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Since the work of F. Mautner [10], the integral representation of a spectral
measure is successfully established by Garding, F. E. Browder and others in the
field of the theory of partial differential operators (see, e.g., [5]). Gelfand and
Kostyuchenko connected naturally these results with the generalized eigenfunction
expansion of selfadjoint operators and proved abstract expansion theorem [67].
There, they considered the problem in the rigged Hilbert space or so-called Gelfand
triplet [7, 9]. This space is now widely applied; the theory and its proofs have been
extended and clarified by many research workers [2]. Our paper is along with
Foias [3,4]. In contrast with the other papers the main part of ours is to prove
the eigenfunction expansion theorem without going through the spectral represent-
ation or the diagonalization of a selfadjoint operator. It may well be said that our
proof is analogous to that of Maurin for the diagonal form [8]. We shall state
the subject of the present study more precisely in the following section.

1. First, a few notations. Let ® be a nuclear locally convex vector space and
at the same time pre-Hilbert space under the scalar product ( , ). We denote by
H the completion of ® under the norm induced by ( , ). We suppose that
embedding p from ® to H is continuous. Then for each element A of H, the
anti-linear functional which maps e of ® to (A, pe) is continuous. Denoting the
transpose of p by p*, we write this relation in the following way :

(h, pe) = <p*h,e>, = <h*,e>, for any e of P,
where A* is an element of ®’, anti-dual space of ®. We identify A to A*. Thus

O DOHO>D,

Those three spaces we call Gelfand triplet.

Let | | be a continuous norm on ® and satisfies ‘the formula [e| = (e,e)?
= |le| for all e of ®. We suppose for simplicity that two norms | |,]| |. are
in concordance (see Definition 2). Then ®., the completion of ® under | [l is
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naturally embedded into H. This embedding mapping we denote by p.. Similarly
to the above relation

(hy pae) = <p*h,e>, = <h*,e>.,

where A* is an element of ®. C®". When e is an element of ®C®d,, last value
is equal to <h*,e>.

O OP,DH = HO>P,OP.

By the hypothsis that ® is nuclear, || |l. can always be taken such that p, is a
nuclear mapping. In the following, the nuclearity of ® is not essential, but the
existense of such p. is.

Let A be a continuous linear operator on ®. Through this paper A is fixed
and we assume that A is formally selfadjoint with respect to the scalar product
in H, that is,

(Ae,f) == (e, Af), for e, f of ®;
exactly

(pAe, pf) = (pe; AS) .

But we shall suppress p or p* when no confusion is likely to result.

We denote the transpose of A by A’. Then A'DA in ®. The smallest
closed extension of A in H, which we shall denote by A,, is also symmetric in H.
Therefore by the spectral theory of the symmetric operator in the Hilbert space
there exists a semi-spectral measure {F(o)} (generelized resolution of identity)
defined on Borel field 3 of real line R satisfying the following relations :

(1) (Age,f) = f A(F(\e, f), for e<c D,,, domain of A,,
and fé H>
(2) I Agel? = f M2 d(F(A)e, ), for e Dy,

{F(o)} is uniquely determined only when A, is maximally symmetric [1].
Now we can describe the expansion theorem which will be proved by our
method.
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THEOREM. Suppose that | |. is Hilbert norm and mapping p. is of
Hilbert-Schmidt type. Then there exist a bounded positive measure on (R,3),
u(e) and one-parameter continuous linear operators from ®, to ®., X(\) which
satisfy the properties :

(a) (Flo)e, f) = f <X(Ne, f>du(\), for any e,fe®, cc3,

(b) <X(\)e,e>=0, for ec d,
(c) AX(\) = AX(\), p-a.e.

X(\) s almost everywhere with respect to p (abbreviated : p-a.e.) uniquely
determined for {F(o)}.

Moreover X(\) has p-a.e. the following representation with {e,*(\)}, an
orthonormal basis in the Hilbert space @, .

(d) XnJe = 3 taln)<en (N e>en (M), LN Z 0,2 ta(A) < oo, for any ec .

n=1

(e) Ae,*(\) = re,*(N)n=1,2,---

{e,*(\)} is the eigenfunction in the sense that it satisfies .ne eigen-equation
for the extended operator of A.

REMARK 1. We call X(A) an eigen-operator. X(\) is of rank=n p-a.e. if
and only if Neumark extension of F(s) is of multiplicity =n. Let F'(¢) be another
semi-spectral measure and the corresponding eigen-operator be X'(A). Then Neumark
extensions of F(v) and F'(o) are unitary equivalent if and only if X(A) and X'(A)
are of the same rank p-a. e [3].

Foias proved above theorem for such a norm || [l that p. is nuclear. When
A, is a selfadjoint operator this case is proved by Maurin using the decomposition
into the direct integral representatation relative to A,. Above theorem insists on
that when | [. is a quadratic norm the condition for p. is weakened to be of
Hilbert-Schmidt type. We remark in section 3 that this is considered to be strictly
a generalization,

2. Let X and Y be separable Banach spaces, Y' be the Banach space of
continuous anti-linear functional on Y under the uniform topology, B(X,Y"), be the
Banach space consisting of bounded linear operators from X to Y’ with usual norm
topology, and 3, be a Borel field whose element is a subset of a set S. Let m be



262 Y. ITAGAKI

a vector-valued measure on (S, ) with values in B(X,Y"), that is, m maps 3 into
B(X,Y’), and for every element ¢ of 3, <m(s)e,f> is a usual measure on 3, for
each ec X and feY.

DEFINITION 1. The vector-valued measure 7 is said to be of bounded variation
if for all finite partition {s;} of S, sup Zﬂm(ori)ll has a finite value.

Let m be of bounded variation. Then we can define the indefinite total variation
v of m by

v(o) = sup ZZHm(m)H ,

where {0y} denote any partition of o. v is a bounded positive measure on 3.

With above notations we can describe our main tool.
THEOREM 1. If the vector-valued measure m on (S,Z) is of bounded

variation, there exists B(X,Y')-valued function X(\) which is v-a.e. uniquely
determined on S and satisfies the following formula.

(3) <mlo)e,f> = f <X(\Ne, f>dv(\), for any ec X, feY
and c€3 .

And |X(\)| =1, v-a.e.
Full proof is mentioned in [3]. Here we sketch only its outline.

By Radon-Nikodym theorem there exists »-integrable function X, ,(A) which
satisfies

(4) <mlole, f> = f X, (Ndv(pn), oe3.

If (A) is an element of L!(S,3,v), i.e., |@(A)| is v-integrable, it is also integrable
with respect to <mfo)e,f> and

[ #nia<minge, £>| =11 [ 1ot)dun).
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Thus <m(c)e,f>> defines a linear functional on L', whose norm is bounded by
lellfll. Therefore

(5) 1Xe, /(M) = llell |15

for any A\ except for some v-null set Nie,f). But when we set X, ;(A)=0 for A
of Nie,f), above formulas (4), (5) are also satisfied.

Let X,, Y, be countable dense sets of X,Y. Then for finite linear combination
of their elements with rational complex, X, ,(A) is linear w.r.t. ¢ and f v-a.e.
We set <X,(A)e,f> =X, ;(A). Since X,o(A) is bounded by (5), it can be extended
for all of X and Y. Thus there exist X(A) € B(X,Y") for which

<X(\)es f> =X, ;(\), for all ec X, feY.

By (4) for ee X, f€Y, the formula (3) is satisfied, therefore, by Lebesgue
theorem, ( 3) is always satisfied v-a. e.

Other part is easily proved.

Before passing to the next proposition, we note some properties about the
mapping pa., which we shall use in Theorem 2.

Let || |lo and || ||; be the norms on linear space ® and satisfy the inequality
I 1e=|fIl; for an arbitrary f of ®. It will suffice to suppose that there exists
a M >0 such that |f|,=M]|f|,, We denote the completion of ® under | |;
by ®,. From identity mapping on ® we derive naturally a continuous linear mapping
on ®, into ®, when both spaces are provided with the norms || |, | ||, respectively.
We denote it by p, and its transpose by p,*.

DEFINITION 2. Two norms are said to be in concordance with each other,
when any sequence in ® which is Cauchy for both norms, and which converges to
zero for one of the norms, necessarily converges to zero for the other.

When above two norms || |l» || [i are in concordance, correspondence of

equivalent Cauchy sequences in both norms is one-to-one. Therefore ®, is naturally
identified to a subset of @,.

LEMMA 1. The following three conditions are equivalent.
(6) I llo and || |, in ® are in concordance.
(7) P1 is one-to-one,

(8) 2.X(®)) is total over P,.
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PROOF. We have already seen that p, is one-to-one when (6 ) is satisfied.

(7)—(8). Suppose that for any e* of ®," and some f of ®, <p,Fe*,f>,
=0. Then <e*, p,f>,= <p¥e*,f>, =0, whence p,f=0. By the assumption
f =0, which implies that p,*(®,’) is total.

(8)—(6). Suppose that the sequence {f,} in ® converges to zero in ¥, and
converges to f in ®,. Then, by the equation <p,*e¥,f>, = <e*, p,f >, for any
e* of ®) <p¥e*, f>,=0. Therefore by the assumption f =0,

3. We now return to our problem.
LEMMA 2. Let ®, be a separable Hilbert space. (When ® is nuclear, ®
is separable, so ®, is separable.) If p. is of Hilbert-Schmidt type, p.*F(o)p.

is of bounded wvariation,

PROOF. p. is represented in the following form
Pae = Z)\'n<e’n’ e>ahn’ 7\47;;07 Z)\mz < oo,

where {e,} and {h,} are orthonormal basis in ®, and H respectively. As (p.*F(a)p.)
is regarded as a positive bounded linear operator on ®, by the identification of @,
to @,, it possesses a positive square root (p.*F(o)p.)'’? on ®,, for which

2_ (P F(0)pe) P en (p*F(0)pe) Per)e = 3 <pu*Flo)petns €n>e

= Z Paenypae ZX h_n, h Z)\IHZ < o,

where ( , ). denotes the scalar product in ®.. Therefore (p.*F(a)p.)? is of
Hilbert-Schmidt type; the value of the first formula is independent of the choices
of the orthonormal basis {e,}. Especially when we take {e,} the eigenvectors of
(p*F(a)p.), its value is the sum of eigenvalues which are all non-negative, whence
it is not smaller than the norm of p.*F(o)p.. From this fact we derive

[2.%F(0)pe]l Zx o) hy) .
consequently for any partition {s;} of &
Z”PH.)LF ay P"”agzzy\‘ )R hy) ZWZ (o) )hns hy)

—Zx,. (&) Py P) <Zx,, < oo,
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which was to be proved.

REMARK 2. Above lemma is valid when p¥F(s)p. is of nuclear type. In fact
such p¥F(a)p. satisfies the following inequality ; for the orthonormal basis {e,} in P,

“P“*F Pﬂ l Z <Pa*F )Paen) en>a < oo,

where the second member represents the trace norm of p.*F(o)p. [7]. Therefore
the latter part of the above proof is similarily applicable. When F(o)"?p. is of
Hilbert-Schmidt type, p.*F(o)p. is nuclear. So above lemma is a special case of
this,

Foias proved the above lemma for the Banach space ®. under the condition

that p. is nuclear. The following theorem shows that this case is reduced to that
for Hilbert space, which may be interest in itself.

THEOREM 2. Let || |« be a general norm and p. is the mapping of
nuclear type. Then there exists a Hilbert space ®4 such that

H>d,0P,

and embedding pg from @4 into H is of Hilbert-Schmidt type.

PROOF. Since p. is nuclear, its transpose p.*: H—®, is also nuclear, ie.,
there exist {h,} CH and {e,*} C®." such that

£k = Salliy Ko [hall = 1, lea*le = 1, 2, =0 and T h, <o

We equip H with scalar product

(9>h) Z)\ (hys 9)(hy, ) for each g, he H

and denote this pre-Hilbert space by H,.

2k« = K*?|h|l,= K||h|, for he H, where K= ) \,.

Identity mapping p,: H— H, is of Hilbert-Schmidt type. Because, for any ortho-
normal basis {g;} in H,
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Z(gv gi)v = szn(hw gi)<hn’ g:) = Z)\mz [ (775 g:)!*

i i

=2 Ml = 2 A< oo

Norms || || and | ||, are in concordance but in general | |. and | [,=(, ),** are
not in concordance. But if we take |A|z for each A€ H to be the infimum of

1/2
2|, = (Z)\,nla,,lz) for all representation of p.*h for fixed {e,*},| |z are also

in concordance.
In fact, let L,®> be the Hilbert space consisting of all sequences a= {a,} such
that 3 An|a,|? < oo under the scalar product of weight sequence {A,}. We denote

by P the mapping of a= {a,} € L,’to @.=_A,ae,*. Since for the same K as

above the inequality
@l = K**||at] 1,2

holds, P is continuous mapping from L,? into ®,’. Evidently for any element @ of
H, there exists a<€ L,? such that @ =@.. Thus the image of P contains H, Let
M be the orthogonal complement of the null kernel of P in L,* and P, be the
mapping of M into ®." induced by P. Then by the identification of M into P.
with P,,

®, ODMDH.

Since the norms in M is equal to || ||z for the element of H (this shows, by the
way, that || ||z defines an inner product), | |« and || ||s are in concordance.

Let ®z* be the completion of H under || ||z Then, a fortiori, embedding
ps*+ H—®g* is of Hilbert-Schmidt type. When we regard, as in section 1, the
anti-dual space of Hilbert space ®g* as the subset of H, it is ®; which we secked
for. In fact, HDO®; holds by Lemma 1 since H is dense in ®z*. On the other
hand as pg* is one-to-one and H is dense in ®.,P* is dense in .. Therefore
by Lemma 1 ®;D®.. Then p; is obtained as the transpose of pg*.

Under the condition of Lemma 2, applying Theorem 1 to it, we obtain the
following theorem. There we shall be able to take as u(s) any positive bounded
measure with respect to which the indefinite total variation determined by p¥F(a)p.
is absolutely continuous. In the sequel we shall fix one of them.

THEOREM 3. B(®,, ®.')-valued function X(\) on R which satisfies the
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Sfollowing relations is p-a.e. uniquely determined.

(a) (Flolpe,pf) = <pXFlalpees f>o = [ <X(Ne, f>dpin),
for all e,fe®yae),
(b) <X(A)e,e>.=0, ec D,

IX(A)|« is p-integrable,

(&) (pets puf) = <pa*puts [>a = f <X(A)e, f>dp(n).

It is easily proved that conversely if for B(®., ®,)-valued function X(A) the
conditions (b), (a’) hold, there exists p-a.e. uniquely determined semi-spectral
measure {F(a)} for which the relation (a) is satisfied.

4. Now we are in the position to prove the main theorem.

THEOREM 4. Under the same condition as Theorem 3,

(c) AX(N) =2aAX(\) p-a.e.,
and for any ec @,

(d) X(\e = 2 ta(N)<e*(\), e>e,*(N), t,(A)=0, > t,(A) <o pa.e,
where A e, *(\) =re,*(\), n=1,2,--+

Here we can select {e,*(\)} such that for some {e,(\)}
e.*(N) = X(Nea(n), <en*(N)en(N)>e = 8,0
and {e,*(\)} is an orthonormal basis in the Hilbert space ®. .

PROOF. By (1) and (2) in section 1, X(A) which we get in Theorem 3
satisfies the following two relations.

(9) (Aopits pef) = f A<X(Ne, £>dp(n)

Aol = f A <X(\)e,e>du(N), for all e, fe®.

R
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On the other hand

(Flo)peAe, pof) = f <X(\)Ae, F>dp(\), for all e,fe®,

[

Since X(A\)Ae is B(®., C')-valued function, where C denote the space of complex
numbers, by Theorem 1, X(A)Ae is p-a. e, uniquely determined. First we show
that

(Flo)Apet; puf) = f A<X(Ne, f>du(\), for e,fc®,

from which, since Ap. is equal to p.A on @ with our identification, it follows
that

f <X(\)Ae —AX(N)e, f>dp(\) =0, for any fe ® and 5 Y _;

consequently
X(\)Ae = AX(\)e, w-a.e.

Let the spectral measure {E(o)} on a Hilbert space K be the Neumark
extension of {F(s)} [1]. For

h = ZE(G't)Paev e,cd

put

h(\) = Z ¢ac(7\f)ei ’

where @,, denote the characteristic function of o;. We define an anti-linear functional
@(h) on a dense subset of K which maps 4 to

f A<X(Ne, BN >duln).

Then
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fR A<X(\)e, ;¢,.(x)e,>dp(x)'

(7\,)6, e>"’<X()\,) ; Psss ; ¢a‘et>lﬂd:”‘()\‘) {

g{ fR )\.2<X(7\,)e,e>d/a()\,)}l/2{z <X(New e5>dp(n) }m,

Wi Jrines

since p.*Elo)pn = pFla)p. and by (9)
1/2
- qupaen( ;(E(«r,na»p«ei,p«e,))

12
= [|Aopaell ( ; E(o))peess ; E(G'J)Pael)

= [|Apeel|h]x.

This show that @ is continuous, so we extend it on all of K. There exists A* of
K such that

(B*, h)x = f MN<X(N)e, BV >duln) .
In particular, putting A= p.f, by (9)
(h*, puf )& = f MN<X(Ne, F>dpn) = (A pof)s fe P

Thus Ph* = A.p.e, where P denotes the projection from K to H, Since by the
above inequality [A*| = ||Apl, A* = Ap.e, which was to be proved.
From the separability of ®., it follows that
X(NA = AX(N) wae.
Since X(\) are positive by (5) and A is real, for any e and f of P,
<X(\)f> Ae> = <X(N)Ae, > = <AX(N)e, f> = <AX(\)fse>.

Here we note that the above relation is valid forallee @, fe @, and < , >..
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Hence
AX(\) = AX(\) pae.

Next we shall prove the rest part of the theorem. By Theorem 3,
(b puf) = [ <X(N)e, £>dpin), e:f < P
R

Let {e,} be an orthonormal basis in ®,, then following value is finite by the
assumption that p, is of Hilbert-Schmidt type.

; Ipeall? = ;(paempaen) = ; f <X(N)en e,>dp() .

By Beppo-Levi’s theorem

Z <x(h)en: en>" < o9, I"'a. €.

Identifying ®,” to ®,, we regard X(A) as the bounded positive operator on @,.
Above relation shows that the square root of X(\) is of Hilbert-Schmidt type, i.e.,

2% el < oo
‘We denote its spectral decomposition by

X(Ae = D tu(A)(ea(n)s €)eenln) 5

where eigenvectors are orthonormal in @,, and ) Z,(A)<<co. When we regard

e,(\) as the element of ®,, we denote it by ¢,¥(A). Thus the relation A’e,*(A)
= re,*¥(A) can be got by putting e by e,(A) in the formula A'X(\)e = AX(M\)e.

When @, is a Banach space and p. is nuclear, by Theorem 2, this theorem
also holds : the only exception concerns the last description; in this case the space
®,” must be replaced by ®5 of Theorem 2.
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