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1. Introduction. Let [ίl, Jl, P] be a probability space and [Xj] a sequence
n

of random variables. Write Sn = ̂  X5. We shall say that the central limit

theorem (CLT) holds if for all x,

(1) P[SJJn^x]-*Φ(x)

where Φ is the normal distribution function with mean 0 and variance 1.
Sufficient conditions for (1) to hold are of course well known.
We shall say that a sequence {Yn} of random variables is mixing with density

F(x) if for all β in J , and x a continuity point of F,

For example if the CLT holds and if the X5 are independent identically distributed

with mean 0 and variance 1 then it is known ([8]) that {Yn} = {Sn/*/ri) is mixing.
Now let {vn} be a sequence of random variables on Ω which only take on

positive integer values, and suppose that {Yn} is a sequence of random variables
such that P[Yn^=x] —>F(x) at continuity points of F, then we want to know
under what conditions one has also that P[YVn^x]—>F(x).

The following result is known ([5]).

THEOREM A. P[YVn^x]-^F(x) if
(i) {Yn} is mixing with density F{x)
(ii) \jε,δ>0,3 n0 and c>0$P[ max | Yn-Ym\ > 8] < δ whenever n^n0

\m-n\<nc

(iii) 3 a strictly positive random variable v and a sequence of integers {f(n)}
increasing with n 5 vjf{n) —> v in probability.
As a special case we have that if the CLT holds with {X5} independent and
if vn satisfies condition (iii) then

( 2 )
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This is the so called random-sum central limit theorem (RSCLT) (see eg.
[9], [7]).

In this paper we shall give a proof of a result, of the type of Theorem
A, which gives conditions under which the [YVn] are themselves mixing. We will
then combine this result with another theorem concerning mixing sequences of
random variables to obtain some quite surprising results in the CLT and RSCLT
cases.

2. Mixing of the randomized sequences.

THEOREM 1. Suppose that conditions ( i ) and (ii) of Theorem A hold

and that condition (iii) holds with the added proviso that v be discrete, then

[YVn] is also mixing with density F(x).

PROOF. Let B in Jί be any event with P(B) > 0. We want to verify

First we assume that vn = [f(n)v], where y is a positive random variable
having a discrete distribution. Let ak, k = 1,2, , (0<aχ <a2< ) be the
possible values taken up by v with positive probability. Let Ak be the events
Ak = {ω: v(ω) = ak}> k = 1,2, .
Then

(3 ) P{YVn^x, B] = Σϊ-i p{Yιr^ak] ^x\BnAk}P(Bn Ak),

with P( \B Π Ak) = 0 if P(B Π Ak) = 0. {Yn} mixing implies

»F(x) as τz->oo,

for every continuity point x of F and for all k for which P(B Π Ak) Φ 0. It
follows then from (3)

(4) P{Yv^x,B}->F(x)P(B),

that is to say, the theorem is true if vn = [f(n)v] with i -discrete. Next we write



ON MIXING AND THE CENTRAL LIMIT THEOREM 141

Now, condition (iii) implies that vft\ -i ~ > 1 in probability as n—>oo and we

have just shown that {Y[rcn)v\} given B converges in distribution to F. Therefore
the third term of (5) converges in probability to 0, given B. Thus, to prove the
theorem it suffices by (4) to show that in the second term of (5)

6) (Y*-Yιrω«'j-If{£v] )->0 in probability

as n—>oo. First we show that (YVn-Ύιrcn^v])—>0 in probability as n-»oo. Let
Bn{c),c>0, be the event \vn— [f(n)v]\^f(n)c. Put nk = [f(n)ak]. We choose
an arbitrary 8 > 0 and let Cnk denote the event | YVn — Ynk | > £. Then we have

(7 ) P{ I YVn - y [ / c n ) y ] I > 8} ^ ΣZ-i P(A* n c

Let DM denote the event {v > aχ$. Then

(8) Σ?-i p(A* n Cnk n βΛ(c)) ̂  £ £ ί P(AΛ n C

and

( 9) £ ί - ί P(AΛ Π Cn t

Let 0 < 8 < l and such that 8/(1 — δ) <fly/3, where ??>0 is arbitrarily small. It
follows from condition (ii) that for the given £ > 0 and δ * > 0 there exist positive
numbers ck(6,δ) and integers mk(8,δ) such that for f(n)^mk,

(10) P{maxn-n^f(n)Ck \ Yt - Ynk \ > 8} < δfc, k = 1,2,

For the above η, choose M so large that P(Ar) <~ό~ Fixing M this way, we

choose mM such that for n^

f(n) ^

is satisfied. Then it follows from (10) that for Λ ^ %

and if we now take c = mini^^jf-i^S, δ) for c of (9) , we also have that the
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right hand side expression of (9) is also less than v/3- Having fixed c of Bn(c)
this way we now choose mc^mM so large that for n^mc we have P{BJc)}
<v/3. It now follows form (7 jand (8) that (YVn — Y[f<in)v])-+0 ln probability

as n->oo. This, together with the fact that r r, n\ -, -»1 in probability as n->oo,

implies that every subsequence of ] \YVn — Y[ftn)»] V~"^ )[ contains a subse-

quence which converges almost everywhere to zero and the statement of (6)
follows. This completes the proof.

This result was originally proven by Richter [12] (see also [11]) using Prohorov's
theory of convergence in metric spaces. Our proof has the advantage of being
straight forward and only using the usual probabalistic method of reasoning. A
proof in the case where v is not assumed discrete will be given elsewhere.

3. Some extensions of the central limit theorem. We shall need the
following result which is a special case of some results proved in [ 3 ] and [ 4 ].
(See also [2] , [6]).

We first need to introduce the following notations and definitions. If F is a
distribution function we designate by μF the probability measure on the Borel sets
of the real line which is determined by μF((a, b]) = F(b) — F(a). If Z is any
random variable then a random measure vf is defined on the Borel sets of the
plane by vf(ω, E) = μF{y : (y, Z(ω)) e E]. The measure Pz induced by P and Z is
defined for all Borel sets by PZ(B) = P[Zz E\. Finally if g is a Borel
function then the distribution function F° induced by F and g is defined by

THEOREM B. Let {Yn} be mixing of density F(x) and let Z be an
arbitrary random variable. Suppose that h( , ) is a function of two real
variables which is almost everywhere continuous with respect to the random
measure v%{ω-> ) for almost all [with respect to P) ω. Then for any sequence
{Zn} of random variables which converges in probability to Z we have that

P[h(Yn, Zn) ^x]->[vz

F (ω, hrx[ - oo, x\)P(dω)

= ί μr({y : hly, Z(ω)) ̂  x])P(dω)

= [ μ w{y :h(yίz)^
JR
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To put the continuity condition in a more tractable form we reason as follows.

Let D be the discontinuity set of h. The hypothesis implies that

0 = f vz

F(ω, D) P(dω) = Γ μF(y : (y, Z(ω)) € D)P(dω) = ( μF(Dz)Pz(dz)
JQ JΩ JR

(where Dz is the section of D by z) = μF x PZ{D). The last equality being

just one of the forms of Fubini's theorem. Using the fact that the product

measure of a set is zero if and only if almost every section has zero measure we have

COROLLARY 2. The result of Theorem B holds if either (i) μF x PZ(D)

= 0, (ii) μF(Dz) =0 for almost every z section of D or (iii) Pz(Dy) = 0 for

almost every y section of D, where D is the discontinuity set of h.

We now give some applications to limit theorems.

THEOREM 2. Suppose that [Xj] is a sequence of independent identically

distributed random variables with mean 0 and variance 1. Let {vn} be a

sequence of integer valued random variables such that vjn converges in

probability to a positive random variable v. Let {Zn} be an arbitrary sequence

of random variables which converge in probability to a random variable Z.

Let g( ) and f( ) be functions of a single real variable which are almost

everywhere continuous with respect to Lebesgue measure and Pz respectively.

Then :

> [
JR

Φg(f(z))Pz(dz)

PROOF. We take h(y9z) = g(y) —f(z). Since Φ is absolutely continuous

with respect to Lebesgue measure the hypotheses on f and g above imply that

condition (i j of Corollary 2 is satisfied.

As mentioned in the introduction Sn/*Jn is mixing with density Φ. Condition

(ii) of Theorem A is satisfied by Kolmogorov's inequality. Thus by Theorem

1 and the remark following it, SVJΛJΠ is also mixing. Putting x — 0 in Theorem

B and realizing that μφ{y: g(y) — f(z) ^ 0 } is the same thing as Φ°(f(z)) we

have by Corollary 2, that the desired result holds.

Results of this type were proved for g(t) =t,Zn = Z (with the exception that

Λ/VU was replaced by *Jn and vn satisfied an additional requirement) in the

Rademacher case by J. C. Smith [13] for independent random variables by S.

Takahashi [15] and for a different example of mixing by S. Takahashi [14].

In fact even the following, first proved in [15], which is the most special case
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seems to be generally unknown.

COROLLARY 3. Let [Xj] be a sequence of independent identically distrib-
uted random variables with mean 0 and variance 1 and let Z be an arbitrary
random variable then:

The result is of course what we would obtain if Sn and Z were independent.
It would be of interest to know if the Zn in Theorem 3 can also be

randomized. This would follow if Zn converged to Z W. P. 1, but since convergence
of Zn in probability does not imply convergence in probability of ZVn (see [ 1 ])
the answer is not immediately forthcoming by the methods used above.
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