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ON DIVISIBILITY BY 2 OF THE RELATIVE

CLASS NUMBERS OF IMAGINARY

NUMBER FIELDS

HlSAKO FURUYA

(Rec. July 23, 1970)

Throughout this paper we shall treat algebraic number fields K and F of
finite degree. It was proved by H. Yokoi that if K/F is a cyclic extension such
that K and the absolute class field F of F are disjoint over F and K has only
one ramified prime divisor over F, then the class number hF of F is equal to the
ambiguous class number aκ/F of K/F. ([ 3 ] Theorem 1) First, we prove an
analogous result in relation to his result. (§2 Theorem 1)

Next, suppose K is imaginary and K = KJ where J is a substitution from a
complex number a to the complex conjugate number a and let Ko be the maximal
real subfield of K. Then we shall give necessary conditions to make the relative
class number of K/Ko odd. (§2 Lemma 2) From this Lemma 2, the well known
property of cyclotomic field K=Ppn that the relative class number of K/Ko is odd
if and only if the class number of K is odd follows easily, where Pp« is the
cyclotomic field generated by a primitive ^>n-th root of unity over the rational
number field P for a prime number p and a natural number n.

Finally, suppose K is totally imaginary, K=KJ, and the maximal real
subfield Ko of K is totally real. Then we shall give necessary conditions to make
the relative class number of K/Ko odd. (§2 Theorem 2) This Theorem 2 is a
generalization of H. Hasse's Satz 42 in [ 2 ].

In §3 applying Theorem 2 to an absolutely cyclic imaginary number field, we
shall give necessary and sufficient conditions to make the relative class number
odd.

1. Preliminaries. Throughout this paper we shall use the following notations :

h

a
Lk

-Ίc

the group of ideals in k.
the group of principal ideals in k.
the group of absolute ideal classes in k.

the absolute class field of k.
the number of absolute ideal classes in J
the group of units in k.
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When K/F is a finite Galois extension with Galois group G = G(K/F), we
use the following notations :

Ώe(p)

NCK

CLR/F

P

the product of the ramification exponents of all the finite prime
divisors^ p in F with respect to K/F.
the product of the ramification exponents of all the infinite prime
divisors p^ in F with respect to K/F.
the group of numbers in K whose norms are units in F with respect
to K/F.
the ambiguous ideal group of K with respect to K/F.
the image by the norm homomorphism from Cκ into CF.
the kernel by the norm homomorphism from Cκ into CF.
the group of ambiguous ideal classes in K/F.
[Cκ]

the rational number field.
the cyclotomic field generated by a primitive ra-th root of unity
over P.

Let K/F be a cyclic extension. Then the following formula is well known.

&KIF = (K:F)[EF:NK/F®K/F]

PROPOSITION 1. Let K/F be a finite extension and let Fλ be the maximal
unramified abelian extension field over F contained in K, i. e. Fλ = F Π K.
Then we have :

1. / / K/F is Galois, then hκ is divisible by hF/{Fι: F).
2. If K/F is cyclic, then aκ/F is divisible by hF/{Fλ: F).
3. If K/F is cyclic and has at most one ramified prime divisor, then

hF/{Fx: F) is equal to aK/F-

PROOF. 1. This is obvious.

2. Let σ be a generator of G(K/F) and let C^"σ be the image by the
homomorphism 1 — σ from Cκ to Cκ in a natural way. Then hκ = aκ/F [CJ?~σ]

and hκ = [NCK][NCK]. Therefore aκ/F = \f^r [JVCJ. Since NCK contains C t σ ,

Γ C 1
r^ι^σΛ is an integer. Hence aK/F is divisible by [NCK] On the other hand,
IΛ^ J

: F) = [CK: yC^F,: F) = [NCκWι • F)
by Class Field Theory, therefore [C, : NCK] = (Fx: F). From hF=[CF: NCK][NCK]
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= (ί\ : F)[NCK], [NCK] = hF/{Fx: F) follows. Hence aκ/F is divisible by hF/(Fx :F).

3. By the formula 1),

— ° ° is a n integer by 2. Since K/F has at most one ramified

prime divisor, (2C: Fλ) = Ue^Ue^). Hence α^/F = hF/{Fι: F).

REMARK. This is a generalization of the theorem of H. Yokoi. In 3. we
have [EF : Nκ/F®κ/F] = 1.

2. Theorems.

THEOREM 1. Let K/F be a cyclic extension, suppose that K is totally
imaginary, F is real and the maximal real subfied Ko of K is totally real,
and let F1 = KΓ\F. If K/F has at most one finite ramified prime divisor,
then we have the following facts :

1. / / the signatures of fundamental units of F are "independent", then
aKIF = hF/(Fx : F).

2. If the signatures of fundamental units of F have just one 'relation9,
then we have the following:

(a ) If K/F has a finite ramified prime divisor p and p doesn't ramify
in K/Ko, then aκ/F = hF/(F1 : F).

(b) If K/F has a finite ramified prime divisor p and p ramifies in
K/Ko, then aκ/F =2 hF/(F1: F).

( c ) If K/F hasn't any finite ramified prime divisor, then aκ/F=hF/(F1 :F).

PROOF. Let J be a substitution from a complex number a to the complex
conjugate number a and let s be any conjugate substitution of K over the rational
number field P. Then we can show sJ=Js by the assumptions that KΊs totally
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imaginary and that KQ is totally real. As J fixes an element of F and K/F is
Galois, J induces an automorphism of K. Therefore KJ=K. We can put K=KO(Θ)
and θ + ΘJ, ΘΘJ€ K. As θ + ΘJ, ΘΘJ are real, θ + ΘJ, ΘΘJ z Ko. Therefore K/Ko

is a quadratic extension. Accordingly we can suppose θ is pure imaginary, i. e.
0>θ* = azKQ, Θ + ΘJ = O. Hence θs + (θJ)s = 0, X = X 0 (fi ) and (fl )1 = (0f)
= as € 2CJ. As Xo is totally real, XQ is real. As K is totally imaginary, θs isn't
real. Hence (θs)2 = α* < 0 . Hence 0s + (6>s)' = 0. From this and (9s + (ΘJ)S = 0, we
have (ΘJ)S = {θψ. Hence (α 7) ' = (as)J for all a s K.

If Λ is any element of ®K/F> then JN^ Fa € JE^. Let σ be a generator of
G[K/F). Then we have JV^tf = Λ<i+*+σ +...+σ«-.)(i+σ-) = / g ^ for m=(K0: F), J= σm

in K and /8 = rf+^+^+-+'"-1. Hence Nκ/Pcί is a totally positive unit. If S is

totally positive element of EF, we have ( — ' ^ v x 1 = 1 for any infinite prime divisor

—'-—,-, 1 = 1 for any finite prime divisor p' which doesn't ramify in K/F,

for norm residue symbol. From the product formula of norm residue symbol we

—'-—" 1 = 1 for a finite ramified prime divisor p. Hasse's Theorem tells

us that such a £ is norm of an element of K. Hence Nκ/Fθκ/F is the group EF

of totally positive units in F.
Since EFdEF, we can put [EF: EF] = 2B and q=;{F: P)-R. Then we can

prove that q is the number of dependent relations between the signatures of
fundamental units of F. Let s19 s2, , sr be all of conjugate substitutions of F

( 0 if 8s is positive
for a unit £ of

1 if 8s is negative
F. Cleary we have sgn(£??) sΞsgn£ s +sgn??5 (mod 2) for units £ and v of F. Let
7 be a vector space over a finite field GF( 2 ) which consists of vectors {(sgn£Sl,
sgn£S2, ,sgn£S r) £<Ξ EF}. Then EF/EF is isomorphic to V. Let £χ = — 1, and
let £2> — >£r be the fundamental units of F , as F is totally real. We have the
matrix

{ sgnθί 1 sgn£ί 2

s g n £ l ι sgn£I 2

sgnθj1

Let R be the rank of this matrix. Then R is the dimension of V over GF( 2).
Hence [EF : EF] = 2R\ Hence R = R and q = r — R is the number of dependent
relations between the signatures of fundamental units of F and [EF : EF] = 2r~Λ = 2Q.
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By the formula ( 1 ) we have

aKIF- (F1:F

hF

(FiiF.

hF

e{p)Ώe(pm)
) (K .FME,

e(p) - ?*•

) (K:Fι)[Er

e(P) - 2"

• Nκ/P®κ/F]

n

• Eft

(Fr F)

aκ/F is divisible by hF/{Fγ : F) by Proposition 1.2. (K: F J is divisible by e(p).

Accordingly, if q = 0, then we have α*/F = hF/(Fλ: F) and φ ) = (X": F J . If q = 1

and p does't ramify in K/Ko» then we have aκ/F = /p fp) ' (K ' F ) =
 " T F ^ F Γ

and φ ) = (Ko '• Fx). If g = 1 and p ramifies in K/Ko, then β(p) = (X": F J and

^ x 2 If ? = 1 and e(p) = 1, then Ko = F19 aκ/F = ^ / ( ^ 0 : F). It

is impossible that q = 0 and ^(p) = 1.

REMARK. SJ=JS if and only if iC is totally imaginary and K is totally
real. In 1. K/F has a finite ramified prime divisor p and p ramifies totally in
K/Fx. In 2. ( a ) p ramifies totally in KJFX. In 2. ( b ) t> ramifies totally in

LEMMA 1. Let K/F be a cyclic extension with a prime power degree

n = lv and suppose KΓ\F = F. If h* = hκ/hF is prime to Z, then

1. aR/F = hF,

2. hF is prime to I if and only if lq' = Q(i. e. Nκ/F%κlF = Nκ/FEκ) and
9li> 2ί2, — , 2lί £ IFPK> where q is the number such as [Nκ FBK/F : EF] = lQ\ Q
is the index [NK/FEK : EF], Sί^ 3ί2, , %δ are such ideals as px = SίJ1, , pδ

= 3ίf* m i?, pl9 p2, , pδ are all finite ramified prime divisor in F with
respect to K/F, and eue2, ,eδ are the ramification exponents of p19p2> >ps

with respect to K/F respectively.

PROOF. Let p be any prime number such that p^l. We can prove easily
that a natural mapping φ\ CF}P->Cκ:P is an isomorphism where CFtP is the^>-class
group of F and C|,pis the ambiguous ^>-class group of K/F. Let pm be the order of
CG

KtP and let σ be a generator of G = G(ϋ:/F). For 2ί z C%,p, Nκ/F% = « i + ' + " + - + ' - '
= ά ' " 1 Sl^2-1 %σn'ι-λ%n and Sl"- 1^ 2- 1 9T' 1" 1 € P x and so %n € [NK/F%)PK. There
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are such integers x>y as l = xpm+yn, since (pm,n) = l. Therefore 3l=(3lpm)x(3ln)2/

€ (NK/F%V)PK. Therefore φ is 'onto'. Let pm' be the order of CFιP. For integers
x,y such as 1 = xpm' +yn and b ^ Q p , if b = (a) ZPK>%= (h*m')xbyn <= b^P,,
= h(Nκ/Fb

y)PF= {Nκ/F(a)y)PF='PF. Therefore ?> is injective. Suppose that A* is
prime to /. aκ/F/hF is prime to /, for ##•/*• is divisible by hF by Proposition 1. 2.
and A* is divisible by aκ/F/hF. From these facts we have aκ/F = hF.

Put Cf = A/Pκ. To any ideal SI belonging to A, there corresponds a unit ^
in NK/FSK/F in the following way : since %ί~σ is a principal ideal, there exists a
number θ in K such that 9l 1 ~ σ = (0), and η = Nκ/Fθ is cleary a unit in F. By
this correspondence, A/IKPK^NK/FΘK/F/NK/FEK. Since EFΌNK/FSK/FZ)NK/FEK

oEF,l
q'^Q. Since 31* - (tf)iV^3l for some azK and 31 ζ A , [A: IKPK] is the

power of Z. Hence, if Zα > Q , aκ/F = hF is divisible by /.
We consider a natural homomorphism: CF->CK = A/Pκ. If Sίi doesn't belong

to IFPκ> 311 doesn't belong to any class of the image of this homomorphism. 3ίx

belongs to A. pi = Sίf1 belongs to a class of the image. Hence aκ/F = AF is
divisible by I.

Suppose that K = Q and «!, 3l2, , «,«= / F P X . Nκ/F®κ/F = NK/FEK by Zg/

= Q. Hence A = 1%PK. So the homomoφhism : CF-*C%= I%PK/PR is fonto' by
3tj, 312, , 3ίδ € IFPκ- And since Λ^ / F = Λ.̂ , this homomoφhism is an isomoφhism.
Hence IFnPκ = PF.

h

All

Let H be the group of ideals in K whose norms belong to PF. Then [A : Pκ]

= &K/F> [Iκ ' H] = hF and [H: Pκ] = h*. And then we have the following facts :

(1°) [AΠH: Pκ] is the power of /.
(2°) aκ/F is prime to / if and only if [AnH: Pκ] = 1.

Proof of (1°). If Ϊ U A Π J H , then 3lw = Nκ/F% (a) for some asK. Hence

Proof of (2°). If aκ/F is prime to U [AnH: Pκ] is prime to /. By (1°)
[AnH: Pκ] = l. If aκ/F is divisible by /, then there exists an ideal 31 £ A such
that W e Pκ and SBL&PK. Since NF/F% = 3ίn (Λ) for some a € K, Nκ/F% zPκΓ)IF

= PF. Hence 31 € A Π H . Therefore [ A n H : P J > 1.
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Since h* is prime to /, Aί)H = Pκ by (1°). Hence aκ/F = hF is prime to I

by (2°).

COROLLARY. Let K/F be a cyclic extension with a prime power degree

n = lυ and suppose Kί)F = F. Then hκ is prime to I if and only if aκ/F = hF

and hF is prime to I.

PROOF. This follows from Lemma 1 and (3°).

(3°). If AnH=Pκ, then [H: AnH] is prime to /.

Proof of (3°). If CeH/AnH and G isn't a unit, then Cσ*C by AnH

= Pκ. Since the order of G is a prime power lυ, the number of distinct G-conjugates

of C is a multiple of I. Hence [H: AnH] - 1 is a multiple of I. Hence [H: AnH]

is prime to /.

LEMMA 2. Suppose K is imaginary and KJ = K and let Ko be the

maximal real sub field of K. If the relative class number h* = hκ/hKo is odd,

then we have the following facts :

l aκ/κo — hκ0-

2. hKo is odd if and only if 2Q' = Q and %y 5β2,. , %z IKoPκ. Here q

is the number such that [Nκ/Ko%κ/Ko: E2

Ko] = 2Q', Q is the index [Nκ/KoEκ: E2

Ko],

and px = 5β?, p2 = ^\> > Pδ = Φ5 we all prime divisors which ramify in K/Ko.

Lemma 2 follows from Lemma 1, since K/Ko is quadratic. From the Corollary

to Lemma 1, we have

COROLLARY 1. Suppose K is an imaginary and KJ = K and let Ko be

the maximal real sub field of K. Then hκ is odd if and only if aκ/Ko = hKo

and hKo is odd.

COROLLARY 2. Let K be the imaginary sub field of the cyclotomic field

Ppn, and let Ko be the maximal real subfield of K. Then the relative class

number h* = hκ/hKo is odd if and only if hκ is odd. (This Corollary 2. is

induced from the next Theorem 2, too.)

PROOF. A finite ramified prime divisor in K/Ko is only one and is principal.

r — (Ko: P) is the number of all infinite ramified prime divisors in K/Ko. By

the formula (1)
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Suppose that h* is odd, then q = 0 since aκ/Ko is divisible by hKo. 2q ^ Q .

Hence 2g' = Q = 1. By Lemma 2, hKo is odd. Hence hκ = hKo. h* is odd.

THEOREM 2. Suppose K is totally imaginary, KJ = K and the maximal
real sub field Ko of K is totally real. If the relative class number h* — hκ/hKo

is odd, then we have the following facts:

1. There is ( a ) only one or ( b ) no finite ramified prime divisor in

K/Ko.
2. In case ( a ) , the signatures of fundamental units of Ko are 'indepen-

dent*. In case ( b), they have just one ''relation9.

3. In case ( a ), let p be the finite ramified prime divisor of Ko and $
be the prime factor of p in K. Then hKo(= aκ/Ko) is odd if and only if

?$€lκoPκ' In case ( b ) , hKo(= aκ/Ko) is odd if and only if the index Q =

[Nκ/KoEκ: E2

Ko] is two.

PROOF. Let δ be the number of all finite ramified prime divisors in K/Ko

and r=(K0: P). By the formula (1) and [Eκ,: E2

Ko] = 2r we have

aκ/Ko = hKo F „—7τ γ = hKo 2δ+Q/"1

where [Nκ/Koθκ/Ko: Eκ0] = 2g'. Suppose that h* is odd. Since aκ/Ko is divisible
by hKo by Proposition 1. 2, aκ/Ko = hKo and δ + q — 1 = 0. Therefore δ is zero or
one and therefore q' = q as we have seen in the proof of Theorem 1. Hence we
have 1. and 2. Moreover we have 3 by Lemma 2,

COROLLARY 1. Suppose K is totally imaginary, KJ — K and the maximal
real sub field Ko of K is totally real. Then hκ is odd if and only if the
following three oonditions are satisfied:

1. There is ( a ) only one or (b ) no finite ramified prime divisor in
K/Ko.

2. In case ( a ), the signatures of fundamental units of Ko are 'independent'.
In case (b ), they have just one 'relation9.

3. hKo is odd.

PROOF. If hκ is odd, h* is odd. Hence 1. 2. 3. are satisfied by Theorem 2.
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Conversely suppose 1. 2. 3. are satisfied. aκ/Ko = hKo 2δ+Q/ x and q = q. By 1. 2.

δ + q — 1 = 0. Hence aκ/Ko = hKo and hKo is odd. By Corollary 1 to Lemma 2, A*

is odd.

COROLLARY 2. Suppose K is totally imaginary, KJ = K and the maximal
real sub field Ko of K is totally real.

If there exists only one finite ramified prime divisor p = $ 2 in K/Ko and $
belongs to lKoPκ> then the relative class number h* is odd if and only if hκ is
odd.

If there is no finite ramified prime divisor and Q = 2 in K/Ko, then the
relative class number h* is odd if and only if hκ is odd.

3. Absolutely cyclic imaginary number field. In Theorem 2, if K is an
absolutely cyclic field, then the case (b) doesn't happen. The next Theorem 3
has been proved by H.Hasse in [2] Satz 45. We shall give another proof by
Theorem 2. 3 without using ^-function.

PROPOSITION 2. Let K be an absolutely cyclic number field and let F
be any proper subfield of K. Then there exists at least one finite ramified
prime divisor in K/F.

PROOF. Let (K: P) — n= p{ιpt2 pp be a factorization of n into prime
numbers. Then there exists an intermediate field Kt of K/F satisfying (Ki: P)
— p\K And K— KλK2 Ks. We can prove that there exists a totally ramified
finite prime divisor in Kt/P. If K is an imaginary quadratic extension field over
P, it is obvious. Suppose Kt isn't an imaginary quadratic extension field over P.
If Ki/P hasn't a totally ramified finite prime divisor, then there exists no prime
divisor which has the rational number field P as the inertia field in KJP.
Therefore there exists an intermediate field of K JP which is nonramified abelian
extension over P with the degree at least pi since Ki/P is cyclic and has prime
power degree />?. This is a contradiction for hP= 1. Since F is a proper subfield
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of K, there exists such Kι as KifλF 5i Kt and then the prime divisor which

ramifies totally in Kt/P ramifies in KtF/F because (Kt: KtnF) and (F: KtnF)

are relatively prime.

THEOREM 3. Let K be an absolutely cyclic imaginary number field

and let Ko be the maximal real subfield of K. Then the relative class

number h* = hκ/hKo is odd if and only if the following three conditions are

satisfied:

1. There exists one and only one finite ramified prime divisor in K/Ko.

2. The signatures of fundamental units of KQ are c independent'.

3. hKo is odd.

PROOF. Suppose that conditions 1,2 and 3 are satisfied. aκ/Ko = hKo by 1

and 2 and hKo is odd by 3. Hence hκ is odd by the Corollary 1 to Lemma 2.

So h* is odd.

Conversely suppose that h* is odd. We have 1 and 2 by Proposition 2 and

Theorem 2. We can show that hKo is odd by Theorem 2. 3 ( a ) , proving that $

belongs to IKoPκ for only one finite ramified prime divisor p = $ 2 in K/Ko.

K is contained in Pm. Let m = pVpl* pts be a factorization of m into

prime numbers and put k = Ppfι and k' — PPι

e*P3

e*...PQ

e°. We can suppose that the

finite ramified prime divisor p = ($2 in K/Ko is a factor of p — p\. Then KC\k' is

real. Because, if Knk' is imaginary, then (Knk')0 = Knk' ΠK0, K=(KΓ)k')-K0

and we have a diagram D .2, p doesn't ramify in K/Ko since p doesn't ramify in

KΠk'/(Knk')0, where (Knk')Q is the maximal real subfied of Kf)k\ and this is

a contradiction. Also we prove that Kθk is imaginary. If KΠk is real, then

KnkcK0<zK and we have a diagram D. 3. Let M=Kknk', M = KokΠk.

Knk

Knk' K

Knk

D.I D.2

Since G(K/Kn k) sG(Kk/k) ^G(M/P), M/P is cyclic. Hence M/M has a finite

ramified prime divisor by Proposition 2 and it isn't a factor of p. Let it be a

factor of prime number /. Since only the factor of p ramifies in Kok/M' and

Kk/M, the factor of / ramifies in Kk/KQk and so it ramifies in K/Ko by the

diagram D. 3. This is a contradiction.
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Knk

L^KDk

Kr\kf

k'

A 5

Since KnJP is real and Kfλk is imaginary, we have a diagram D. 5, where

put L = KC\k and let Δo be the maximal real subfield of A= [Knk)[KΓ)k').

Let ζ be a primitive pi1 — th root of unity. Nκ/L(l — ζ) and Nk/Lo[l — ζ) is the

prime factor of p in L and L o respectively. Hence the prime factor of p in L

and L o is principal. Since a finite ramified prime divisor in K/Ko is only one, p

doesn't split in Ko. Therefore p doesn't split in Δo. In Ao/Lo and Δ/L, p doesn't

ramify. Therefore these prime factors of p in Δ o and Δ are principal. Put them

(a)y(a) and ( a ) = (a )2. Since the prime factor of p ramifies totally in Kk'/k ,

it ramifies totally in K/Ao. Therefore (a ) — ψ in Ko and ( a ) = 5βn in K when

we put n = [Ko: Δo) = (K: Δ). Since K/Δo is cyclic and [Δ : Δo] = 2, n is odd.

Put n = 2m + 1. We have $ = ψ~2m = (a)-p-m z IKoPκ.

COROLLARY. Let K be an absolutely cyclic imaginary number field

and let Ko be the maximal real subfield of K. Then hκ is odd if and only

if h* is odd.

THEOREM 3\ Let K be an absolutely cyclic imaginary number field

and let Ko be the maximal real subfield of K. Then the relative class

number h* is odd if and only if the following four conditions are satisfied :

1. Let Λ be an imaginary subfield of K such that (Λ: P) is the power

of 2. [There exists only one such a subfield Λ.) A finite ramified prime

divisor in A/P is only one prime number p.

2. This p doesn't split in K.

3. The signatures of fundamental units of Ko are 'independent',

4. hKo is odd.

PROOF. We suppose that h* is odd. As only one prime divisor p ramifies

in K/Ko by Theorem 3.1, p doesn't split in Ko when p is a factor of a prime
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number p. And 3 and 4 are satisfied, Also we have a diagram D. 5 in the proof
of Theorem 3. Put (K: P) = 2υ u and (2,u) = l. Let Λ be such a subfield as
(Λ: P) = 2V, then Λ is imaginary. Since Λ/P is cyclic, there is not such an
imaginary subfield Λ' of K as (Λ': P) is the power of 2 except Λ. L contains
Λ, because (K: L) must be odd. Therefore Λ is contained in k and a ramified
prime divisor in Λ/P is only p. So we have 1.

Conversely, suppose that 1,2, 3 and 4 are satisfied. There exists at least one
finite ramified prime divisor in K/Ko by Proposition 2. Since a finite ramified
prime divisor in K/KQ ramifies in Λ/Λo, it is a factor of p by 1. By 2, only one
prime factor of p ramifies in K/Ko. Hence h* is odd by Theorem 3.

I have get the support of Prof. F. Terada and N. Adachi at every stage of
the preparation of this paper. I wish sincere thanks to them.
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