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Introduction. In the study of spectral synthesis and symbolic calculus for

tensor algebras, certain homomorphisms of tensor algebras play a crucial role

([21], [23]; see also [8] ) . Thus the problem of determining homomorphisms of

tensor algebras naturally arises. C. C. Graham [ 7 ] has recently characterized

all automorphisms of tensor algebras under certain topological conditions. On the

other hand, some authors (e.g. [ 5 ] , [11], [12], and [14]) have obtained several

interesting results on the homomorphism problem for restriction algebras of the

Fourier algebra A(T). Their works are, however, incomplete as compared with

Cohen's theorem on homomorphisms of group algebras ( [ 2 ] ; see also [16]). Since

every tensor algebra can be regarded as a restriction algebra of a Fourier algebra

([19], [21], and [23]), it thus seems reasonable that one should treat the homomorp-

hism problem for tensor algebras as a step in the direction of identifying

homomorphisms of restriction algebras of Fourier algebras.

In this paper, we shall consider that problem for tensor algebras over two

compact spaces, and, in particular, entirely describe all homomorphisms of such

algebras with norm 1.

In § 1, we determine the structures of all idempotent functions and unimodular

functions in such algebras with norm smaller than certain constants.

§ 2 contains our main results on the homomorphism problem. We introduce

the notion of "piecewise product mappings", and characterize by it all homomorphisms

with norm smaller than a certain constant.

In § 3, we determine the isomorphisms between two tensor algebras over

compact connected spaces, which improves a result of C. C Graham [ 7 ] .

§ 4 is devoted to obtain certain properties of tensor algebras as restriction

algebras of Fourier algebras.

Finally, in § 5, we make the calculus of some constant and estimate another

constant obtained in § 1.

1. Idempotent and unimodular functions. Let Xi and X2 be two compact
(Hausdorff, and nonempty) spaces, and let
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be the tensor algebra over the spaces X1 and X2 with the projective norm (see
[23]). We shall always regard V = V(X) as a linear sυbalgebra of the Banach
algebra C(X), where X=X1 x X2. Let us denote by 7tj the canonical projection
from X onto Xj(j = 1,2), and by IE = I[E] the indicator of any set E. If f is a
function on X, and if E is a subset of X, we define

IL/Ίlπ*) = inf{ll0llr: g*V,g\,=f}.

For any point p of X, pj denotes the j-th coordinate of p(j = 1,2) : />= (pι>p2)-
Finally, V = V(X) denotes the conjugate space of the Banach space V, each
element of which is called a bimeasure on X.

Let now/ be any idempotent function in C(X). It is then easy to see that
/ admits a decomposition of the form

where the sets Ek are pairwise disjoint, clopen, and rectangular subsets of X ; in
particular, we see that every idempotent function in C(X) belongs to V(X).

It is known ([17]; see also [18]) that \\μ\\>r>l implies | |/χ|U^ (1 + 21/2)/2 for
any idempotent measure μ on a locally compact abelian group. An analogous
result also holds for idempotent functions in C(X). In fact, | | / | | F > 1 implies

for any such functions. To show this, we need a lemma.

LEMMA 1.1. Let D = {p, q, r, s] be a set of four points of X such that

Pι = rιΦqι = s19 and p2 = q2φr2 = s2.

Suppose also that f is any function on X such that f=0 at a point of D and
I/I = 1 at the other three points of D, then we have ||/||ru» = 2/31/2.

PROOF. In general, we shall denote by CX{K), for any compact space K, the
multiplicative group consisting of all unimodular functions in C(K) (that is, g £ C(K)
with \g\ =1). Let μ>£ M{D) be any measure on D, and put

= a>μ{{<ϊ\) = b>μ[{r}) = c,μ({s}) = d.

It is then easy to see that

\μ\v = sup] I gi g2dμ : gjeC1{Xj),j=l,2\

= sup{|α +fe | + \c + Js:| : |2:| = 1} = A(a,b,c9d).
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Suppose now that / is any function on X satisfying the condition in the above

statement without loss of generality, we may assume that f(s) = 0. Then we

have

Since \\fμ\\w ^ 11/11 VKD) * \\μ\\v"> it follows that

A(a, b, c, 0) ^ \\f\\vm A(a, b, c, d) .

Therefore, setting

(1.1) u0 = sup{A(α, b9 c, 0)/A(a, b, c, d) : abed Φϋ},

we have \\f\\vω) = u0. But, as is easily seen from the Hahn-Banach theorem, the

equality |l/||F(z» = u0 holds. We have also

u0 ^ A(2,2,2,0)/Λ(2, 2,2, -1) = 2/31/2.

The equality u0 = 2/31/2 will be proved in § 5, and this establishes our lemma.

Throughout the remainder parts of this paper, u0 denotes the constant 2/31/2.

Following Graham [ 7 ], we say that two subsets E and F of X are bidisjoint if

7tj(E) and 7tj{F) are disjoint for j = 1 and 2.

THEOREM 1.2. For any idempotent function f in C(X), | | / | | Γ > 1 implies
P/HriSWo, and we have | | / | | Γ = 1 if and only if f has the form

(1.2) / = I[Eι\ + + I[En] ( n ^ l ) ,

where the sets Ek are pairwise bidisjoint^ clopen, nonempty, and rectangular

subsets of X.

PROOF. Suppose that | | /ΊIF<^O> and let E be any maximal rectanglar subset
of S(f) ={xzX: f(x) = 1}. We then claim that

( 1 ) *AE) Π ^ ( 5 ( / ) \ £ ) = 0 ( i = l , 2 ) .

To get a contradiction, suppose the contrary we have, say, rt^E) Π 7tλ{S(f)\E) Φ 0 .

Let r be any point of S(f)\E such that rx is in 7T1(E)9 and choose an arbitrary

point s of the set 7Cλ[E) X {r2}. Taking any point p2 of τr2(£), we see that all

the points p= (r19p2), q= {slyp2), and r are in <£(/)• It follows from Lemma 1.1
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and the assumption | | / | | F < ^ O that s must be in S(f). Therefore we have
TTI(JE) x {r2} c S{f), and so

E^τr1(E)x(7t2(E)u{r2})cS(f)9

which contradicts the maximality of E, and hence (1) holds. Note now that E
is clopen since S(f) is both open and compact, and that the family of such
sets E covers S(f). Thus we can easily conclude that f has the desired form,
provided that f is nonzero.

Conversely, suppose t h a t / admits a decomposition of the form (1.2). Setting
Ek = 7ti{Ek) and Gk = π2{Ek)9 we define

gk = . ^ - {1 + (I[Fk] - l[Fk°])(T[Gk] - I[Gk°])}

for k = 1,2, , n it is easy to see that every gk is idempotent and has V-norm
1, and that / = ̂  gn-I*> where E = n^SiJ)) X xt(S(f)). Therefore / ( Φ 0)
is an idempotent function with V-norm 1, and this completes the proof.

LEMMA 1.3. Let D be a subset of X as in Lemma 1.1, and let f be a
function in Cλ{X) such that

f(p)=f(q)=f(r) =

then we have

(1. 3) limsup||/iΓ U» = sup| |/1|Γ U ) ) ^ux,
n-+oo n

where ux is an absolute constant larger than u0.

PROOF. AS in the proof of Lemma 1.1, we have

\\fn\\v(D) = sup{A(a,b,c,zo

nd)/A(a,b,c,d)} = B(zo

n)

where z0 =f(s) and the supremum is taken over all complex numbers a, b, c, and
d with abed Φ 0. Therefore, setting

ux = inf{supB{zo

n): \zo\ =l,zoφl]
n

we have

sup Wf1 II v(J))^u19
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and, as is proved in §5, u1>u0. The equality in (1.3) is obvious, and the proof
is complete.

We now obtain an analogue of a theorem of Beurling and Helson [ 1 ].

THEOREM 1.4. Suppose that f is a function in Cχ(X). Then we have

(1.4)

for all subsets D of X as in Lemma 1.1 if and only if f has the form
f=fx®f2 for some fjϊC^X:,) (i = 1,2). In this case f is in V(X) and its
V-norm is 1.

PROOF. The last assertion and the sufficient condition are obvious, and it
suffices to show only the necessary condition. Fix any point p of X replacing /
by f{p)f> we may assume that f(p) = 1. We then define

f1(x1) = f(x19ρ*), /,(*,) =f(Pi,x*) (x> € X) j = 1,2)

and claim that / = / i ®/ 2 Otherwise, there would exist a point s of X such
that f(s) Φfχ(sι) fi(s2). Choose any function gj in Ci(Xj) so that

gap,) = 1, and g}{s5) = / ^ ) (j = 1,2).

Setting h=f {gλ® g2), we then see that (1.4) holds with/ replaced by Λ, and
that

where g = (slfp2) and r = (/>i,s2). Thus, by Lemma 1.3, we have

where D= {p>q,r,s}. This contradiction implies / = / i ® / 2 > and the proof is
complete.

COROLLARY 1. 5. Suppose that f is any non-zero function in C[X) such
that I/I 2 = I/I. Then we have

(1.5) limsup||/w | |F(jD)<w0
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for all subsets D of X as in Lemma 1.1 if and only if f has the form

(1.6) / = έ ( / i α > ® / « t M W [ £ * ] '
A ; = l

where fjck:> ^Ci(Xj) and the sets Ek(l^k^n) are pairwise bidisjoint, clopen,
nonempty, and rectangular subsets of X.

PROOF. If /satisfies (1.5), it follows from Lemma 1.1 and Theorem 1.2
that \f\ is an idempotent function whose V-norm is smaller than u0. Thus
Theorem 1.2 assures that \f\ admits a decomposition of the form (1. 2). Applying
Theorem 1.4 for X replaced by Ek, we see t h a t / has the form / = / i C Λ ) ® / 2

α )

on each se Ek for some / / Λ ) in Cι{Xj) (j = 1,2 k = 1, , n)9 which yields the
required decomposition of /

Conversely, suppose t h a t / has the form (1.6). Defining

we see that

which together with Theorem 1.2 shows that | I / | | Γ = 1 . The proof is now
complete.

REMARK. That (1.6) implies | | / | | F = 1 is also contained in [24] (see also
[6] and [7]).

2. Homomorphisms of tensor algebras. In this section let us fix four
compact spaces X, and Y3(j = 1, 2), and put X= Xx X X2, Y = YΊ x Y2- By the
same notation 7tj we denote both of the canonical projections from X onto Xj and
from Y onto Yj{j = 1,2). If 9? is a mapping from a subset E oί X into Y, and
if / is a function on Y,foφ denotes the function on X defined by

{f(φ(x)) (XZE)
(foφ)(x) = i

tθ (x*X\E).

Let also φ3 = π5oφ: E-*Yj, and so £>= {φι,φ^- We say that <£> is a piecewise
product mapping, provided that:
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(A) The domain E of φ has the form E= ΌΐEk9 where the sets Ek are
pairwise disjoint, clopen, nonempty, and rectangular subsets of X.

(B) For each j = 1,2, and k = 1, , n, the mapping ψj restricted to Ek

depends only on one of the variables xλ and x2.

Suppose now that φ is a continuous piecewise product mapping from X into
Y with domain E, and let {£*}? be as in (A) and (B). Denning

(2.1) H(f)=foφ (f*V(Y)),

we easily see that

I[Ek]\\n*>^ H/llπF) ( /€ F(Y) Λ = 1, , w).

Therefore Ή" is an algebra homomorphism from V(Y) to V(X), and its operator
norm does not exceed n. As is proved below, all homomorphisms of tensor algebras
satisfying a certain norm condition are of the above type.

Let now H be any non-zero homomorphism from V(Y) to V(X), then H(l) is
an idempotent function in C(X), and so the set

E= EH= [xzX: H(l)(x) = 1}

is clopen. By a familiar argument [13] there exists a continuous mapping φ = φH

from E into Y for which (2.1) holds. Hereafter, we shall fix H arbitrarily, and
associate with it the set E and the mapping φ as above.

LEMMA 2.1. Let D be a subset of X as in lemma 1.1, and let f be a
function o?ι D such that f=l at some three points of D and f = — 1 at the
remainder point of D, then we have |I/*||F(D) = 21/2.

PROOF. Using the notation A(a, b, c, d) in the proof of Lemma 1.1, we have

\\f\\vm = sup{A(α, b, c, -d)/A(a, b, c, d) : abed Φ 0}

1 , 1 , 1 , - 1 ) = 2 1 ' 2 .

LEMMA 2.2. Lei {J5fc] ΐ be pairwise bidisjoint, clopen, and rectangular
subsets of X. Then for every bimeasure P in V'(X), we have

(2. 2) ||P|μ ^ \\IlE\P\\v = Σ
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n

where E= \J Ek.
k=l

PROOF. For any functions //*> in Cχ(Xj) (j = 1,2 k = 1, , n), we have
by Corollary 1. 5

Taking the supremum over all such / j a ) / 5 , we obtain (2.2).

THEOREM 2. 3. If \\H( l)\\v<u0, and if \\H\\ <2 1 / 2, then φ is apiecewise
product mapping such that the sets {Ek}ι as in (A) and (B) can be so chosen
as to be bidisjoint. In this case the operator norm of H is 1.

PROOF. Since H( 1) is a non-zero idempotent function whose V-norm is
smaller than u0, we have E= yj?Ek(n^l), where the sets [Ek}ι are as in Theorem
1.2. We then claim that (B) holds for these sets {25*} i To prove this, fix j
and k(j = 1,2 k = 1, , n), and assume that there exist two points p and r in
Ek such that px = r1 but ψj{p) Φ ψj{r) We can then verify that ψj restricted to
Ejc does not depend on the variable zx as follows.

Step 1. To get a contradiction, suppose that there exists a point q in Ek

such that q2 = p2 but <Pj(q) Φ <Pj(p). Setting s=(qlyr2), note that s is in Ek

since Ek is rectangular. If φj{p) Φ <PJ(S), we choose an fzCι(Yj) so that f°<Pj{p)
= —1 and / = 1 on <Pj({q, r, 5}) ;• if <P)[p) = ^>j(̂ )? we choose an / e Ci(Yj) so that

f°φj(p) = l and f=i on <Ps[{q,r}). Then we have

by Lemma 2.2, where we have regarded C(Yj) as a subalgebra of V(Y). This
contradiction assures that φ, is constant on τtι{Ek) X {/>2}

Step 2. Replacing /> and r in Step 1, we see that ψj is constant on 7t\{Ek)
X {r2}, too. Let t be any point of Ek with ίx =/>i Since <p3(p) Φ <Pj(r), we then

have either ψ){t) Φ φj{p) or φ3{t) Φ ψj[r). Thus the preceeding argument applies,
and hence ψj is constant on 7Cλ{Ek) x {ί2}

Similarly, we can show that, if there exist two points p and q of Ek such
that p2 = q2 but >̂j(̂ >) Φ φ3(q)> then >̂j restricted to Ek does not depend on the
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variable x2. Therefore φ is a piecewise product mapping by definition.
We now prove that ||ίf || = 1 if i f has the form described in our theorem.

To do this, it suffices to verify for

(2.3) l|/[£] /llr = sup{|!7[EΛ]./||F: k = 1, ,n]

but this follows from Lemma 2. 2 and the Hahn-Banach theorem (cf. [24], [ 6 ],
and [ 7 ]) :

\\v = sup{\P(I[E\ f)\ : PzV

The proof is now complete.

COROLLARY 2.4 (cf. [14]). Every isometric homoniorphism H with H( 1)
= 1 is essentially of the type

(2.4) H(f)=fo(ψ1χψ2) (feV(Y)),

where each ψj is a continuous mapping from X5 onto Yj{j = 1, 2). Conversely,
a pair of such mappings (ψuψz) defines by (2.4) an isometric homomorphism
H with H( 1) = 1. In this case, the range of H consists of all functions g
in V(X) such that g = / o (ψt x ψ2) for some f in C(Y).

PROOF. Note that E = X, since H( 1) = 1. By Theorem 2. 3, each mapping
ψί depends on only one of the variables xx and x2. Suppose first that both
mappings φx and φ2 depend on (only) the some variable, say, xx. We then have

| |/ | |F ( F ) = | | f ί ( / ) | | Γ W = \\H(f)\\CU)^ \\f\\aiY) (/€ V(Y)) ,

because H is isometric. But this is the case only if at least one of the spaces Yt

and Y2, say Y2, consists of a single point (see Lemma 2.1). Therefore, if we
define

φAχvχ*) iχj*Xs: j = 1,2),

it is easy to see that each ψj continuously maps Xj onto Yj(j = 1,2), and that H
is given by (2.4). Suppose next that each ψj depends on (only) the variable
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Xj(j=l, 2). It then suffices to define ψι and ψ2 by ( 1 ) , again. Thus the first
statement is established. The remainder two statements are contained in [20],
and the proof is complete.

COROLLARY 2.5. Every isomorphism H from V(Y) onto V(X) with max
{\\H\\, ll-fiΓ"1!!) <21 / 2, is isometric, and essentially of the type (2.4), where each
ψj is a homeomorphism from Xj onto Yj(j= 1,2).

PROOF. Trivial from the proof of Corollary 2. 4.

REMARKS, (a) The identity (2. 3) is also a consequence of Lemma 2 in [24].
But the author cannot understand the proof given there.

(b) It is not true that every homomorphism of tensor algebras is induced by
a piecewise product mapping.

Let {In}T be a sequence of disjoint closed intervals In=ίan>bn\ of the real
line such that

0 = aλ < a2 < , and lim an = lim bn = 1.

Let K be the union of all In with the limit point {1}. We define a mapping ψ
from K x K to K by

xx if x € In x In and n is odd,

x2 if x z In x In and n is even,

1 otherwise.

Then, using (2.3), we can easily prove that, if ψ{x) — (ψ(x),ψ{x)), φ induces a
homomorphism H of V(K,K) (into itself) by (2.1) (see [24]).

3. Isomorphisms of tensor algebras. Throughout this section, we shall
assume that H is an isomorphism from V(Y) onto V(X), and that both the spaces
X! and X2 are perfect. It follows, in particular, that ψ is a homeomorphism
from X onto Y.

Let now E be any subset of X. We say that E is diagonal if the sets {x},
x in E, are pairwise bidisjoint, and that E is parallel to Xi (resp. X2) if n2{E)
(resp. 7C\{E)) consists of a single point. Finally, let

3)[E) = sup (Card D: D is a diagonal subset of £ } .
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LEMMA 3.1. Let Kx and K2 be tzvo finite spaces each of which consists
of n distinct points, and let K= Kλ x K2. Then there is a function f in V(K)
such that

\f(x)\ =1 (x*K), and \\f\\nκ)^nV\

PROOF. It is known [23 pp. 87-88] that there exists a measure μ in M(K)
such that

\μ({x})\ =n~2 (xsK), and W Γ ^ T Γ 1 * .

Define f[x) = sgn μ( {x}) for x in K then we have

= f/^ |̂|/||Γ.
JK

which completes the proof.

LEMMA 3. 2. We have

Φ[φ({xx} x

and

PROOF. Suppose that n is a positive integer larger than 1, and that there
exists a point X\ in X\ such that

Let K2= [x2

a\x2<
2\ •• ,^2

(n)} be any subset of X2 such that φ{{xχ} X K2) is
diagonal. Since xx is an accumulation point of Xl9 and since φ is continuous, we
can then find a subset Kx of Xi with Card Kx = n so that the n subsets of Y

φ{Kλ X {x2}) [x^K2)

are pairwise bidisjoint. By Lemma 3.1, there is a function / in V(KX x K2) such
that

\f{x)\ = 1 (xs KxxK2), and
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For each £ = 1,2, — ,n, choose a neighborhood U(k) of Kλ x {x^} so that the
sets <p(f7α)) are pairwise bidisjoint. It is then easy to find n functions / α ) in
V(X) such that:

/»> = / on Kr x = 1; su P P /«> c C7<» .

It follows that the supports of H~1(f'-k'') are pairwise bidisjoint and hence (see
(2. 3), [24], and [ 6 ])

-1 Σ/(

U = l

= su inn : * = 1,2, • ,»} ^

Therefore we have

V(Y)Σ/α >

tc=l

which is trivial when n = 1. We thus obtain

and similarly

This completes the proof.

LEMMA 3. 3. Both the spaces Yλ and Y2 are perfect.

PROOF. Suppose that yx is an isolated point of Y19 and so {3̂ 1} x Y2 is
clopen in Y. Since φ is a homromorphism, it follows that φ^dyi] X Y2) is
clopen, and hence φ^dyi] x ^ ) contains a non-empty, clopen rectangle E. If
Card τtj(E) = 00 (j = 1,2), we could show that ||if || = + 00, using the fact that
V(2£) ^ C(£) for such an E. Since 7tj{E) is clopen in Xj(y=l, 2), it follows
that at least one of the spaces Xλ and X2 contains an isolated point. This
contradiction completes the proof.

LEMMA 3. 4. For any point x = (xu x2) of X, there exists a neighborhood
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U of x such that

φiUDidx,} xXi)u(X1x {**}))] = φ(U)n(({yι} xY2)u(Yxx {y2})),

where y = (yx,y2) = φ(x19 x2)>

PROOF. By Lemma 3.2, there is a neighborhood V, of Xj,j = 1,2, such
that

v2) u (vx x {χ2})] c ({yi} x y2) u (yx x b>2]).

On the other hand, Lemma 3. 3 assures that an analogous conclusion as in Lemma
3.2 also holds for φ~x, and hence there is a neighborhood Wj of yj,j = 1,2, such
that

( 2 ) φ-\{ bΊ) x W2) U (Wλ x {3>2})] c ({x,} x XO U (Xi x fe}).

Using (1) and (2), we can easily show the existence of a neighborhood U of x
with the required property.

LEMMA 3. 5. Let x = (x19 x2) be any point of X, and let y and U be as
in Lemma 3.4. Then every point x2' in π2[UΠ ({xi} x X2)], possibly except
x2y has a neighborhood V2 such that φ[{xλ] X V2] is parallel to Y2(orYx) and
such that 7t2(φ[{xι\ X V2]) (or 7tι(φ[{xι] X V2])) is open in Y2(orY1). A similar
assertion holds for every point xί in 7tλ\UCλ({xγ} xX2)], possibly except xx.

PROOF. It is easy to see that φ\Ufλ({xγ} x fe}0)] is a relatively open
subset of the set ({yx} x y2)u(YΊ X [y2})> from which our lemma follows.

We can now improve Lemma 3. 2 as follows.

LEMMA 3. 6. We have

S)\φ({xx} x X 2 ) ] ^ | | H | | 2 , and Φ[φ(Xx x {x2})λM Hψ

for all points x} in Xj(j = 1,2).

PROOF. Let n, xx, and K2 be as in the proof of Lemma 3.2. By using
Lemma 3.5 and replacing each x2

a:> by a point of X2 sufficiently near to x^,
we may assume that every point x2 of K2 satisfies the following condition there
is a neighborhood V2 of x2 such that φ({x\} X V2) is parallel to y2(or Yx) and
relatively open in {yx} xY2 (or Yx x {y*}), where (yί9y2) = φ{pcXyX^). It then
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follows from Lemma 3.4 that to every point x2 of K2 corresponds a neighborhood
Vι of Xι such that ψ{Vx x {:r2}) is parallel to Yλ or Y2. Thus the set Kx as in
the proof of Lemma 3.2 can be taken so that the set φ(Kx x {:r2}) is parallel to
Yx or Y2 for every point x2 of K2. Let / be any function in V(KX x K2) as in
the proof of Lemma 3.2; it is easy to see that the function f°ψ~ι can be
extended to a function g in V(Y) such that | |^ | |F(F) = 1. Jt follows that

Thus we have

and similarly

THEOREM 3.7. 7/ £Λe spaces Xγ and X2 are connected, then φ is
essentially of the form

(3.1) φ(x19 x2) = (φiixO, <Pι(xι)) (XJ ̂  X, J = 1, 2),

where each φ3 is a homeomorphism from Xj onto Yj(j =1,2).

PROOF. We may assume that both of Xi and X> are perfect,since otherwise
the required conclusion is trivial. Let

N = sup{3)[<ρ({χi} x XJ] xx ̂  xλ],

which is finite by Lemma 3. 6. Let us fix any point pλ of Xλ so that

and take a subset K2 of X2 so that

Card K2 = N= 4)[<p{{pi} x ^i)l

To get a contradiction, we shall assume that Nφl. Since X2 is connected, so is
φ({xι} x X2). Thus there must be a point j£>= ( A Ά ) s u c n t n a t the sets

l xX,)n(W x WO and rtfo} x ^ Π ^ x {y2})
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are infinite for any rectangular neighborhood Wx X W2 of (3Ί,3>2) = <p(p) (In such

a case, we shall say that (3Ί,3>2) is a co?~ner of φ({pi] xX 2 ) ) It follows from

the definition of N and the choice of K2 that {px} X K2 contains two (distinct)

points q = (pι, q2) and r = (ply r 2 ) such that

( 1 ) φ(g)eYi x fcy«}> and φ(r)z {yx} x 7 2 .

Let K2 = K2Π [q2, r2]
c there is a rectangular neighborhood Ux x U2 of p such

that the N—l sets

φ(U1 X C72) and φ(Uλ X {:r2}), :r2 Z K2 ,

are pairwise bidisjoint. Taking Uλ x ί72 sufficiently small and replacing q and r

by some other points of {pi} x C72> we may assume t h a t :

( 3 ) φ[( {p1} x U2) u (CΛ x {^2})] = φQJi x C/«) π (({y,} x Y2) u (Y, x {3̂ 2}))

( 4 ) <p(UΊ X {g2}) and φQJ\ x {r2}) are bidis joint

( 5 ) 9>(t/! x {q2}) is parallel to Y2 and τt2{φ^Jx x {g2})) is open in Y2

( 6 ) ψ^J\ X {̂ 2}) is parallel to Yx and τtχ{<p(Ux X {r2})) is open in Yλ.

These requirements are guaranteed by Lemma 3. 4 and 3. 5.

The proof now proceeds in five steps.

( I ) The point φ(p) is a corner of φ(Xi X {A}) T O show this, suppose the

contrary. We can then take a neighborhood Vι(cUι) of px so that φ(Vi x {p^})

is parallel to either Yλ or Y2 Without loss of generality, suppose that it is

parallel to Yλ. We then claim that VΊ contains a point ^1 such that

Otherwise, φζVi x {̂ 2}) would be a neighborhood of <p(£) in the relative topology

of Yt X {3/3}, by ( 6 ) ; hence, φ{p) could not be a corner of <p(l£i} x ^ ) It

follows from ( 4 ), ( 5 ) and ( 6 ) that the set

is diagonal. Since the sets in ( 2 ) are pairwise bidis joint, and since xx is in Uλ,

we see that
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®W M x ({ρ» q» r2} u κ2))] = N + 1 ,

which contradicts the definition of N.

( I I ) There is an infinite connected subset CΊ of Xλ such that

( 7 ) pxz dcUl9 and φ(d x {/>2} c Y x x {y2} .

To show this, let

1x {pι})n(Yιx {y2}),

and suppose that the connected component of <p(p) in F is \<p(p)}. Then

has a basis of neighborhoods (in F) each of which is open and compact in the

relative topology of F (see the proof of [9 (3. 5)]). It follows from ( I ) that

there are (relatively) open and compact neighborhoods S and T of φ(p) with

SPιTcΦ0. Then Sί)Tc is compact in F, and so in φ(Xλ x {p2}). On the other

hand, since SπTc does not contain φ(j>), ( 3 ) assures that Sf)Tc is open in

φ(Xι x {p2})' But then, φ~\Sί)Tc) is a non-empty set which is both open and

closed in Xi X {̂ 2}> which contradicts the connectedness of Xi It follows that

the connected component C of <p(p) in F is infinite. Thus it suffices to set

(III) There is a point s = (ply s2) with s2 in U2 Π {p2}
c such that ?>(s) is in

Yi X {^2}) but φ{Cx X {s2}) is not parallel to Y2. In fact, let

V2 = {s2zU2: s2Φρ2,<p(p19s2)€ Yx x {3/3}} ,

and obβerve that />2 is in the closure of V2, since φ{p) is a corner of <p({pi} xX 2 )

It follows at once from ( 7 ) that if s2 in V2 is sufficiently near to />2> then

φ(Cχ X {52}) is not parallel to Y2

(IV) Let s = (p19s2) be any point as in (III). ( 3 ) assures that s2 has a

neighborhood V(s2) such that <KfAl x VXs2)) is contained and open in Yλ X {3̂ 1}.

It follows from Lemma 3.4 that there is a neighborhood VΊ of />i(Vi c ^i) s u c h

that ^(Vi X {̂ 2}) is parallel to Y2. This, combined with the facts that CΊ is a

connected, infinite set containing px and that φ(Cx x {52}) is not parallel to Y2,

guarantees that there is a point s ={sx\ s2) with si in CΊ such that 7ri(^(^))

= ^1(^(5)) and ^(5) is a corner of φ(d x {52}). Let p = (si,p2), q = (5/, g2),

and note that
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φ(q), φ(s), and φ{p')

are distinct points in Yx X {y2}.
Suppose first that τt2(<p(q)) Φ τr2(<p(s)). Then it is readily seen that the set

<p[\p', q,s]) is diagonal. Thus we have

3)iψ( {si} x ({pt, <2*> st}uKι))] = N+l,

which contradicts the definition of N.
Suppose next that π2{φ[q)) = τr2(φ(s)). There is a neighborhood Vλ of si

such that φ(Vι x {ρ2})cYx x {y2}. Since φ(s) is a corner of φ(Cx X {s2}), there
is a point vi in W such that vi Φ si and 7C2(φ(vi, s2)) — τr2{φ(s)). Note then
that 7ΐ2(φ(vιy s2)) Φ 7t2(φ(vι ,q2)) by (5). Since such a point vi can be taken
arbitrarily near to si, we have for a suitable point vi in Uλ

} X (fa, qt, s2} U X2'))] = 2NΓ + 1,

which again contradicts the definition of JV.

(V) Summarizing up, we have concluded that N=l, i.e., that

3)[φ{{xi\ XXJ] = 1 [XiZXx).

Similarly, we have

for all points x2 of X2 and ^j of Yj(j — 1>2). From these facts, we can easily
show that φ is essentially of the form (3.1), which completes the proof.

THEOREM 3.8. Suppose that each X, is the union of finitely many,
pairwise disjoint, compact, connected subsets Cjtk(j = 1,2 k = 1, , Nj). Then,
on each rectangle Chm X C2,n, φ is essentially of the form (3.1).

PROOF. Since Dmt7l = φ(CUm X C2tn) is an open, compact, connected subset
of Y, it is easy to see that Dmt7l is rectangular. Thus the required conclusion
follows from Theorem 3.7.

4. Certain propertier of tensor algebras. In this section we shall use,
without explanation, some well-established and standardized notations; most of
them are adopted from [23] and [19].

Let G be a non-discrete locally compact abelian group with dual G, and let
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Xi and X2 be two disjoint compact subsets of G. We set

X* = X,UX I, X=Xι+Xv and X = Xx x X2.

If X* is a JC-set (that is, either a Kronecker set or a Kp-set for some natural
number p ^ 2 ) , it is known ([21], [23], [19]; see also [3] and [4]) that X is an
S-set (for the algebra A(G)), and that X is an SR-8et if and only if at least
one of the sets Xj does not contain any perfect subset. We have also A(X)
= V(X) isometrically and algebraically if X* is a Kronecker set and topologically
if X* is a Kp-set for seme p ^ 2 furthermore, in the later case, we have

(4.1) II/IU)^ ll/IL(i)^4||/||FU) (/€ A(X)).

Varopoulos [23] has proved these facts for compact groups, but the conclusions
are still true for general locally compact abelian groups. We can verify these
using the principal structure theorem of locally compact abelian groups [ 9 ] and
the well-known relationship between A(Rn) and A(Tn) [16].

THEOREM 4.1. Suppose that X* is a Kronecker set (resp. a Kp-set for
some pl^2), then we have :

( a ) If f is & non-zero idempotent function in C(X), and if
for all subsets D of X with Card (D) = 4, then \\f\\MX) = 1 (resp. 1 ^ \\f\\MX)

(b ) If f is a unimodular function in C(X), and if

lim supU/IU) < «, (DcX: Card (D) = 4) ,

then we have

X, i = 1,2)

for some f} in CΊ(Xj) (j; = 1,2). Conversely, every function f on X expressible
in the above form is in A(X) and has A(X)-norm 1 (resp. l5g

( c ) If f is a non-zero function in C(X) such that | / | 2 = | / | , and if

lim supU/'ΊUu,) < u 0 ( D c X : Card (D) = 4) ,
n-*oo
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then f has the form

f(xx + x2) = Jt

where the sets Eja:>(l^k^n) are pair-wise disjoint, non-empty, clopen (in X5)
subsets of Xj and the functions / j α ) ( l ^k^ή) are in Cι(Xf) (j = 1,2). Conversely,
every function f on X expressible in the above form is in A(X) and has
A(X)-norm 1 (resp. 1 ^ |

PROOF. Every statement follows from the results in §1 and the above
observations.

LEMMA 4. 2 (cf. [ 5 ] and [11]). Let K be any compact subset of G, and
suppose that there exists a pseudomeasure P in N(K) = (IiK))1- such that

(4.2) | |PU>limsup|P(7)| = inf{sup|P(y)\} ,
γ-»oo y i E

the infimum being taken over all compact sebsets E of G. Then every function
f in A(K) such that \\f\\A{K) = l and \f(χ)\ = l, has the form f = cΎ on K for
some complex number c with \c\ = 1 and some character 7 in G.

PROOF. Let P be as above. Without loss of generality, we may assume
that

\\P\\PM = P ( 0 ) = 1

(note that P is uniformly continuous). Then it is easy to see that

limsup|(<7P)(γ)| ^ \\g\\MK) limsup|P(7)|

for all functiong g in A(K). Therefore if / is a function in A(K) such that
\\f\\A{κ) = 1 and I/I ==1, we have

^ 1 , and limsup|(/P)Λ(7)|
γ-*oo

and also
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Applying a slightly modified form of Proposition 4.1 in [ 5 ], we obtain the required
conclusion.

THEOREM 4. 3. Suppose that X* is a Kronecker set, then we have

(4.3) | |P | | P J P = limsuplPOOl (P<= PM(X)),
γ

provided that there exist points x/ in X3 such that GXC\G2Φ {0}, where Gj is
the closed subgroup generated by the set Xj — x/ (j = 1,2).

PROOF. Suppose that (4. 3) does not hold: we can find a pseudomeasure P
in PM(X) for which we have (4.2) (note that N(X) = PM(X) since X is an
S-set). Let Vi and 72 be any characters in G; then the function f in C(X)
defined by

f(xt + x2) = Ίx{xx) Ύ2(x2) (x5 € X, j = 1,2)

is in A(X) and has A(X)-norm 1 by Theorem 4.1. Thus Lemma 4.2 applies,
and we see that there exist a complex number c and a character 7 in G such
that

ΫIOI) ^ f e ) = CΎCZI + *,) fa € Xi i = l, 2).

It follows at once that

Ύ/Λ:, - Xj') = Ί{x5 - x/) (xj z Xj = 1,2) ,

and so we see that Ίγ = Ί2 on Gx Π G2. Since Ύi and Ί2 were arbitrary characters

in G, this implies Gi Π G2 = {0}. The proof is now complete.

LEMMA 4. 4. Lei £ ; &e any dense subset of X,{j = 1,2); E = EXX E2> and
MF(E) the space of all measures on E whose supports are finite. Then there
exists a directed family of linear operators XΔ, Δ £ cλ from V\X)into MF(X)
such that:

( a ) The range of each operator J2& is finite dimensional.
( b ) For every P in V (X), we have

(b. 1) mή-CΛP)\\v'W ^
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(b.2) supp(j : Δ (P))^ S upp(P);

(b. 3) £^P)-*P in the weak-* topology of V'(X).

( c ) The statement ( b ) holds even if V (X) is repalced by M(X).

PROOF. Fix j = 1,2, and let HJi be the directed family of all finite open
coverings of X} (for any Δ and Δ' in HJj, Δ •< Δ' implies that Δ' is a refinement
of Δ). For every covering A= {U1,U2> — >Un] in ΊJh we can find a subset
{9i> 9v , On) of C(Xj) so that [ 9 ]

n

( 1 ) Σ gk = 1 on the whole space X)

( 2 ) 0 ̂  ^A , and gk = 0 outside Uk {k = 1,2, , ή).

Choosing any points />A in Ukf)Ej(k = 1,2, ,w), we define a linear operator
on C(Xj) by

( 3 ) Uf) =
A ; = l

It is then easy to see that

(4) SUPH/ΛII^I, and lim||/-^Δ(/)IU = 0 (/<• C(X,)).
Δ ΔΔ

Put now c ί ^ V i X ^ the product space with the product order, and for

any Δ = (Δi,Δ2) in 3, let JCA — 3*®3^ be the operator on V(X) canonically

induced by 3^ ar*d 3^ (see [23]). It follows at once from ( 4 ) that

^ l , and l i m | ! / - JC±(f)\\riτ> = 0
Δ

for all / in V(X). It is also easy to see from ( 3 ) that

(5) MM)

where the />Λ (resp. qt) are points in Ex (resp. £ 2 ) and the gk (resp. Az) are
functions in C(XX) (resp. C(X2)) associated with Δx (resp. Δ2) as before.

Define now X Δ : V'(X)^>V'(X) to be the conjugate operator of JCA, ΔZJ.
It is easy to verify that so-defined operators X± have all the required properties,
which establishes our lemma.
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Let us now consider the Banach algebra V(X) introduced by Varopoulos [24].
He proved that the natural imbedding V(X)cV(X) is isometric if the spaces X)
are either totally disconnected or homemorphic to compact metrizable groups ([24]
see also [25]), and Graham asked in [ 6 ] whether this is true for every tensor
algebra. As is shown below, the answer is Yes.

THEOREM 4. 5. Let E be any rectangular dense subset of X. Then, for
any function f in V(X) (resp. in C(X)), we have

\\f\\v{X)(resp. H/llfu)) = supll/IU^ ,

where the supremum is taken over all finite rectangular subsets F of E. In

particular, the imbedding V(X)(lV(X) is isometric.

PROOF. Let / be any function in V(X). Then, by Lemma 4. 4 we have

II/IIFU) = suptlPί/) I : Pz V(X), \\P\\V rg:

= sup

= sup{| |/ | |F W : FoE, Card F<oo} .

Similarly, for any / in C(X), we have the required equality, and this completes
the proof.

Let now K be any compact subset of G, and consider two Banach algebras
B(K) and B\K) introduced by Katznelson and McGehee [10]. We have

II -^11 *~> II -PW ~~> II -PW ^ > II -̂ *ll ( -Pti Γ^( T<Γ\\

11/ \\A(K) == 11/ \\B(K) = 11/ HB'(JΓ) = 11/ \\c(κ) \J « ^y^J) >

and so A(K)aB(K)cB'{K)CLC(K). It is known ([15], [22]) that every non-
discrete locally compact abelian group contains a compact set K for which we
have

A(K)ΦB{K) = C{K).

THEOREM 4. 6 (cf. [10], [24]). Suppose that X* is a JC-set, and that K is

a clopen subset of X, then we have

ll/IUαo = ll/IU'un (feA(K)),
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and

ll/IUuo = ll/IU'oo (f*(XK)).

In particular, we have B{K) — B\K) isometrically.

PROOF. If X* is a Kronecker set, our statements follow from Lemma 4. 4
and the fact that the canonical identification A(X) = V(X) is isometric. If X* is
a Kp-set for some p^2, then the spaces X} are totally disconnected. Therefore
the functions gk and /̂  used in ( 5 ) of the proof of Lemma 4. 4 can be chosen to
be idempotent. Using this, we obtain the required conclusions.

REMRK. Under the assumption of part ( a ) in Theorem 4.1, we have
P/IU(X) = 1 even if X* is a K^-set. This can be easily proved, and we omit the
details.

5. The constants u0 and uλ. Let u0 be the constant defined by (1.1) in
§1. Professor Leblanc calculated the exact value of u0 to obtain uo = 2/3lβ. We
should like to thank him for allowing us to use his calculus.

There are only modulus in this calculus, and so, we can suppose that a and c
are real positive, and so is b if we change the origin of z. Thus, it is obvious
that u0 is obtained when d is real and negative, and we can choose d= — 1
because the result is independent of a constant factor. Then we have

A(a, b, c, 0) = a + b + c•

A(a, b, <:, -1) = sup{(α2 + b> + 2abtψι + (c2 + 1 - 2ct)^}
t

where — l fgίfgl. We now define two functions u and s by

u = A(a, b, cy 0)/A(α, b, c,-ΐ);

s = {a2b2(c2 + 1) - c\a2 + b2)} /2abc(ab + c) ,

and divide the positive cone {(α, b, c) : α>0, b > 0, c > 0} into three parts : Dλ

= {M^1},D,= {5^1},and A = fr^-l}.

( I ) Suppose here that the point (a, b, c) ranges over Du It is then easy
to see that

A(α, b, c, - 1) = (α2 + b2
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= ab\ a2c+b2c+ab(c2 + ϊ) Yβ ,_c\ ab(c2 + l)+c(a2+b2)]VJ

\ abc(ab + c) j C[ abc(ab+c)

= {(ab + c)(abc2 + a2c + a2b + ab)/(abc)}1/2

= {(ab + c)(bc + a)(ca + b)/(abc)}1/2.

Therefore, setting

ĉ = a -\- b -\- c, y = ^έ + έc + CΛ, 2̂  = abc ,

we have

u = x {z/(z2 + 2;x2 — 2 ^ 4- 3>2 — 2s;α: + z)}ιβ.

But du/dx = du/dy = du/dz = 0 implies .r = 1 and 3/ = z, that is

a + 6 + c = α"1 + έ"1 + c"1 = 1,

which is impossible. So

3w 3w du /7 v 3-
oy = 0

is possible only if

db

1 H c δc

1 c + α cα = (a- b)(b - c)(a - c) = 0 ,

and we can suppose for instance a = b. Then

α(2α+c)c1/2

and we see that 3w/3α = du/dc = 0 implies

= ac

(2a + c)-1 + (2c)"1 = 2 " V + c)-1 + (c + I)"1
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that is, a = c = 2. Then we have s = -^ and w(2,2,2) = 2/31/2, which is the largest

value of u in the region Dίt

(II) Suppose now that the point (a,b,c) ranges over D2. The inequality
i^ l implies

{a2b2 - (a + b)2} c2 - 2a2b2c + a2b2 ^

that is

Suppose first that c^l we then have

and

4- c)/(α + b + c -

It follows that the maximum value of u in D2 Π {c ̂  1} is obtained when
<2 = &:=c = 3 and equals 9/8(<2/31/2). Suppose next that c ^ l , and so we have

(w = (α + b + c)/(α + & + 1 - c) .

Since u is an increasing function of c for fixed a and &, we may assume that
1/c — 1 = l/<z + 1/έ. Therefore, it is easy to check that the maximum value of u
in D2 Π {c 5g 1} is obtained when a = b = 5 and c = 5/7, and equals 25/24.

(Ill) Suppose finally that the point (a, b, c) ranges over Z)3 We then have

| l / α - 1 / 6 | ^ 1 + 1 / c ,

and

w = (a + b+c)/(\a-b\ +c + l).

As in (II), we can show that the maximum value of u in Z)3 is

φ, 5/7,5) = φ/7,5,5) = 25/24.
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If follows from ( I ), ( I I ) , and (III) that u0 = 2/31/2, the required conclusion.

We now estimate the constant uλ defined in the proof of Lemma 1. 3. Let θ

be any real number with 0 ^ θ fg n. Then we have

A(l,l,l,-et§) = A(l,l,et9,-l)

= 211 + ei{π-θ)/ίl I = 23/2(l 4- sin 0/2)1/2

and so

A(l, 1,1, - eί9)/A(l, 1,1, - 1) = (1 + sin θ/2)1/2.

Suppose that z0 is any complex number with \zo\ = 1 Φ zQ and take an integer n

so that 27τ/3 ̂  arg zo

n^7t; we have

A(l, 1,1, - zo

n)/A(l, 1,1, - 1) ̂  (1 + sin τr/3)1/2,

and hence

*i ^ (1 + sin τr/3)1/2 > w0 = 2/31 / 2.
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