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ON NON-RIEMANNIAN SECTIONAL CURVATURE
IN RIEMANNIAN HOMOGENEOUS SPACES

IsAAC CHAVELY
(Rec. May 13, 1970)

In this note we give an M. Berger-L. W. Green type inequality [ 2] relating
non-Riemannian sectional curvature and conjugate points in naturally reductive
Riemannian homogeneous spaces (cf [1; 3, Chapter X] for all the necessary details).
We first recall the result of Berger and Green: Let M be a compact orientable
Riemannian manifold of dimension =2, I' the scalar curvature and 7z/s/« , x>0,

a lower bound of the distance of any point to its first conjugate point along any
geodesic. Then

(1) &= (1/volume Z\l)f I'dM,

where dM denotes the Riemannian volume element of M, and equality in (1) is
achieved if and only if M is a space of constant sectional curvature «. If M is
Riemannian homogeneous, then the scalar curvature I'is constant and (1) reads as

(2) =T,

We will consider, in this paper, a naturally reductive Riemannian homogeneous
space and obtain inequalities of type (1), (2) with the scalar curvature replaced
by the sectional curvature of the canonical connection (which is not the Levi-
Civita connection unless M is locally symmetric). We turn to the statement and
proof of the inequality.

Henceforth M is a naturally reductive Riemannian homogeneous space of
dimension = 2, and 8, D denote the Levi-Civita and canonical connections respectively.
R will denote the Riemann curvature tensor and 7T, B the torsion and curvature
tensors of the canonical connection. Then for vector fields X, Y on M we have

(3) 8:Y = DY +(1/2) T(X, Y)
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and the two connections therefore have the same geodesics. For any pe M, x < M,

the tangent space to M at p, we let R, 9,0 B, M,—M, be the linear trans-
formations given by

R.y = R(x,y)x,
Ty =T(x,y), B,y = B(x,y)x.

(4)

Then relative to the Riemannian inner product <, > on M,, R,, B, are symmetric
and 9, is skew-symmetric.

THEOREM. Let 7V: [0, + oo) > M be a geodesic parametrized with respect
to arc length such that the first conjugate point of Y(0) along ¥ is at ¥(n/s/ & ).
Then for every t, and every unit vector e € M,, orthogonal to ¥(t) (the velocity
vector of ¥ at Y(t)), we have

(5) K= <$~}(L)e, e,

If for some t,, there exists an e< M,,, for which there is equality in (5),
then the vector field E(t)=sin(/ «t)E(t), where E is the 3-parallel field
along v satisfying E(t,) =e, is a Jacobi field along Y. If in addition to
equality in (5) we have that n/s/ k is the minimum distance of any point to
its first conjugate point along any geodesic, then the surface, geodesic at ¥(0),
generated by E(0), 7(0) is a totally geodesic submanifold of M of constant
Riemannian sectional curvature «.

PROOF. We first note that since I, is skew symmetric, D-parallel transport
preserves inner products ; also, one knows that DT'=DB=0, and that

(6) R. = B, — (1/4) 9z,
from which one easily shows
(7) <B(z,y)x, y> = <B(y, x)y, x> .

Thus for orthonormal x and y, (7) defines the D-sectional curvature of the
2-section spanned by x and y.
We now turn to our geodesic ¥ and write 8, R, D, I, B for 8;, R;» Dy, ;5 B;

respectively. Let E(t) be a D-parallel vector field along 8 of unit length and
orthogonal to 7 and set

E(t) = sin(s/« t) - E(t),
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then -

8E(t) = DE(t) + (1/2)TE(2)
= A/ kcos(n/ « t)- E(t) + (1/2) sin(a/ & t)- TE(2) .

By the skew-symmetry of 9 we have <E, JE>(t) =0 for all ¢ and therefore

IBE11*(2) = #e cos*(v/ w t) + (1/4) sin®(+/ ke t) [ TE|(2) ,

where | || denotes the norm associated with the Riemannian metric. Note that
9JE, BE are D-parallel vector fields along ¥ and hence of constant length. The
second variation of arc length (with fixed endpoints) of Y([0, #/a/ « ] is non-negative
for all variations of ¥ and is zero if and only if the induced vector field along ¥
is a Jacobi field. Therefore

7/~ &
()gf (18] — <RE, E>}(t)dt
- f " fecost(/ & 0) — sint(v/ ® D)< RE E> — (1/4)|TE|)}de

/n &
— f {k cos’(n/ & &) — sin(n/ & )< BE, E>}dt
0

= (n/2/ € ){x — <BE,E>},

which implies (5) for all z¢ [0, #/o/ # ]. However since DB=0, if (5) is true
for one point of ¥ then it is true for all of 7.

If k= <BPBE,E> then £() is a Jacobi field along Y. In the canonical
connection (which has the same geodesics as the Levi-Civita connection) Jacobi’s
equations read as '

(8) Dy +9(Dn) +Bn=0

for vector fields » along ¥. By (5), E is a critical point of the quadratic form
X— <BX,X> for each t, hence BE =vE. One now easily sees that since £ is
a solution of (8) and <E,9JE> =0, we have JE=0— and by (3) E is
parallel in the Levi-Civita connection.

In particular, T(¥(0), E(0)) =0. For the final statement we note that the
hypotheses imply that k= < 3,y,y> for any orthonormal vectors x and y tangent to
M at any point of M. If k= <B,y,y> theny is a critical point of 2 > <B.2, 2>
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and hence B,y =ry— by switching the roles of = and y, (7) implies B,x = «x.
The theorem now follows from

LEMMA (A.A.Sagle [4]). Let M be a naturally reductive Riemannian
homogeneous space, pe M, and V a subspace of M, such that for all x,y,zeV

T(x,y)eV, B(x,y)zc V.

Then Exp, V is a totally geodesic naturally reductive Riemannian homogeneous

submanifold of M.

REMARK. We note that by a lemma of J. L. Synge [5] if E(t) is a D-
parallel vector field along a geodesic Y(¢), then <BE, E> is the Gaussian curvature
of any surface containing ¥ and tangent to the plane spanned by ¥(¢), E(t) for
every r.
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