Tôhoku Math. Journ. 23(1971), 259-271.

THE EIGENFUNCTION EXPANSION OF THE SYMMETRIC OPERATORS ASSOCIATED WITH GELFAND TRIPLET

Yoshio Itagaki

(Received Sept. 18, 1970)

Since the work of F. Mautner [10], the integral representation of a spectral measure is successfully established by Gårding, F. E. Browder and others in the field of the theory of partial differential operators (see, e. g., [5]). Gelfand and Kostyuchenko connected naturally these results with the generalized eigenfunction expansion of selfadjoint operators and proved abstract expansion theorem [6]. There, they considered the problem in the rigged Hilbert space or so-called Gelfand triplet [7, 9]. This space is now widely applied; the theory and its proofs have been extended and clarified by many research workers [2]. Our paper is along with Foias [3, 4]. In contrast with the other papers the main part of ours is to prove the eigenfunction expansion theorem without going through the spectral representation or the diagonalization of a selfadjoint operator. It may well be said that our proof is analogous to that of Maurin for the diagonal form [8]. We shall state the subject of the present study more precisely in the following section.

1. First, a few notations. Let Φ be a nuclear locally convex vector space and at the same time pre-Hilbert space under the scalar product (,). We denote by H the completion of Φ under the norm induced by (,). We suppose that embedding p from Φ to H is continuous. Then for each element h of H, the anti-linear functional which maps e of Φ to (h, pe) is continuous. Denoting the transpose of p by p^* , we write this relation in the following way:

$$(h, pe) = \langle p^*h, e \rangle, = \langle h^*, e \rangle, \text{ for any } e \text{ of } \Phi,$$

where h^* is an element of Φ' , anti-dual space of Φ . We identify h to h^* . Thus

$$\Phi' \supset H \supset \Phi$$
.

Those three spaces we call Gelfand triplet.

Let $\| \|_{\alpha}$ be a continuous norm on Φ and satisfies the formula $\|e\| = (e, e)^{1/2}$ $\leq \|e\|_{\alpha}$ for all e of Φ . We suppose for simplicity that two norms $\| \|, \| \|_{\alpha}$ are in concordance (see Definition 2). Then Φ_{α} , the completion of Φ under $\| \|_{\alpha}$, is

naturally embedded into H. This embedding mapping we denote by p_{α} . Similarly to the above relation

$$h(h,p_{lpha}e)=<\!p_{lpha}{}^{st}h,e\!>_{lpha}=<\!h^{st},e\!>_{lpha},e$$

where h^* is an element of $\Phi_{\alpha} \subset \Phi'$. When *e* is an element of $\Phi \subset \Phi_{\alpha}$, last value is equal to $\langle h^*, e \rangle$.

$$\Phi' \supset \Phi_{\alpha}' \supset H' = H \supset \Phi_{\alpha} \supset \Phi.$$

By the hypothsis that Φ is nuclear, $\| \|_{\alpha}$ can always be taken such that p_{α} is a nuclear mapping. In the following, the nuclearity of Φ is not essential, but the existense of such p_{α} is.

Let A be a continuous linear operator on Φ . Through this paper A is fixed and we assume that A is formally selfadjoint with respect to the scalar product in H, that is,

$$(Ae, f) = (e, Af)$$
, for e, f of Φ ;

exactly

$$(pAe, pf) = (pe, pAf)$$
.

But we shall suppress p or p^* when no confusion is likely to result.

We denote the transpose of A by A'. Then $A' \supset A$ in Φ' . The smallest closed extension of A in H, which we shall denote by A_0 , is also symmetric in H. Therefore by the spectral theory of the symmetric operator in the Hilbert space there exists a semi-spectral measure $\{F(\sigma)\}$ (generelized resolution of identity) defined on Borel field Σ of real line R satisfying the following relations:

(1)
$$(A_0e,f) = \int_R \lambda d(F(\lambda)e, f)$$
, for $e \in D_{A_0}$, domain of A_0 ,

and $f \in H$,

(2)
$$||A_0e||^2 = \int_R |\lambda|^2 d(F(\lambda)e, e), \text{ for } e \in D_{A_0}.$$

 $\{F(\sigma)\}\$ is uniquely determined only when A_0 is maximally symmetric [1].

Now we can describe the expansion theorem which will be proved by our method.

THEOREM. Suppose that $\| \|_{\alpha}$ is Hilbert norm and mapping p_{α} is of Hilbert-Schmidt type. Then there exist a bounded positive measure on (R, Σ) , $\mu(\sigma)$ and one-parameter continuous linear operators from Φ_{α} to $\Phi_{\alpha}', \chi(\lambda)$ which satisfy the properties :

$$(a) \quad (F(\sigma)e, f) = \int_{\sigma} < \chi(\lambda)e, f > d\mu(\lambda), for any e, f \in \Phi, \sigma \in \Sigma,$$

(b)
$$< \chi(\lambda)e, e > \ge 0, for e \in \Phi,$$

(c)
$$A' \mathbf{X}(\mathbf{\lambda}) = \mathbf{\lambda} \mathbf{X}(\mathbf{\lambda}), \mu - a. e.$$

 $\chi(\lambda)$ is almost everywhere with respect to μ (abbreviated : μ -a.e.) uniquely determined for $\{F(\sigma)\}$.

Moreover $\chi(\lambda)$ has μ -a.e. the following representation with $\{e_n^*(\lambda)\}$, an orthonormal basis in the Hilbert space Φ_{α} .

$$(\mathbf{d}) \quad \boldsymbol{\mathcal{X}}(\boldsymbol{\lambda})e = \sum_{n=1}^{\infty} t_n(\boldsymbol{\lambda}) < \overline{e_n^{\ast}(\boldsymbol{\lambda}), e} > e_n^{\ast}(\boldsymbol{\lambda}), \ t_n(\boldsymbol{\lambda}) \ge 0, \sum_n t_n(\boldsymbol{\lambda}) < \infty, \ for \ any \ e \in \Phi.$$

(e)
$$A'e_n^*(\lambda) = \lambda e_n^*(\lambda), n = 1, 2, \cdots$$

 $\{e_n^*(\lambda)\}\$ is the eigenfunction in the sense that it satisfies .ne eigen-equation for the extended operator of A.

REMARK 1. We call $\chi(\lambda)$ an eigen-operator. $\chi(\lambda)$ is of rank $\leq n \mu$ -a.e. if and only if Neumark extension of $F(\sigma)$ is of multiplicity $\leq n$. Let $F'(\sigma)$ be another semi-spectral measure and the corresponding eigen-operator be $\chi'(\lambda)$. Then Neumark extensions of $F(\sigma)$ and $F'(\sigma)$ are unitary equivalent if and only if $\chi(\lambda)$ and $\chi'(\lambda)$ are of the same rank μ -a.e. [3].

Foias proved above theorem for such a norm $\| \|_{\alpha}$ that p_{α} is nuclear. When A_0 is a selfadjoint operator this case is proved by Maurin using the decomposition into the direct integral representation relative to A_0 . Above theorem insists on that when $\| \|_{\alpha}$ is a quadratic norm the condition for p_{α} is weakened to be of Hilbert-Schmidt type. We remark in section 3 that this is considered to be strictly a generalization.

2. Let X and Y be separable Banach spaces, Y' be the Banach space of continuous anti-linear functional on Y under the uniform topology, B(X, Y'), be the Banach space consisting of bounded linear operators from X to Y' with usual norm topology, and Σ be a Borel field whose element is a subset of a set S. Let m be

a vector-valued measure on (S, Σ) with values in B(X, Y'), that is, m maps Σ into B(X, Y'), and for every element σ of Σ , $\langle m(\sigma)e, f \rangle$ is a usual measure on Σ for each $e \in X$ and $f \in Y$.

DEFINITION 1. The vector-valued measure m is said to be of bounded variation if for all finite partition $\{\sigma_i\}$ of S, $\sup_{\{\sigma_i\}} \sum_i ||m(\sigma_i)||$ has a finite value.

Let m be of bounded variation. Then we can define the indefinite total variation ν of m by

$$u(\sigma) = \sup_{\{\sigma_i\}} \sum_i \|m(\sigma_i)\|,$$

where $\{\sigma_i\}$ denote any partition of σ . ν is a bounded positive measure on Σ .

With above notations we can describe our main tool.

THEOREM 1. If the vector-valued measure m on (S, Σ) is of bounded variation, there exists B(X, Y')-valued function $\chi(\lambda)$ which is v-a.e. uniquely determined on S and satisfies the following formula.

$$(3) \qquad <\!\!m(\sigma)e, f\!\!> = \int_{\sigma} <\!\! \chi(\lambda)e, f\!\!> \!d\nu(\lambda), for any \ e \in X, f \in Y$$

and $\sigma \in \Sigma$.

And $\|\boldsymbol{\chi}(\boldsymbol{\lambda})\| = 1$, ν -a. e.

Full proof is mentioned in [3]. Here we sketch only its outline.

By Radon-Nikodym theorem there exists ν -integrable function $\chi_{e,f}(\lambda)$ which satisfies

$$(4) \qquad \qquad < m(\sigma)e, f > = \int_{\sigma} \chi_{e,f}(\lambda) d\nu(\lambda), \quad \sigma \in \Sigma.$$

If $\varphi(\lambda)$ is an element of $L^1(S, \Sigma, \nu)$, i.e., $|\varphi(\lambda)|$ is ν -integrable, it is also integrable with respect to $\langle m(\sigma)e, f \rangle$ and

$$\left|\int_{s} \varphi(\lambda) d < m(\lambda) e, f > \right| \leq \|e\| \|f\| \int_{s} |\varphi(\lambda)| d\nu(\lambda).$$

Thus $\langle m(\sigma)e, f \rangle$ defines a linear functional on L^1 , whose norm is bounded by ||e|| ||f||. Therefore

$$|\chi_{e,f}(\lambda)| \leq ||e|| ||f||,$$

for any λ except for some ν -null set N(e, f). But when we set $\chi_{e,f}(\lambda) = 0$ for λ of N(e, f), above formulas (4), (5) are also satisfied.

Let X_0, Y_0 be countable dense sets of X, Y. Then for finite linear combination of their elements with rational complex, $\mathcal{X}_{e,f}(\lambda)$ is linear w.r.t. e and f ν -a.e. We set $\langle \mathcal{X}_0(\lambda)e, f \rangle = \mathcal{X}_{e,f}(\lambda)$. Since $\mathcal{X}_0(\lambda)$ is bounded by (5), it can be extended for all of X and Y. Thus there exist $\mathcal{X}(\lambda) \in B(X, Y')$ for which

$$\langle \chi(\lambda)e, f \rangle = \chi_{e,f}(\lambda), \text{ for all } e \in X, f \in Y.$$

By (4) for $e \in X_0$, $f \in Y_0$ the formula (3) is satisfied, therefore, by Lebesgue theorem, (3) is always satisfied ν -a.e.

Other part is easily proved.

Before passing to the next proposition, we note some properties about the mapping p_a , which we shall use in Theorem 2.

Let $\| \|_0$ and $\| \|_1$ be the norms on linear space Φ and satisfy the inequality $\|f\|_0 \leq \|f\|_1$ for an arbitrary f of Φ . It will suffice to suppose that there exists a M > 0 such that $\|f\|_0 \leq M \|f\|_1$. We denote the completion of Φ under $\| \|_i$ by Φ_i . From identity mapping on Φ we derive naturally a continuous linear mapping on Φ_1 into Φ_0 when both spaces are provided with the norms $\| \|_1$, $\| \|_0$ respectively. We denote it by p_1 and its transpose by p_1^* .

DEFINITION 2. Two norms are said to be in concordance with each other, when any sequence in Φ which is Cauchy for both norms, and which converges to zero for one of the norms, necessarily converges to zero for the other.

When above two norms $\|\|_{0}$, $\|\|_{1}$ are in concordance, correspondence of equivalent Cauchy sequences in both norms is one-to-one. Therefore Φ_{1} is naturally identified to a subset of Φ_{0} .

LEMMA 1. The following three conditions are equivalent.

- (6) $\| \|_0$ and $\| \|_1$ in Φ are in concordance.
- (7) p_1 is one-to-one.
- (8) $p_1^*(\Phi_0')$ is total over Φ_1 .

PROOF. We have already seen that p_1 is one-to-one when (6) is satisfied.

 $(7) \rightarrow (8)$. Suppose that for any e^* of Φ_1 and some f of $\Phi_1 < p_1^*e^*, f >_1 = 0$. Then $< e^*, p_1 f >_0 = < p_1^*e^*, f >_1 = 0$, whence $p_1 f = 0$. By the assumption f = 0, which implies that $p_1^*(\Phi_0)$ is total.

 $(8) \rightarrow (6)$. Suppose that the sequence $\{f_n\}$ in Φ converges to zero in Φ_0 and converges to f in Φ_1 . Then, by the equation $\langle p_1^*e^*, f \rangle_1 = \langle e^*, p_1 f \rangle_0$, for any e^* of $\Phi_0' \langle p_1^*e^*, f \rangle_1 = 0$. Therefore by the assumption f = 0.

3. We now return to our problem.

LEMMA 2. Let Φ_{α} be a separable Hilbert space. (When Φ is nuclear, Φ is separable, so Φ_{α} is separable.) If p_{α} is of Hilbert-Schmidt type, $p_{\alpha}^*F(\sigma)p_{\alpha}$ is of bounded variation.

PROOF. p_{α} is represented in the following form

$$p_{lpha}e=\sum\limits_{n}\lambda_{n}{<}\overline{e_{n}{,}e}{>}_{lpha}h_{n},\ \ \lambda_{n}{\ge}0,\ \ \sum\limits_{n}\lambda_{n}{}^{2}{<}\infty$$
 ,

where $\{e_n\}$ and $\{h_n\}$ are orthonormal basis in Φ_a and H respectively. As $(p_a * F(\sigma)p_a)$ is regarded as a positive bounded linear operator on Φ_a by the identification of Φ_a' to Φ_a , it possesses a positive square root $(p_a * F(\sigma)p_a)^{1/2}$ on Φ_a , for which

$$\begin{split} \sum_{n} \left((p_a * F(\sigma) p_a)^{1/2} e_n, (p_a * F(\sigma) p_a)^{1/2} e_n)_a &= \sum_{n} < p_a * F(\sigma) p_a e_n, e_n > 0 \\ &= \sum_{n} (F(\sigma) p_a e_n, p_a e_n) = \sum_{n} \lambda_n^2 (F(\sigma) h_n, h_n) \leq \sum_{n} \lambda_n^2 < \infty , \end{split}$$

where $(,)_{\alpha}$ denotes the scalar product in Φ_{α} . Therefore $(p_{\alpha}^*F(\sigma)p_{\alpha})^{1/2}$ is of Hilbert-Schmidt type; the value of the first formula is independent of the choices of the orthonormal basis $\{e_n\}$. Especially when we take $\{e_n\}$ the eigenvectors of $(p_{\alpha}^*F(\sigma)p_{\alpha})$, its value is the sum of eigenvalues which are all non-negative, whence it is not smaller than the norm of $p_{\alpha}^*F(\sigma)p_{\alpha}$. From this fact we derive

$$\|p_{\alpha} * F(\sigma) p_{\alpha}\|_{\alpha} \leq \sum_{n} \lambda_{n}^{2}(F(\sigma)h_{n}, h_{n}).$$

consequently for any partition $\{\sigma_i\}$ of σ

$$\begin{split} \sum_{i} \| p_{a} * F(\sigma_{i}) p_{a} \|_{\alpha} &\leq \sum_{i} \sum_{n} \lambda_{n}^{2} (F(\sigma_{i}) h_{n}, h_{n}) = \sum_{n} \lambda_{n}^{2} \sum_{i} (F(\sigma_{i}) h_{n}, h_{n}) \\ &= \sum_{n} \lambda_{n}^{2} (F(\sigma) h_{n}, h_{n}) \leq \sum_{n} \lambda_{n}^{2} < \infty \;. \end{split}$$

which was to be proved.

REMARK 2. Above lemma is valid when $p_{\alpha}^*F(\sigma)p_{\alpha}$ is of nuclear type. In fact such $p_{\alpha}^*F(\sigma)p_{\alpha}$ satisfies the following inequality; for the orthonormal basis $\{e_n\}$ in Φ_n

$$\|p_a^*F(\sigma)p_a\|_a \leq \sum_n < p_a^*F(\sigma)p_ae_n, e_n >_a < \infty$$
,

where the second member represents the trace norm of $p_{\alpha}^*F(\sigma)p_{\alpha}$ [7]. Therefore the latter part of the above proof is similarly applicable. When $F(\sigma)^{1/2}p_{\alpha}$ is of Hilbert-Schmidt type, $p_{\alpha}^*F(\sigma)p_{\alpha}$ is nuclear. So above lemma is a special case of this.

Foias proved the above lemma for the Banach space Φ_{α} under the condition that p_{α} is nuclear. The following theorem shows that this case is reduced to that for Hilbert space, which may be interest in itself.

THEOREM 2. Let $\| \|_{\alpha}$ be a general norm and p_{α} is the mapping of nuclear type. Then there exists a Hilbert space Φ_{β} such that

 $H \supset \Phi_{\beta} \supset \Phi_{\alpha}$

and embedding p_{β} from Φ_{β} into H is of Hilbert-Schmidt type.

PROOF. Since p_{α} is nuclear, its transpose $p_{\alpha}^*: H \to \Phi_{\alpha}'$ is also nuclear, i.e., there exist $\{h_n\} \subset H$ and $\{e_n^*\} \subset \Phi_{\alpha}'$ such that

$$p_{\alpha}^{*}h = \sum_{n} \lambda_{n}(\overline{h_{n},h})e_{n}^{*}, \|h_{n}\| = 1, \|e_{n}^{*}\|_{\alpha} = 1, \ \lambda_{n} \ge 0 \ \text{and} \ \sum_{n} \lambda_{n} < \infty.$$

We equip H with scalar product

$$(g,h)_{\gamma} = \sum_{n} \lambda_n(\overline{h_n,g})(h_n,h)$$
 for each $g, h \in H$

and denote this pre-Hilbert space by H_{γ} .

$$\|p_{\alpha}h\|_{\alpha} \leq K^{1/2} \|h\|_{\gamma} \leq K \|h\|$$
, for $h \in H$, where $K = \sum_{n} \lambda_{n}$.

Identity mapping $p_{\gamma}: H \rightarrow H_{\gamma}$ is of Hilbert-Schmidt type. Because, for any orthonormal basis $\{g_i\}$ in H,

$$\sum_i (g_i, g_i)_{\gamma} = \sum_i \sum_n \lambda_n (\overline{h_n, g_i}) (h_n, g_i) = \sum_n \lambda_n \sum_i |(h_n, g_i)|^2$$

 $= \sum_n \lambda_n ||h_n||^2 = \sum_n \lambda_n < \infty$.

Norms || || and $|| ||_{\gamma}$ are in concordance but in general $|| ||_{\alpha}$ and $|| ||_{\gamma} = (,)_{\gamma}^{1/2}$ are not in concordance. But if we take $||h||_{\beta}$ for each $h \in H$ to be the infimum of $||h||_{\gamma} = \left(\sum \lambda_n |\alpha_n|^2\right)^{1/2}$ for all representation of p_{α}^*h for fixed $\{e_n^*\}, || ||_{\beta}$ are also in concordance.

In fact, let L_{λ}^2 be the Hilbert space consisting of all sequences $\alpha = \{\alpha_n\}$ such that $\sum_n \lambda_n |\alpha_n|^2 < \infty$ under the scalar product of weight sequence $\{\lambda_n\}$. We denote by P the mapping of $\alpha = \{\alpha_n\} \in L_{\lambda}^2$ to $\varphi_{\alpha} = \sum_n \lambda_n \alpha_n e_n^*$. Since for the same K as above the inequality

$$\|\varphi_{\alpha}\| \leq K^{1/2} \|\alpha\|_{L_{\lambda}^{2}}$$

holds, P is continuous mapping from L_{λ^2} into Φ_{α} . Evidently for any element φ of H, there exists $\alpha \in L_{\lambda^2}$ such that $\varphi = \varphi_{\alpha}$. Thus the image of P contains H. Let M be the orthogonal complement of the null kernel of P in L_{λ^2} and P_0 be the mapping of M into Φ_{α} induced by P. Then by the identification of M into Φ_{α} with P_0 ,

$$\Phi_a^{\sim} \supset M \supset H$$

Since the norms in M is equal to $\| \|_{\beta}$ for the element of H (this shows, by the way, that $\| \|_{\beta}$ defines an inner product), $\| \|_{\alpha}$ and $\| \|_{\beta}$ are in concordance.

Let Φ_{β}^{*} be the completion of H under $\| \|_{\beta}$. Then, a fortiori, embedding $p_{\beta}^{*}: H \to \Phi_{\beta}^{*}$ is of Hilbert-Schmidt type. When we regard, as in section 1, the anti-dual space of Hilbert space Φ_{β}^{*} as the subset of H, it is Φ_{β} which we seeked for. In fact, $H \supset \Phi_{\beta}$ holds by Lemma 1 since H is dense in Φ_{β}^{*} . On the other hand as p_{β}^{*} is one-to-one and H is dense in $\Phi_{\alpha}', \Phi_{\beta}^{*}$ is dense in Φ_{α}' . Therefore by Lemma 1 $\Phi_{\beta} \supset \Phi_{\alpha}$. Then p_{β} is obtained as the transpose of p_{β}^{*} .

Under the condition of Lemma 2, applying Theorem 1 to it, we obtain the following theorem. There we shall be able to take as $\mu(\sigma)$ any positive bounded measure with respect to which the indefinite total variation determined by $p_{\alpha}^*F(\sigma)p_{\alpha}$ is absolutely continuous. In the sequel we shall fix one of them.

THEOREM 3. $B(\Phi_{\alpha}, \Phi_{\alpha}')$ -valued function $\chi(\lambda)$ on R which satisfies the

following relations is μ -a.e. uniquely determined.

- (a) $(F(\sigma)p_{\alpha}e, p_{\alpha}f) = \langle p_{\alpha}^{*}F(\sigma)p_{\alpha}e, f \rangle_{\alpha} = \int_{\sigma} \langle \chi(\lambda)e, f \rangle_{\alpha}d\mu(\lambda),$ for all $e, f \in \Phi_{\alpha}, \sigma \in \Sigma$,
- (b) $\langle \chi(\lambda)e, e \rangle_{\alpha} \geq 0, \ e \in \Phi_{\alpha},$ $\|\chi(\lambda)\|_{\alpha}$ is μ -integrable,

(a')
$$(p_{\alpha}e, p_{\alpha}f) = \langle p_{\alpha}^{*}p_{\alpha}e, f \rangle_{\alpha} = \int_{R} \langle \chi(\lambda)e, f \rangle_{\alpha} d\mu(\lambda).$$

It is easily proved that conversely if for $B(\Phi_{\alpha}, \Phi_{\alpha}')$ -valued function $\chi(\lambda)$ the conditions (b), (a') hold, there exists μ -a.e. uniquely determined semi-spectral measure $\{F(\sigma)\}$ for which the relation (a) is satisfied.

4. Now we are in the position to prove the main theorem.

THEOREM 4. Under the same condition as Theorem 3,

(c)
$$A X(\lambda) = \lambda X(\lambda) \mu - a. e.,$$

and for any $e \in \Phi$,

(d) $\chi(\lambda)e = \sum_{n} t_n(\lambda) \langle e_n^*(\lambda), e \rangle e_n^*(\lambda), t_n(\lambda) \ge 0, \sum_{n} t_n(\lambda) \langle \infty \mu - a. e., where A e_n^*(\lambda) = \lambda e_n^*(\lambda), n = 1, 2, \cdots$

Here we can select $\{e_n^*(\lambda)\}$ such that for some $\{e_n(\lambda)\}$

$$e_n^{*}(\lambda) = \chi(\lambda)e_n(\lambda), \quad \langle e_m^{*}(\lambda), e_n(\lambda)
angle_a = \delta_{m,n}$$

and $\{e_n^*(\lambda)\}\$ is an orthonormal basis in the Hilbert space Φ_a^{\prime} .

PROOF. By (1) and (2) in section 1, $\chi(\lambda)$ which we get in Theorem 3 satisfies the following two relations.

$$(9) \qquad (A_{0}p_{a}e, p_{a}f) = \int_{R} \lambda < \chi(\lambda)e, f > d\mu(\lambda),$$
$$\|A_{0}p_{a}e\|^{2} = \int_{R} \lambda^{2} < \chi(\lambda)e, e > d\mu(\lambda), \text{ for all } e, f \in \Phi$$

On the other hand

$$(F(\sigma)p_{\alpha}Ae, p_{\alpha}f) = \int_{\sigma} \langle \chi(\lambda)Ae, f \rangle d\mu(\lambda), \text{ for all } e, f \in \Phi.$$

Since $\chi(\lambda)Ae$ is $B(\Phi_{\alpha}, C)$ -valued function, where C denote the space of complex numbers, by Theorem 1, $\chi(\lambda)Ae$ is μ -a.e. uniquely determined. First we show that

$$(F(\sigma)A_0p_ae,p_af) = \int_{\sigma} \lambda < \chi(\lambda)e, f > d\mu(\lambda), \text{ for } e, f \in \Phi,$$

from which, since $A_0 p_{\alpha}$ is equal to $p_{\alpha} A$ on Φ with our identification, it follows that

$$\int_{\sigma} < \chi(\lambda) A e - \lambda \chi(\lambda) e, f > d \mu(\lambda) = 0, \text{ for any } f \in \Phi \text{ and } \sigma \in \sum;$$

consequently

$$\chi(\lambda)Ae = \lambda \chi(\lambda)e, \mu$$
-a.e.

Let the spectral measure $\{E(\sigma)\}$ on a Hilbert space K be the Neumark extension of $\{F(\sigma)\}$ [1]. For

$$h = \sum_{i} E(\sigma_i) p_a e_i, e_i \in \Phi$$

put

$$h({f \lambda}) = \sum\limits_i arphi_{\sigma_i}({f \lambda}) e_i$$
 ,

where φ_{σ_i} denote the characteristic function of σ_i . We define an anti-linear functional $\varphi(h)$ on a dense subset of K which maps h to

$$\int_{R}\lambda < \chi(\lambda)e, h(\lambda) > d\mu(\lambda)$$
 .

Then

$$\begin{split} & \left| \int_{R} \lambda < & \chi(\lambda) e, \sum_{i} \varphi_{\sigma_{i}}(\lambda) e_{i} > d \mu(\lambda) \right| \\ & \leq \left| \int_{R} |\lambda| < & \chi(\lambda) e, e > \frac{1}{2} < & \chi(\lambda) \sum_{i} \varphi_{\sigma_{i}} e_{i}, \sum_{i} \varphi_{\sigma_{i}} e_{i} > \frac{1}{2} d \mu(\lambda) \right| \\ & \leq \left\{ \int_{R} \lambda^{2} < & \chi(\lambda) e, e > d \mu(\lambda) \right\}^{\frac{1}{2}} \left\{ \sum_{i,j} \int_{\sigma_{i} \cap \sigma_{j}} < & \chi(\lambda) e_{i}, e_{j} > d \mu(\lambda) \right\}^{\frac{1}{2}}, \end{split}$$

since $p_{\alpha} * E(\sigma) p_{\alpha} = p_{\alpha} * F(\sigma) p_{\alpha}$ and by (9)

$$= \|A_0 p_{\alpha} e\| \left(\sum_{i,j} (E(\sigma_i \cap \sigma_j) p_{\alpha} e_i, p_{\alpha} e_j) \right)^{1/2}$$
$$= \|A_0 p_{\alpha} e\| \left(\sum_i E(\sigma_i) p_{\alpha} e_i, \sum_j E(\sigma_j) p_{\alpha} e_j \right)^{1/2}$$
$$= \|A_0 p_{\alpha} e\| \|h\|_{K}.$$

This show that φ is continuous, so we extend it on all of K. There exists h^* of K such that

$$(h^*,h)_{\kappa} = \int_{R} \lambda \langle \chi(\lambda)e,h(\lambda) \rangle d\mu(\lambda).$$

In particular, putting $h = p_{\alpha} f$, by (9)

$$(h^*,p_{a}f)_{\kappa}=\int_{R}\lambda<\mathfrak{X}(\lambda)e,\,f>d\mu(\lambda)=(A_{0}p_{a}e,p_{a}f),\,f\in\Phi$$

Thus $Ph^* = A_0 p_a e$, where P denotes the projection from K to H. Since by the above inequality $||h^*|| \leq ||A_0 p_a e||$, $h^* = A_0 p_a e$, which was to be proved.

From the separability of Φ_{α} , it follows that

$$oldsymbol{\chi}(\lambda) A = \lambda oldsymbol{\chi}(\lambda)$$
 μ -a.e.

Since $\chi(\lambda)$ are positive by (5) and λ is real, for any e and f of Φ ,

$$< \chi(\lambda)f, Ae > = < \overline{\chi(\lambda)Ae, f} > = < \overline{\lambda\chi(\lambda)e, f} > = < \lambda\chi(\lambda)f, e > .$$

Here we note that the above relation is valid for all $e \in \Phi, f \in \Phi_a$ and < , $>_a$.

Hence

$$A \chi(\lambda) = \lambda \chi(\lambda) \quad \mu$$
-a.e.

Next we shall prove the rest part of the theorem. By Theorem 3,

$$(p_{\alpha}e, p_{\alpha}f) = \int_{R} \langle \chi(\lambda)e, f \rangle_{\alpha} d\mu(\lambda), e, f \in \Phi_{\alpha}.$$

Let $\{e_n\}$ be an orthonormal basis in Φ_{α} , then following value is finite by the assumption that p_{α} is of Hilbert-Schmidt type.

$$\sum_{n} \|p_{\alpha}e_{n}\|^{2} = \sum_{n} (p_{\alpha}e_{n}, p_{\alpha}e_{n}) = \sum_{n} \int_{R} \langle \chi(\lambda)e_{n}, e_{n} \rangle_{\alpha} d\mu(\lambda).$$

By Beppo-Levi's theorem

$$\sum_{n} < \chi(\lambda) e_{n}, e_{n} >_{\alpha} < \infty, \quad \mu\text{-a. e.}$$

Identifying Φ_{α} to Φ_{α} , we regard $\chi(\lambda)$ as the bounded positive operator on Φ_{α} . Above relation shows that the square root of $\chi(\lambda)$ is of Hilbert-Schmidt type, i.e.,

$$\sum_n \|\chi(\lambda)^{1/2} e_n\|_{\alpha}^2 < \infty .$$

We denote its spectral decomposition by

$$\chi(\lambda)e = \sum_n t_n(\lambda)(e_n(\lambda), e)_{\alpha}e_n(\lambda)$$

where eigenvectors are orthonormal in Φ_a , and $\sum_n t_n(\lambda) < \infty$. When we regard $e_n(\lambda)$ as the element of Φ_a , we denote it by $e_n^*(\lambda)$. Thus the relation $A'e_n^*(\lambda) = \lambda e_n^*(\lambda)$ can be got by putting e by $e_n(\lambda)$ in the formula $A'\mathcal{X}(\lambda)e = \lambda \mathcal{X}(\lambda)e$.

When Φ_{α} is a Banach space and p_{α} is nuclear, by Theorem 2, this theorem also holds: the only exception concerns the last description; in this case the space Φ_{α} must be replaced by Φ_{β} of Theorem 2.

ACKNOWLEDGEMENT. The auther wishes to thank Professor M. Fukamiya for his helpful suggestions.

References

- [1] N. I. AKHIEZER AND I. M. GLAZMAN, Theory of linear operators in Hilbert space, vol. 2, New York, 1967.
- [2] F. E. BROWDER, Eigenfunction expansions for non-symmetric partial differential operators 1. Amer. J. Math., 80(1958), 365-381.
- [3] C. FOIAS, Décomposition intégrales des familles spectrales et semi-spectrales en opérateurs qui sortent de l'espace hilbertien, Acta Sci. Math., 20(1959), 117-155.
- [4] C. FOIAS, Décompositions en opérateurs et vecteurs propres, 1. Etudes de ces décompositions et leurs rapports avec les prolongements des opérateurs, Revue Math. Pures Appl., 7(1962), 241-282. II. Eléments de théorie spectrale dans les espaces nucléaires, ibid., 7(1962), 571-602.
- [5] L. GARDING, Eigenfunction Expansion. Lectures in applied Mathematics vol. 3, 1964, 303-325.
- [6] I. M. GELFAND AND A. G. KOSTYCHENKO, On eigenfunction expansions of differenital and other operators, Dokl. Akad. Nauk SSSR, 103(1955), 349-352.
- [7] I. M. GELFAND AND N. YA. VILENKIN, Generalized function 4, New York, Akad. Press Inc., 1964.
- [8] K. MAURIN, Abbildungen von Hilbert-Schmidtschen Typus and ihre Anwendungen, Math. Scand., 9(1961), 359-371.
- [9] K. MAURIN, Allgemeine Eigenfunktionsentwicklungen, unitare Darstellungen, Localkompakter Gruppen und automorphe Funktionen, Math. Ann., 165(1966), 204-222.
- [10] F. I. MAUTNER, On eigenfunction expansion, Proc. Nat. Acad. Sci. USA, 39(1953), 49-53.

DEPARTMENT OF MATHEMATICS MIYAGI UNIVERSITY OF EDUCATION SENDAI, JAPAN