Tôhoku Math. Journ. 23(1971), 207-218.

ON DIVISIBILITY BY 2 OF THE RELATIVE CLASS NUMBERS OF IMAGINARY NUMBER FIELDS

HISAKO FURUYA

(Rec. July 23, 1970)

Throughout this paper we shall treat algebraic number fields K and F of finite degree. It was proved by H. Yokoi that if K/F is a cyclic extension such that K and the absolute class field \tilde{F} of F are disjoint over F and K has only one ramified prime divisor over F, then the class number h_F of F is equal to the ambiguous class number $a_{K/F}$ of K/F. ([3] Theorem 1) First, we prove an analogous result in relation to his result. (§2 Theorem 1)

Next, suppose K is imaginary and $K = K^J$ where J is a substitution from a complex number α to the complex conjugate number $\overline{\alpha}$ and let K_0 be the maximal real subfield of K. Then we shall give necessary conditions to make the relative class number of K/K_0 odd. (§2 Lemma 2) From this Lemma 2, the well known property of cyclotomic field $K=P_{p^n}$ that the relative class number of K/K_0 is odd if and only if the class number of K is odd follows easily, where P_{p^n} is the cyclotomic field generated by a primitive p^n -th root of unity over the rational number field P for a prime number p and a natural number n.

Finally, suppose K is totally imaginary, $K = K^{J}$, and the maximal real subfield K_{0} of K is totally real. Then we shall give necessary conditions to make the relative class number of K/K_{0} odd. (§2 Theorem 2) This Theorem 2 is a generalization of H. Hasse's Satz 42 in [2].

In §3 applying Theorem 2 to an absolutely cyclic imaginary number field, we shall give necessary and sufficient conditions to make the relative class number odd.

1. Preliminaries. Throughout this paper we shall use the following notations :

 I_k : the group of ideals in k.

- P_k : the group of principal ideals in k.
- C_k : the group of absolute ideal classes in k.
- \tilde{k} : the absolute class field of k.
- h_k : the number of absolute ideal classes in k.
- E_k : the group of units in k.

When K/F is a finite Galois extension with Galois group G = G(K/F), we use the following notations:

- $\Pi e(\mathfrak{p})$: the product of the ramification exponents of all the finite prime divisors \mathfrak{p} in F with respect to K/F.
- $\Pi e(\mathfrak{p}_{\infty})$: the product of the ramification exponents of all the infinite prime divisors \mathfrak{p}_{∞} in F with respect to K/F.
 - $\Theta_{K/F}$: the group of numbers in K whose norms are units in F with respect to K/F.
 - I_{K}^{g} : the ambiguous ideal group of K with respect to K/F.
 - NC_{κ} : the image by the norm homomorphism from C_{κ} into C_{F} .
 - $_{N}C_{K}$: the kernel by the norm homomorphism from C_{K} into C_{F} .
 - C_{K}^{q} : the group of ambiguous ideal classes in K/F.
 - $a_{K/F} = [C_K^G]$
 - P: the rational number field.
 - P_m : the cyclotomic field generated by a primitive *m*-th root of unity over *P*.

Let K/F be a cyclic extension. Then the following formula is well known.

(1)
$$a_{K|F} = \frac{h_F \Pi e(\mathfrak{p}) \Pi e(\mathfrak{p}_{\infty})}{(K:F)[E_F:N_{K/F}\Theta_{K/F}]}$$

PROPOSITION 1. Let K/F be a finite extension and let F_1 be the maximal unramified abelian extension field over F contained in K, i.e. $F_1 = \widetilde{F} \cap K$. Then we have:

- 1. If K/F is Galois, then h_{κ} is divisible by $h_{F}/(F_{1}:F)$.
- 2. If K/F is cyclic, then $a_{K/F}$ is divisible by $h_F/(F_1: F)$.

3. If K/F is cyclic and has at most one ramified prime divisor, then $h_F/(F_1: F)$ is equal to $a_{K/F}$.

PROOF. 1. This is obvious.

2. Let σ be a generator of G(K/F) and let $C_{K}^{1-\sigma}$ be the image by the homomorphism $1 - \sigma$ from C_{K} to C_{K} in a natural way. Then $h_{K} = a_{K/F} \cdot [C_{K}^{1-\sigma}]$ and $h_{K} = [_{N}C_{K}][NC_{K}]$. Therefore $a_{K/F} = \frac{[_{N}C_{K}]}{[C_{K}^{1-\sigma}]} \cdot [NC_{K}]$. Since $_{N}C_{K}$ contains $C_{K}^{1-\sigma}$, $\frac{[_{N}C_{K}]}{[C_{K}^{1-\sigma}]}$ is an integer. Hence $a_{K/F}$ is divisible by $[NC_{K}]$. On the other hand, $[C_{F}] = (\widetilde{F}:F) = (\widetilde{F}:F_{1})(F_{1}:F) = (K\widetilde{F}:K)(F_{1}:F) = [C_{K}: {}_{N}C_{K}](F_{1}:F) = [NC_{K}](F_{1}:F)$ by Class Field Theory, therefore $[C_{F}:NC_{K}] = (F_{1}:F)$. From $h_{F} = [C_{F}:NC_{K}][NC_{K}]$

 $= (F_1: F)[NC_K], [NC_K] = h_F/(F_1: F)$ follows. Hence $a_{K/F}$ is divisible by $h_F/(F_1: F)$.

3. By the formula (1), $a_{K/F} = \frac{h_F}{(F_1:F)} \cdot \frac{\Pi e(\mathfrak{p}) \Pi e(\mathfrak{p}_{\infty})}{(K:F_1)[E_F:N_{K/F}\Theta_{K/F}]}$.

 $\frac{\Pi e(\mathfrak{p})\Pi e(\mathfrak{p}_{\infty})}{(K:F_1)[E_F:N_{K/F}\Theta_{K/F}]} \text{ is an integer by 2. Since } K/F \text{ has at most one ramified} prime divisor, (K:F_1) = \Pi e(\mathfrak{p})\Pi e(\mathfrak{p}_{\infty}). \text{ Hence } a_{K/F} = h_F/(F_1:F).$

REMARK. This is a generalization of the theorem of H. Yokoi. In 3. we have $[E_F: N_{K/F}\Theta_{K/F}] = 1$.

2. Theorems.

THEOREM 1. Let K/F be a cyclic extension, suppose that K is totally imaginary, F is real and the maximal real subfiel K_0 of K is totally real, and let $F_1 = K \cap \widetilde{F}$. If K/F has at most one finite ramified prime divisor, then we have the following facts:

1. If the signatures of fundamental units of F are "independent", then $a_{K/F} = h_F/(F_1:F)$.

2. If the signatures of fundamental units of F have just one 'relation', then we have the following:

(a) If K/F has a finite ramified prime divisor \mathfrak{p} and \mathfrak{p} doesn't ramify in K/K₀, then $a_{K/F} = h_F/(F_1:F)$.

(b) If K/F has a finite ramified prime divisor \mathfrak{P} and \mathfrak{P} ramifies in K/K_0 , then $a_{K/F} = 2 \cdot h_F/(F_1 : F)$.

(c) If K/F hasn't any finite ramified prime divisor, then $a_{K/F} = h_F/(F_1:F)$.

PROOF. Let J be a substitution from a complex number α to the complex conjugate number $\overline{\alpha}$ and let s be any conjugate substitution of K over the rational number field P. Then we can show sJ = Js by the assumptions that K is totally

imaginary and that K_0 is totally real. As J fixes an element of F and K/F is Galois, J induces an automorphism of K. Therefore $K^J = K$. We can put $K = K_0(\theta)$ and $\theta + \theta^J$, $\theta \theta^J \in K$. As $\theta + \theta^J$, $\theta \theta^J$ are real, $\theta + \theta^J$, $\theta \theta^J \in K_0$. Therefore K/K_0 is a quadratic extension. Accordingly we can suppose θ is pure imaginary, i.e. $0 > \theta^2 = a \in K_0$, $\theta + \theta^J = 0$. Hence $\theta^s + (\theta^J)^s = 0$, $K^s = K_0^s(\theta^s)$ and $(\theta^s)^2 = (\theta^2)^s$ $= a^s \in K_0^s$. As K_0 is totally real, K_0^s is real. As K is totally imaginary, θ^s isn't real. Hence $(\theta^s)^2 = a^s < 0$. Hence $\theta^s + (\theta^s)^J = 0$. From this and $\theta^s + (\theta^J)^s = 0$, we have $(\theta^J)^s = (\theta^s)^J$. Hence $(\alpha^J)^s = (\alpha^s)^J$ for all $\alpha \in K$.

If α is any element of $\Theta_{K/F}$, then $N_{K,F}\alpha \in E_F$. Let σ be a generator of G(K/F). Then we have $N_{K/F}\alpha = \alpha^{(1+\sigma+\sigma^*+\cdots+\sigma^{m-1})(1+\sigma^m)} = \beta\beta^J$ for $m = (K_0:F)$, $J = \sigma^m$ in K and $\beta = \alpha^{1+\sigma+\sigma^*+\cdots+\sigma^{m-1}}$. Hence $N_{K/F}\alpha$ is a totally positive unit. If ε is totally positive element of E_F , we have $\left(\frac{\varepsilon, K/F}{\mathfrak{p}_{\infty}}\right) = 1$ for any infinite prime divisor $\mathfrak{p}_{\infty}, \left(\frac{\varepsilon, K/F}{\mathfrak{p}_{\infty}}\right) = 1$ for any finite prime divisor \mathfrak{p}' which doesn't ramify in K/F, for norm residue symbol. From the product formula of norm residue symbol we have $\left(\frac{\varepsilon, K/F}{\mathfrak{p}_{\infty}}\right) = 1$ for a finite ramified prime divisor \mathfrak{p} . Hasse's Theorem tells us that such a ε is norm of an element of K. Hence $N_{K/F}\Theta_{K/F}$ is the group E_F^+ of totally positive units in F.

Since $E_F^2 \subset E_F^+$, we can put $[E_F: E_F^+] = 2^R$ and q = (F: P) - R. Then we can prove that q is the number of dependent relations between the signatures of fundamental units of F. Let s_1, s_2, \dots, s_r be all of conjugate substitutions of Fover P. We have r = (F: P). Put sgn $\mathcal{E}^s = \begin{cases} 0 \text{ if } \mathcal{E}^s \text{ is positive} \\ 1 \text{ if } \mathcal{E}^s \text{ is negative} \end{cases}$ for a unit \mathcal{E} of F. Cleary we have $\operatorname{sgn}(\mathcal{E}\eta)^s \equiv \operatorname{sgn}\mathcal{E}^s + \operatorname{sgn}\eta^s \pmod{2}$ for units \mathcal{E} and η of F. Let V be a vector space over a finite field GF(2) which consists of vectors $\{(\operatorname{sgn}\mathcal{E}^{s_1}, \operatorname{sgn}\mathcal{E}^{s_2}, \dots, \operatorname{sgn}\mathcal{E}^{s_r}); \mathcal{E} \in E_F\}$. Then E_F/E_F^+ is isomorphic to V. Let $\mathcal{E}_1 = -1$, and let $\mathcal{E}_2, \dots, \mathcal{E}_r$ be the fundamental units of F, as F is totally real. We have the matrix

 $(\operatorname{sgn} \mathcal{E}_{1}^{s_{1}} \operatorname{sgn} \mathcal{E}_{1}^{s_{2}} \cdots \operatorname{sgn} \mathcal{E}_{1}^{s_{r}})$ $\operatorname{sgn} \mathcal{E}_{2}^{s_{1}} \operatorname{sgn} \mathcal{E}_{2}^{s_{2}} \cdots \operatorname{sgn} \mathcal{E}_{2}^{s_{r}}$ $\operatorname{sgn} \mathcal{E}_{r}^{s_{1}} \operatorname{sgn} \mathcal{E}_{r}^{s_{2}} \cdots \operatorname{sgn} \mathcal{E}_{r}^{s_{r}}$

Let R' be the rank of this matrix. Then R' is the dimension of V over GF(2). Hence $[E_F: E_F^+] = 2^{R'}$. Hence R' = R and q = r - R is the number of dependent relations between the signatures of fundamental units of F and $[E_F^+: E_F^2] = 2^{r-R} = 2^q$.

By the formula (1) we have

$$a_{K/F} = \frac{h_F}{(F_1:F)} \cdot \frac{e(\mathfrak{p})\Pi e(\mathfrak{p}_{\infty})}{(K:F_1)[E_F:N_{K/F}\Theta_{K/F}]}$$
$$= \frac{h_F}{(F_1:F)} \cdot \frac{e(\mathfrak{p}) \cdot 2^{[F:P]}}{(K:F_1)[E_F:E_F^+]}$$
$$= \frac{h_F}{(F_1:F)} \cdot \frac{e(\mathfrak{p}) \cdot 2^q}{(K:F_1)}$$

 $a_{K/F}$ is divisible by $h_F/(F_1:F)$ by Proposition 1.2. $(K:F_1)$ is divisible by $e(\mathfrak{p})$. Accordingly, if q = 0, then we have $a_{K/F} = h_F/(F_1:F)$ and $e(\mathfrak{p}) = (K:F_1)$. If q = 1and \mathfrak{p} does't ramify in K/K_0 , then we have $a_{K/F} = \frac{h_F}{(F_1:F)} \cdot \frac{e(\mathfrak{p})}{(K_0:F_1)} = \frac{h_F}{(F_1:F)}$ and $e(\mathfrak{p}) = (K_0:F_1)$. If q = 1 and \mathfrak{p} ramifies in K/K_0 , then $e(\mathfrak{p}) = (K:F_1)$ and $a_{K/F} = \frac{h_F}{(F_1:F)} \times 2$. If q = 1 and $e(\mathfrak{p}) = 1$, then $K_0 = F_1$, $a_{K/F} = h_F/(K_0:F)$. It is impossible that q = 0 and $e(\mathfrak{p}) = 1$.

REMARK. sJ = Js if and only if K is totally imaginary and K is totally real. In 1. K/F has a finite ramified prime divisor \mathfrak{P} and \mathfrak{P} ramifies totally in K/F_1 . In 2. (a) \mathfrak{P} ramifies totally in K_0/F_1 . In 2. (b) \mathfrak{P} ramifies totally in K/F_1 .

LEMMA 1. Let K/F be a cyclic extension with a prime power degree $n = l^{*}$ and suppose $K \cap \widetilde{F} = F$. If $h^{*} = h_{K}/h_{F}$ is prime to l, then

1.
$$a_{R/F} = h_F$$
,

2. h_F is prime to 1 if and only if $l^{q'} = Q(i. e. N_{K/F} \Theta_{K|F} = N_{K/F} E_K)$ and $\mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_{\delta} \in I_F P_K$, where q' is the number such as $[N_K {}_F \Theta_{K/F} : E_F^n] = l^{q'}, Q$ is the index $[N_{K/F} E_K : E_F^n], \mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_{\delta}$ are such ideals as $\mathfrak{p}_1 = \mathfrak{A}_1^{e_1}, \dots, \mathfrak{p}_{\delta}$ $= \mathfrak{A}_{\delta}^{e_{\delta}}$ in $K, \mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_{\delta}$ are all finite ramified prime divisor in F with respect to K/F, and $e_1, e_2, \dots, e_{\delta}$ are the ramification exponents of $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_{\delta}$ with respect to K/F respectively.

PROOF. Let p be any prime number such that $p \neq l$. We can prove easily that a natural mapping $\varphi: C_{F,p} \to C_{K,p}^{2}$ is an isomorphism where $C_{F,p}$ is the p-class group of F and $C_{K,p}^{q}$ is the ambiguous p-class group of K/F. Let p^{m} be the order of $C_{K,p}^{q}$ and let σ be a generator of G = G(K/F). For $\mathfrak{A} \in C_{K,p}^{q}$, $N_{K/F}\mathfrak{A} = \mathfrak{A}^{1+\sigma+\sigma^{2}+\cdots+\sigma^{n-1}}$ $= \mathfrak{A}^{\sigma-1}\mathfrak{A}^{\sigma^{2}-1}\cdots\mathfrak{A}^{\sigma^{n-1}-1}\mathfrak{A}^{n}$ and $\mathfrak{A}^{\sigma-1}\mathfrak{A}^{\sigma^{2}-1}\cdots\mathfrak{A}^{\sigma^{n-1}-1} \in P_{K}$ and so $\mathfrak{A}^{n} \in (N_{K/F}\mathfrak{A})P_{K}$. There

are such integers x, y as $1 = xp^m + yn$, since $(p^m, n) = 1$. Therefore $\mathfrak{A} = (\mathfrak{A}^{p^m})^x (\mathfrak{A}^n)^y \in (N_{K/F}\mathfrak{A}^y)P_K$. Therefore φ is 'onto'. Let $p^{m'}$ be the order of $C_{F,p}$. For integers x, y such as $1 = xp^{m'} + yn$ and $\mathfrak{b} \in C_{F,p}$, if $\mathfrak{b} = (\mathfrak{a}) \in P_K, \mathfrak{b} = (\mathfrak{b}^{p^m'})^x b^{yn} \in \mathfrak{b}^{yn}P_F$ $= \mathfrak{b}(N_{K/F}\mathfrak{b}^y)P_F = (N_{K/F}(\mathfrak{a})^y)P_F = P_F$. Therefore φ is injective. Suppose that h^* is prime to l. $a_{K/F}/h_F$ is prime to l, for $a_{K/F}$ is divisible by h_F by Proposition 1.2. and h^* is divisible by $a_{K/F}/h_F$. From these facts we have $a_{K/F} = h_F$.

Put $C_{K}^{\sigma} = A/P_{K}$. To any ideal \mathfrak{A} belonging to A, there corresponds a unit η in $N_{K/F} \Theta_{K/F}$ in the following way: since $\mathfrak{A}^{1-\sigma}$ is a principal ideal, there exists a number θ in K such that $\mathfrak{A}^{1-\sigma} = (\theta)$, and $\eta = N_{K/F}\theta$ is cleary a unit in F. By this correspondence, $A/I_{K}^{\sigma}P_{K} \cong N_{K/F}\Theta_{K/F}/N_{K/F}E_{K}$. Since $E_{F} \supset N_{K/F}\Theta_{K/F} \supset N_{K/F}E_{K}$ $\supset E_{F}^{n}, l^{q'} \ge Q$. Since $\mathfrak{A}^{n} = (\alpha)N_{K/F}\mathfrak{A}$ for some $\alpha \in K$ and $\mathfrak{A} \in A$, $[A : I_{K}^{\sigma}P_{K}]$ is the power of l. Hence, if $l^{q} > Q$, $a_{K/F} = h_{F}$ is divisible by l.

We consider a natural homomorphism: $C_F \to C_K^{\mathcal{G}} = A/P_K$. If \mathfrak{A}_1 doesn't belong to $I_F P_K$, \mathfrak{A}_1 doesn't belong to any class of the image of this homomorphism. \mathfrak{A}_1 belongs to A. $\mathfrak{p}_1 = \mathfrak{A}_1^{\epsilon_1}$ belongs to a class of the image. Hence $a_{K/F} = h_F$ is divisible by l.

Suppose that $l^{q'} = Q$ and $\mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_{\delta} \in I_F P_K$. $N_{K/F} \Theta_{K/F} = N_{K/F} E_K$ by $l^{q'} = Q$. Hence $A = I_K^G P_K$. So the homomorphism : $C_F \to C_K^G = I_K^G P_K / P_K$ is 'onto' by $\mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_{\delta} \in I_F P_K$. And since $a_{K/F} = h_F$, this homomorphism is an isomorphism. Hence $I_F \cap P_K = P_F$.

Let H be the group of ideals in K whose norms belong to P_F . Then $[A:P_K] = a_{K/F}$, $[I_K:H] = h_F$ and $[H:P_K] = h^*$. And then we have the following facts:

(1°) $[A \cap H: P_K]$ is the power of l.

(2°) $a_{K/F}$ is prime to l if and only if $[A \cap H: P_K] = 1$.

Proof of (1°). If $\mathfrak{A} \in A \cap H$, then $\mathfrak{A}^n = N_{K/F}\mathfrak{A} \cdot (\alpha)$ for some $\alpha \in K$. Hence $\mathfrak{A}^n \in P_K$.

Proof of (2°). If $a_{K/F}$ is prime to l, $[A \cap H : P_K]$ is prime to l. By (1°) $[A \cap H : P_K] = 1$. If $a_{K/F}$ is divisible by l, then there exists an ideal $\mathfrak{A} \in A$ such that $\mathfrak{A}^l \in P_K$ and $\mathfrak{A} \notin P_K$. Since $N_{F/F}\mathfrak{A} = \mathfrak{A}^n \cdot (\mathfrak{a})$ for some $\mathfrak{a} \in K$, $N_{K/F}\mathfrak{A} \in P_K \cap I_F = P_F$. Hence $\mathfrak{A} \in A \cap H$. Therefore $[A \cap H : P_K] > 1$.

Since h^* is prime to l, $A \cap H = P_K$ by (1°). Hence $a_{K/F} = h_F$ is prime to l by (2°).

COROLLARY. Let K/F be a cyclic extension with a prime power degree $n = l^{\circ}$ and suppose $K \cap \tilde{F} = F$. Then h_{K} is prime to l if and only if $a_{K/F} = h_{F}$ and h_{F} is prime to l.

PROOF. This follows from Lemma 1 and (3°) .

(3°). If $A \cap H = P_{K}$, then $[H: A \cap H]$ is prime to l.

Proof of (3°). If $C \in H/A \cap H$ and C isn't a unit, then $C^{\sigma} \neq C$ by $A \cap H = P_{\kappa}$. Since the order of G is a prime power l^{ν} , the number of distinct G-conjugates of C is a multiple of l. Hence $[H: A \cap H] - 1$ is a multiple of l. Hence $[H: A \cap H]$ is prime to l.

LEMMA 2. Suppose K is imaginary and $K^J = K$ and let K_0 be the maximal real subfield of K. If the relative class number $h^* = h_K/h_{K_0}$ is odd, then we have the following facts:

1. $a_{K/K_0} = h_{K_0}$.

2. h_{K_0} is odd if and only if $2^{q'} = Q$ and $\mathfrak{P}_1, \mathfrak{P}_2, \dots, \mathfrak{P}_{\delta} \in I_{K_0}P_K$. Here q' is the number such that $[N_{K/K_0}\Theta_{K/K_0}: E_{K_0}^2] = 2^{q'}$, Q is the index $[N_{K/K_0}E_K: E_{K_0}^2]$, and $\mathfrak{p}_1 = \mathfrak{P}_1^2, \mathfrak{p}_2 = \mathfrak{P}_2^2, \dots, \mathfrak{p}_{\delta} = \mathfrak{P}_{\delta}^2$ are all prime divisors which ramify in K/K_0 .

Lemma 2 follows from Lemma 1, since K/K_0 is quadratic. From the Corollary to Lemma 1, we have

COROLLARY 1. Suppose K is an imaginary and $K^J = K$ and let K_0 be the maximal real subfield of K. Then h_K is odd if and only if $a_{K/K_0} = h_{K_0}$ and h_{K_0} is odd.

COROLLARY 2. Let K be the imaginary subfield of the cyclotomic field P_{p^n} , and let K_0 be the maximal real subfield of K. Then the relative class number $h^* = h_K/h_{K_0}$ is odd if and only if h_K is odd. (This Corollary 2. is induced from the next Theorem 2, too.)

PROOF. A finite ramified prime divisor in K/K_0 is only one and is principal. $r = (K_0: P)$ is the number of all infinite ramified prime divisors in K/K_0 . By the formula (1)

$$a_{K/K_0} = h_{K_0} \cdot \frac{2^{1+r}}{(K:K_0) \cdot 2^{r-q'}} = h_{K_0} \cdot 2^{q'}.$$

Suppose that h^* is odd, then q' = 0 since a_{K/K_0} is divisible by h_{K_0} . $2^q \ge Q$. Hence $2^{q'} = Q = 1$. By Lemma 2, h_{K_0} is odd. Hence $h_K = h_{K_0}$. h^* is odd.

THEOREM 2. Suppose K is totally imaginary, $K^J = K$ and the maximal real subfield K_0 of K is totally real. If the relative class number $h^* = h_K/h_{K_0}$ is odd, then we have the following facts:

1. There is (a) only one or (b) no finite ramified prime divisor in K/K_0 .

2. In case (a), the signatures of fundamental units of K_0 are 'independent'. In case (b), they have just one 'relation'.

3. In case (a), let \mathfrak{p} be the finite ramified prime divisor of K_0 and \mathfrak{P} be the prime factor of \mathfrak{p} in K. Then $h_{K_0}(=a_{K/K_0})$ is odd if and only if $\mathfrak{P} \in I_{K_0}P_K$. In case (b), $h_{K_0}(=a_{K/K_0})$ is odd if and only if the index $Q = [N_{K/K_0}E_K: E_{K_0}^2]$ is two.

PROOF. Let δ be the number of all finite ramified prime divisors in K/K_0 and $r = (K_0 : P)$. By the formula (1) and $[E_{K_0} : E_{K_0}^2] = 2^r$ we have

$$a_{{\scriptscriptstyle K/K_0}} = h_{{\scriptscriptstyle K_0}} \cdot rac{2^{\delta + r - 1}}{[E_{{\scriptscriptstyle K_0}} \colon N_{{\scriptscriptstyle K/K_0}} \Theta_{{\scriptscriptstyle K/K_0}}]} = h_{{\scriptscriptstyle K_0}} \cdot 2^{\delta + q' - 1}$$

where $[N_{K/K_0}\Theta_{K/K_0}: E_{K_0}^2] = 2^{q'}$. Suppose that h^* is odd. Since a_{K/K_0} is divisible by h_{K_0} by Proposition 1.2, $a_{K/K_0} = h_{K_0}$ and $\delta + q' - 1 = 0$. Therefore δ is zero or one and therefore q' = q as we have seen in the proof of Theorem 1. Hence we have 1. and 2. Moreover we have 3 by Lemma 2,

COROLLARY 1. Suppose K is totally imaginary, $K^{J} = K$ and the maximal real subfield K_{0} of K is totally real. Then h_{K} is odd if and only if the following three oonditions are satisfied:

1. There is (a) only one or (b) no finite ramified prime divisor in K/K_0 .

In case (a), the signatures of fundamental units of K₀ are 'independent'.
In case (b), they have just one 'relation'.
h_{K0} is odd.

PROOF. If h_{κ} is odd, h^* is odd. Hence 1.2.3. are satisfied by Theorem 2.

Conversely suppose 1.2.3. are satisfied. $a_{K/K_0} = h_{K_0} \cdot 2^{\delta + q' - 1}$ and q' = q. By 1.2. $\delta + q' - 1 = 0$. Hence $a_{K/K_0} = h_{K_0}$ and h_{K_0} is odd. By Corollary 1 to Lemma 2, h_K is odd.

COROLLARY 2. Suppose K is totally imaginary, $K^{J} = K$ and the maximal real subfield K_{0} of K is totally real.

If there exists only one finite ramified prime divisor $\mathfrak{p} = \mathfrak{P}^2$ in K/K_0 and \mathfrak{P} belongs to $I_{K_0}P_K$, then the relative class number h^* is odd if and only if h_K is odd.

If there is no finite ramified prime divisor and Q = 2 in K/K_0 , then the relative class number h^* is odd if and only if h_K is odd.

3. Absolutely cyclic imaginary number field. In Theorem 2, if K is an absolutely cyclic field, then the case (b) doesn't happen. The next Theorem 3 has been proved by H. Hasse in [2] Satz 45. We shall give another proof by Theorem 2.3 without using ζ -function.

PROPOSITION 2. Let K be an absolutely cyclic number field and let F be any proper subfield of K. Then there exists at least one finite ramified prime divisor in K/F.

PROOF. Let $(K: P) = n = p_1^{e_1} p_2^{e_2} \cdots p_i^{e_i}$ be a factorization of n into prime numbers. Then there exists an intermediate field K_i of K/F satisfying $(K_i: P) = p_i^{e_i}$. And $K = K_1 K_2 \cdots K_s$. We can prove that there exists a totally ramified finite prime divisor in K_i/P . If K is an imaginary quadratic extension field over P, it is obvious. Suppose K_i isn't an imaginary quadratic extension field over P. If K_i/P hasn't a totally ramified finite prime divisor, then there exists no prime divisor which has the rational number field P as the inertia field in K_i/P . Therefore there exists an intermediate field of K_i/P which is nonramified abelian extension over P with the degree at least p_i since K_i/P is cyclic and has prime power degree $p_i^{e_i}$. This is a contradiction for $h_P = 1$. Since F is a proper subfield

of K, there exists such K_i as $K_i \cap F \subsetneq K_i$ and then the prime divisor which ramifies totally in K_i/P ramifies in K_iF/F because $(K_i: K_i \cap F)$ and $(F: K_i \cap F)$ are relatively prime.

THEOREM 3. Let K be an absolutely cyclic imaginary number field and let K_0 be the maximal real subfield of K. Then the relative class number $h^* = h_K/h_{K_0}$ is odd if and only if the following three conditions are satisfied :

- There exists one and only one finite ramified prime divisor in K/K_0 . 1.
- 2.The signatures of fundamental units of K_0 are 'independent'.
- 3. h_{K_0} is odd.

PROOF. Suppose that conditions 1, 2 and 3 are satisfied. $a_{K/K_0} = h_{K_0}$ by 1 and 2 and h_{K_0} is odd by 3. Hence h_K is odd by the Corollary 1 to Lemma 2. So h^* is odd.

Conversely suppose that h^* is odd. We have 1 and 2 by Proposition 2 and Theorem 2. We can show that h_{K_0} is odd by Theorem 2.3 (a), proving that \mathfrak{P} belongs to $I_{K_0}P_K$ for only one finite ramified prime divisor $\mathfrak{p} = \mathfrak{P}^2$ in K/K_0 .

K is contained in P_m . Let $m = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ be a factorization of m into prime numbers and put $k = P_{p_1^{e_1}}$ and $k' = P_{p_1^{e_2} p_2^{e_3} \dots p_0^{e_2}}$. We can suppose that the finite ramified prime divisor $\mathfrak{p} = \mathfrak{P}^2$ in K/K_0 is a factor of $p = p_1$. Then $K \cap k'$ is real. Because, if $K \cap k'$ is imaginary, then $(K \cap k')_0 = K \cap k' \cap K_0$, $K = (K \cap k') \cdot K_0$ and we have a diagram D.2, p doesn't ramify in K/K_0 since p doesn't ramify in $K \cap k'/(K \cap k')_0$, where $(K \cap k')_0$ is the maximal real subfied of $K \cap k'$, and this is a contradiction. Also we prove that $K \cap k$ is imaginary. If $K \cap k$ is real, then $K \cap k \subset K_0 \subset K$ and we have a diagram D.3. Let $M = Kk \cap k'$, $M' = K_0k \cap k'$.

D.1

Since $G(K/K \cap k) \cong G(Kk/k) \cong G(M/P)$, M/P is cyclic. Hence M/M has a finite ramified prime divisor by Proposition 2 and it isn't a factor of p. Let it be a factor of prime number l. Since only the factor of p ramifies in K_0k/M' and Kk/M, the factor of l ramifies in Kk/K_0k and so it ramifies in K/K_0 by the diagram D. 3. This is a contradiction.

Since $K \cap k^{\mathfrak{g}}$ is real and $K \cap k$ is imaginary, we have a diagram D.5, where put $L = K \cap k$ and let Δ_0 be the maximal real subfield of $\Delta = (K \cap k)(K \cap k')$. Let ζ be a primitive $p_1^{e_1}$ - th root of unity. $N_{\kappa/L}(1-\zeta)$ and $N_{\kappa/L_0}(1-\zeta)$ is the prime factor of p in L and L_0 respectively. Hence the prime factor of p in Land L_0 is principal. Since a finite ramified prime divisor in K/K_0 is only one, pdoesn't split in K_0 . Therefore p doesn't split in Δ_0 . In Δ_0/L_0 and Δ/L , p doesn't ramify. Therefore these prime factors of p in Δ_0 and Δ are principal. Put them $(a), (\alpha)$ and $(a) = (\alpha)^2$. Since the prime factor of p ramifies totally in Kk'/k, it ramifies totally in K/Δ_0 . Therefore $(a) = \mathfrak{p}^n$ in K_0 and $(\alpha) = \mathfrak{P}^n$ in K when we put $n = (K_0 : \Delta_0) = (K : \Delta)$. Since K/Δ_0 is cyclic and $[\Delta : \Delta_0] = 2$, n is odd. Put n = 2m + 1. We have $\mathfrak{P} = \mathfrak{P}^{n-2m} = (\alpha) \cdot \mathfrak{p}^{-m} \in I_{K_0} P_K$.

COROLLARY. Let K be an absolutely cyclic imaginary number field and let K_0 be the maximal real subfield of K. Then h_K is odd if and only if h^* is odd.

THEOREM 3'. Let K be an absolutely cyclic imaginary number field and let K_0 be the maximal real subfield of K. Then the relative class number h^{*} is odd if and only if the following four conditions are satisfied:

1. Let Λ be an imaginary subfield of K such that $(\Lambda : P)$ is the power of 2. (There exists only one such a subfield Λ .) A finite ramified prime divisor in Λ/P is only one prime number p.

- 2. This p doesn't split in K.
- 3. The signatures of fundamental units of K_0 are 'independent'.

4. h_{K_0} is odd.

PROOF. We suppose that h^* is odd. As only one prime divisor \mathfrak{p} ramifies in K/K_0 by Theorem 3.1, p doesn't split in K_0 when \mathfrak{p} is a factor of a prime

number p. And 3 and 4 are satisfied, Also we have a diagram D.5 in the proof of Theorem 3. Put $(K: P) = 2^{v} \cdot u$ and (2, u) = 1. Let Λ be such a subfield as $(\Lambda: P) = 2^{v}$, then Λ is imaginary. Since Λ/P is cyclic, there is not such an imaginary subfield Λ' of K as $(\Lambda': P)$ is the power of 2 except Λ . L contains Λ , because (K: L) must be odd. Therefore Λ is contained in k and a ramified prime divisor in Λ/P is only p. So we have 1.

Conversely, suppose that 1, 2, 3 and 4 are satisfied. There exists at least one finite ramified prime divisor in K/K_0 by Proposition 2. Since a finite ramified prime divisor in K/K_0 ramifies in Λ/Λ_0 , it is a factor of p by 1. By 2, only one prime factor of p ramifies in K/K_0 . Hence h^* is odd by Theorem 3.

I have get the support of Prof. F. Terada and N. Adachi at every stage of the preparation of this paper. I wish sincere thanks to them.

References

- H. HASSE, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II, Leipzig und Berlin (1930).
- [2] H. HASSE, Über die Klassenzahl abelscher Zahlkörper, Berlin (1952).
- [3] H. YOKOI, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.

MATHEMATICAL INSTITUTE WASEDA UNIVERSITY TOKYO, JAPAN