Tôhoku Math. Journ. 23(1971), 169-172.

ON NON-RIEMANNIAN SECTIONAL CURVATURE IN RIEMANNIAN HOMOGENEOUS SPACES

ISAAC CHAVEL¹⁾

(Rec. May 13, 1970)

In this note we give an M. Berger-L. W. Green type inequality [2] relating non-Riemannian sectional curvature and conjugate points in naturally reductive Riemannian homogeneous spaces (cf [1; 3, Chapter X] for all the necessary details). We first recall the result of Berger and Green: Let M be a compact orientable Riemannian manifold of dimension ≥ 2 , Γ the scalar curvature and $\pi/\sqrt{\kappa}$, $\kappa > 0$, a lower bound of the distance of any point to its first conjugate point along any geodesic. Then

(1)
$$\kappa \ge (1/\text{volume } M) \int_{M} \Gamma dM$$
,

where dM denotes the Riemannian volume element of M, and equality in (1) is achieved if and only if M is a space of constant sectional curvature κ . If M is Riemannian homogeneous, then the scalar curvature Γ is constant and (1) reads as

$$(2) \qquad \qquad \kappa \ge \Gamma \,.$$

We will consider, in this paper, a naturally reductive Riemannian homogeneous space and obtain inequalities of type (1), (2) with the scalar curvature replaced by the *sectional curvature* of the *canonical connection* (which is not the Levi-Civita connection unless M is locally symmetric). We turn to the statement and proof of the inequality.

Henceforth M is a naturally reductive Riemannian homogeneous space of dimension ≥ 2 , and δ , D denote the Levi-Civita and canonical connections respectively. R will denote the Riemann curvature tensor and T, B the torsion and curvature tensors of the canonical connection. Then for vector fields X, Y on M we have

(3)
$$\delta_{x}Y = D_{x}Y + (1/2) T(X, Y)$$

¹⁾ Partially supported by NSF GP 8691

I. CHAVEL

and the two connections therefore have the same geodesics. For any $p \in M$, $x \in M_p$ the tangent space to M at p, we let $\mathcal{R}_x, \mathcal{T}_x, \mathcal{B}_x \colon M_p \to M_p$ be the linear transformations given by

(4)

$$\mathscr{R}_x y = R(x, y)x,$$

 $\mathscr{T}_x y = T(x, y), \qquad \mathscr{B}_x y = B(x, y)x.$

Then relative to the Riemannian inner product <, > on M_p , \mathcal{R}_x , \mathcal{B}_x are symmetric and \mathcal{I}_x is skew-symmetric.

THEOREM. Let $\gamma : [0, +\infty) \to M$ be a geodesic parametrized with respect to arc length such that the first conjugate point of $\gamma(0)$ along γ is at $\gamma(\pi/\sqrt{\kappa})$. Then for every t, and every unit vector $e \in M_{\gamma(t)}$ orthogonal to $\dot{\gamma}(t)$ (the velocity vector of γ at $\gamma(t)$), we have

(5)
$$\kappa \geq < \mathscr{B}_{\gamma(t)}^{\cdot} e, e > .$$

If for some t_0 , there exists an $e \in M_{\gamma(t_0)}$ for which there is equality in (5), then the vector field $\xi(t) = \sin(\sqrt{\kappa}t)E(t)$, where E is the δ -parallel field along γ satisfying $E(t_0) = e$, is a Jacobi field along γ . If in addition to equality in (5) we have that $\pi/\sqrt{\kappa}$ is the minimum distance of any point to its first conjugate point along any geodesic, then the surface, geodesic at $\gamma(0)$, generated by E(0), $\dot{\gamma}(0)$ is a totally geodesic submanifold of M of constant Riemannian sectional curvature κ .

PROOF. We first note that since \mathcal{I}_x is skew symmetric, *D*-parallel transport preserves inner products; also, one knows that $DT \equiv DB \equiv 0$, and that

$$\mathfrak{R}_x = \mathfrak{B}_x - (1/4)\mathfrak{T}_x^2,$$

from which one easily shows

(7)
$$< B(x, y)x, y > = < B(y, x)y, x > .$$

Thus for orthonormal x and y, (7) defines the *D*-sectional curvature of the 2-section spanned by x and y.

We now turn to our geodesic γ and write δ , \mathcal{R} , D, \mathcal{I} , \mathcal{B} for δ_i , \mathcal{R}_i , D_i , \mathcal{I}_i , \mathcal{B}_i respectively. Let E(t) be a *D*-parallel vector field along δ of unit length and orthogonal to γ and set

$$\xi(t) = \sin\left(\sqrt{\kappa} t\right) \cdot E(t) ,$$

then

$$\begin{split} \delta\xi(t) &= D\xi(t) + (1/2) \mathcal{T}\xi(t) \\ &= \sqrt{\kappa} \cos(\sqrt{\kappa} t) \cdot E(t) + (1/2) \sin(\sqrt{\kappa} t) \cdot \mathcal{T}E(t) \; . \end{split}$$

By the skew-symmetry of \mathcal{T} we have $\langle E, \mathcal{T}E \rangle (t) = 0$ for all t and therefore

$$\|\delta\xi\|^2(t) = \kappa \,\cos^2(\sqrt{\kappa}\,t) + (1/4)\sin^2(\sqrt{\kappa}\,t)\|\mathcal{I}E\|^2(t)\,,$$

where $\| \|$ denotes the norm associated with the Riemannian metric. Note that $\mathcal{D}E$, $\mathcal{B}E$ are *D*-parallel vector fields along γ and hence of constant length. The second variation of arc length (with fixed endpoints) of $\gamma([0, \pi/\sqrt{\kappa}])$ is non-negative for all variations of γ and is zero if and only if the induced vector field along γ is a Jacobi field. Therefore

$$\begin{split} 0 &\leq \int_{0}^{\pi/\sqrt{\kappa}} \left\{ \|\delta\xi\|^{2} - \langle \Re\xi, \xi \rangle \right\}(t) dt \\ &= \int_{0}^{\pi/\sqrt{\kappa}} \left\{ \kappa \cos^{2}(\sqrt{\kappa} t) - \sin^{2}(\sqrt{\kappa} t)(\langle \Re E, E \rangle - (1/4) \|\Im E\|^{2}) \right\} dt \\ &= \int_{0}^{\pi/\sqrt{\kappa}} \left\{ \kappa \cos^{2}(\sqrt{\kappa} t) - \sin^{2}(\sqrt{\kappa} t) \langle \Re E, E \rangle \right\} dt \\ &= (\pi/2\sqrt{\kappa}) \left\{ \kappa - \langle \Re E, E \rangle \right\}, \end{split}$$

which implies (5) for all $t \in [0, \pi/\sqrt{\kappa}]$. However since $DB \equiv 0$, if (5) is true for one point of γ then it is true for all of γ .

If $\kappa = \langle \mathcal{B}E, E \rangle$ then $\xi(t)$ is a Jacobi field along γ . In the canonical connection (which has the same geodesics as the Levi-Civita connection) Jacobi's equations read as

$$(8) D^2\eta + \mathcal{G}(D\eta) + \mathcal{B}\eta = 0$$

for vector fields η along γ . By (5), E is a critical point of the quadratic form $X \rightarrow \langle \mathcal{B}X, X \rangle$ for each t, hence $\mathcal{B}E = \nu E$. One now easily sees that since ξ is a solution of (8) and $\langle E, \mathcal{T}E \rangle = 0$, we have $\mathcal{T}E = 0 -$ and by (3) E is parallel in the Levi-Civita connection.

In particular, $T(\dot{\gamma}(0), E(0)) = 0$. For the final statement we note that the hypotheses imply that $\kappa \geq \langle \mathcal{B}_x y, y \rangle$ for any orthonormal vectors x and y tangent to M at any point of M. If $\kappa = \langle \mathcal{B}_x y, y \rangle$ then y is a critical point of $z \rightarrow \langle \mathcal{B}_x z, z \rangle$

I. CHAVEL

and hence $\mathscr{B}_x y = \kappa y - by$ switching the roles of x and y, (7) implies $\mathscr{B}_y x = \kappa x$. The theorem now follows from

LEMMA (A. A. Sagle [4]). Let M be a naturally reductive Riemannian homogeneous space, $p \in M$, and V a subspace of M_p such that for all $x, y, z \in V$

$$T(x, y) \in V, \qquad B(x, y)z \in V.$$

Then $\operatorname{Exp}_{p} V$ is a totally geodesic naturally reductive Riemannian homogeneous submanifold of M.

REMARK. We note that by a lemma of J. L. Synge [5] if E(t) is a *D*-parallel vector field along a geodesic $\gamma(t)$, then $\langle \mathcal{B}E, E \rangle$ is the Gaussian curvature of any surface containing γ and tangent to the plane spanned by $\dot{\gamma}(t)$, E(t) for every t.

REFERENCES

- I. CHAVEL, Isotropic Jacobi fields and Jacobi's equations on Riemannian homogeneous spaces, Comment. Math. Helv., 42(1967), 237-248.
- [2] L. W. GREEN, Aufwiedersehensflächen, Ann. of Math., 78(1963), 289-299.
- [3] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol II, Interscience, New York, 1969.
- [4] A. A. SAGLE, A note on triple systems and totally geodesic submanifolds in a homogeneous space, Nagoya Math. J., 32(1968), 5-20.
- [5] J. L. SYNGE, The first and second variations of length in Riemannian space, Proc. London Math. Soc., 25(1926), 247-264.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA, U.S.A.

172