge(\zeta)|}{\sup_{\zeta \in X} \left\{ \sum_{i=1}^N b_i^\wedge(\zeta)^q \right\}^{1/q}}
$$

O-CLASSES 309

$$
\leq \sup_{b \in F} \sup_{\zeta \in X} \frac{|Tr(a(\zeta)b(\zeta))|}{\left\{\sum_{i=1}^N b_i{}^{\wedge}(\zeta)^q\right\}^{1/q}}
$$

$$
= \sup_{\zeta \in X} \sup_{b \in F} \frac{|Tr(a(\zeta)b(\zeta))|}{\left\{\sum_{i=1}^N b_i{}^{\wedge}(\zeta)^q\right\}^{1/q}}
$$

$$
= \sup_{\zeta \in X} ||a(\zeta)||_p = ||a||_p.
$$

Therefore, \sup $\mathbb I$ ϵ F

Next, we show the converse inequality. At first, we suppose that a is an element in *F* and let $a = u|a|$ is the polar decomposition of *a* and $\sum_{i=1} a_i e_i$ is the spectral representation of $|a|$. Put $b = \left(\sum a_i^{\ p-1} e_i \right) u$ then, by Lemma 4, b is an $\overline{}$ element in F . Thus, we have;

$$
ab = \sum_{i=1}^N a_i^{\ p} e_i, \ \|Tr(ab)\| = \left\| \sum_{i=1}^N a_i^{\ p} \right\| \ and \ \|b\|_q = \left\| \left\{ \sum_{i=1}^N a_i^{\ p} \right\}^{1/q} \right\|.
$$

Since $\sum a_i^{\ p}$ and $\sum a_i^{\ p}$ attain the maximum at the same point, we have **'** *)* **(ί=l)**

$$
\frac{\|Tr(ab)\|}{\|b\|_q}=\bigg\|\sum_{i=1}^N a_i^p\bigg\}^{1/p}\bigg\|=\|a\|_p.
$$

That is,

$$
||a||_p \leq \sup_{b \in F} \frac{||Tr(ab)||}{||b||_q} \quad \text{for } a \in F.
$$

For each $a \in C_p(M)$, there exists a sequence $\{a_n\}_{n=1}^{\infty}$ in F such that $\|a_n - a\|$ $\to 0$ as $n \to \infty$, $\|a_n - a\|_p \to 0$ as $n \to \infty$ and $\|a_n\|_p \to \|a\|_p$ as $n \to \infty$ by Proposition 2. Thus, we have

$$
||a||_p = \lim_{n \to \infty} ||a_n||_p \le \lim_{n \to \infty} \sup_{b \in F} \frac{||Tr(a_n b)||}{||b||_q} = \sup_{b \in F} \frac{||Tr(ab)||}{||b||_q}
$$

Therefore, $||a||_p = \sup_{\|b\|} \frac{||Tr(ab)||}{||b||}$. This completes the proof of Theorem 3. $b \in F \qquad ||U||_q$

For the duality for the classes $C_{\infty}(M)$ and $C_1(M)$, H. Halpern has showed that $C_{\infty}(M)^* = C_1(M)$ and $C_1(M)^* = M$ (see [6]; Theorem 4.8 and Theorem 4.9). Furthermore, by using Theorem 3, we can show that for $p > 1$ the dual space of the class $C_p(M)$ is $C_q(M)$ where $1/p + 1/q = 1$.

THEOREM 4. For each $a_0 \in C_q(M)$ ($\infty > q > 1$), the Z-linear functional $\varphi(a) = Tr(aa_0)$ for $a \in C_p(M)$ is a continuous Z-linear functional of $C_p(M)$ into *Z where p is the dual number of q. Furthermore, if φ is a continuous Z-linear functional of* $C_p(M)$ ($\infty > p > 1$) into Z, there exists a unique $a_p \in C_q(M)$ such *that* φ (*a*) = $Tr(a a_{\varphi})$ for all $a \in C_p(M)$ and $\|\varphi\| = \|a_{\varphi}\|_q$ where q is the dual *number of p.*

PROOF. Let $a_0 \in C_q(M)$ and $a \in C_p(M)$. Then we have

$$
||Tr(aa_0)|| = ||Tr(u|aa_0|)|| \le ||Tr(|aa_0|)||
$$

= $||aa_0||_1 \le ||a||_p ||a_0||_q$

where $u|aa_0|$ is the polar decomposition of aa_0 . The last inequality due to Proposition 1. This completes the proof of the first.

Let φ be a continuous Z-linear functional of $C_p(M)$ into Z, then Proposition 1(*a*), the restriction of φ to $C_1(M)$ is a continuous Z-linear functional of $C_1(M)$ into Z. Therefore, by ([6], Theorem 4.9), there exists an element $a_{\varphi} \in M$ such that $\varphi(a) = Tr(aa_{\varphi})$ for each a $C_1(M)$. For each $a \in C_p(M)$, there exists a sequence ${a_n}_{n=1}^{\infty}$ in *F* such that $\|a_n-a\|_p \to 0$, $\|a_n\|_p \to \|a\|_p$ and $\|a_n-a\| \to 0$. Each a_n is an element of $C_1(M)$ so that $\varphi(a_n) = Tr(a_n a_\varphi)$. Since φ is a continuous Z-linear functional of $C_p(M)$, $\varphi(a) = \lim_{n \to \infty} \varphi(a_n) = \lim_{n \to \infty} Tr(a_n a_p) = Tr(aa_p)$. That is, $\varphi(a)$ $= Tr (aa_p)$ for all $a \in C_p(M)$.

Furthermore, by Theorem 4 in [4] and the properties of *Tr,* we can show that a_{φ} is an element of $C_{\infty}(M)$.

Next, we shall show the equality $\|\varphi\| = \|a_{\varphi}\|_{q}$.

By Theorem 3, we have

$$
\|\varphi\| = \sup_{a \in C_b(M)} \frac{\|\varphi(a)\|}{\|a\|_p} = \sup_{a \in C_p(M)} \frac{\|Tr(aa_p)\|}{\|a\|_p}
$$

$$
\ge \sup_{a \in F} \frac{\|Tr(aa_p)\|}{\|a\|_p} = \|a_p\|_q.
$$

C^p -CLASSES 311

Therefore, we have the inequality $\|\varphi\| \geq \|a_{\varphi}\|_q$ so that a_{φ} is an element of $C_q(M)$. We have showed the converse inequality in the first place in this proof. That is, $= \|\alpha_{\varphi}\|_{q}.$ This completes the proof of Theorem 4.

REFERENCES

- [1] J. DIXMIER, Les algebres d'operateurs dans l'espace hilbertien, Gautiher-Villars, Paris, 1957.
[2] J. DIXMIER, Les C*-algebres et leur representation, Gauthier-Villars, Paris, 1964.
- J. DIXMIER, Les C*-algebres et leur representation, Gauthier-Villars, Paris, 1964.
- [3] N. DUNFORD AND J. T. SCHWARTZ, Linear operators, II, Pure and App. Math., 1964.
- [4] J. GLIMM, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math., 72(1960), 216-244.
- [5] J. GLIMM, Type I C*-algebras, Ann. of Math. ., 73(1961), 572-612.
- [6] H. HALPERN, A spectral decomposition for self-adjoint element in the maximal GCR ideal of a von Neumann algebra with applications to non-commutative integration theory, Trans. Amer. Math. Soc, 133(1968), 281-306.
- [7] S. SAKAI, The theory of W*-algebras, Lecture Note, Yale Univ., 1962.
- [8] R. SCHATTEN, Theory of cross spaces, Princeton Univ. Press, 1950.

MATHEMATICAL INSTITUKE TOHOKU UNIVERSITY SENDAI, JAPAN