Tôhoku Math. Journ. 23(1971), 559–564.

DERIVATIONS OF SIMPLE C*-ALGEBRAS, III

SHÔICHIRÔ SAKAI*)

(Rec. May 14, 1971)

1. In the previous paper [8], the author introduced the notion of the derived C^* -algebra of a simple C^* -algebra into the study of derivations on C^* -algebras — i. e. let A be a simple C^* -algebra. Then there exists one and only one primitive C^* -algebra D(A) with unit (called the derived C^* -algebra of A) satisfying the following conditions. (1) A is a two-sided ideal of D(A); (2) for every derivation δ on A, there is an element d (unique modulo scalar multiples of unit) in D(A) such that $\delta(x) = [d, x]$ ($x \in A$); (3) every derivation of D(A) is inner.

If A has a unit, then A = D(A), so that D(A)/A = (0).

In the present paper, we shall show that for an arbitrary finite-dimensional C^* -algebra B, there exists a simple C^* -algebra A such that D(A)/A = B. In particular, there is a simple C^* -algebra A such that D(A)/A is one dimensional and so there is a simple C^* -algebra without unit in which all derivations are inner.

Also, some problems on derived C^* -algebras are stated.

2. Construction of examples. Let A be a simple C*-algebra, and let L be a closed left ideal of A. Then $L \cap \widetilde{L}$ is a C*-subalgebra of A, where $\widetilde{L} = \{x^* | x \in L\}$.

PROPOSITION 1. $L \cap \widetilde{L}$ is a simple C*-algebra.

PROOF. Let A^* be the dual Banach space of A, and let A^{**} be the second dual of A. Then A^{**} is a W^* -algebra and A is a $\sigma(A^{**}, A^*)$ -dense C^* -subalgebra of A^{**} , when A is canonically embedded into A^{**} (cf. [9]). Let $L^{\circ\circ}$ (resp. $(L \cap \widetilde{L})^{\circ\circ}$) be the bipolar of L (resp. $(L \cap \widetilde{L})$) in A^{**} . Then $L^{\circ\circ}$ is a $\sigma(A^{**}, A^*)$ -closed left ideal of A^{**} ; hence there is a projection e in A^{**} such that $L^{\circ\circ} = A^{**}e$. For $x \in L$, $x^*x \in L \cap \widetilde{L}$ and so $(L \cap \widetilde{L})^{\circ\circ} = eA^{**}e$. In fact, it is clear that $(L \cap \widetilde{L})^{\circ\circ} \subset eA^{**}e$. Suppose that $(L \cap L)^{\circ\circ} \subseteq eA^{**}e$; then there exists a self-adjoint element f of A^* such that $f(L \cap \widetilde{L}) = 0$, but $f(eA^{**}e) \neq (0)$. Since $f(x^*x) = 0$ for $x \in L$ and since $y^*x = (1/4)\{(y+x)^*(y+x) - (y-x)^*(y-x) - i(y+ix)^*(y+ix) + i(y-ix)^*(y-ix)\}$

^{*)} This research is supported by Guggenheim Foundation and National Science Foundation.

S. SAKAI

for $x, y \in L, f(y^*x) = 0$ for $x, y \in L$.

Take a directed set (x_{α}) in L such that $\sigma(A^{**}, A^*)$ -lim $x_{\alpha} = e$; then $f(y^*e) = 0$ for $y \in L$ and so $f(\widetilde{L}e) = 0$, so that $f(eA^{**}e) = 0$, a contradiction.

Now suppose that $L \cap \widetilde{L}$ is not simple; then there exists a non-zero proper closed ideal I of $L \cap \widetilde{L}$. Then the bipolar $I^{\circ \circ}$ of I in A^{**} is a $\sigma(A^{**}, A^*)$ -closed ideal of $eA^{**}e$; hence there exists a central projection p of $eA^{**}e$ such that $I^{\circ \circ} = eA^{**}ep$. On the other hand, the center of $eA^{**}e = Ze$, where Z is the center of A^{**} ; hence there exists a central projection z of A^{**} such that $I^{\circ \circ} = eA^{**}ez$. Therefore the bipolar $(AIA)^{\circ \circ}$ of AIA is contained in $A^{**}z$, where AIA is the closed linear subspace of A generated by $\{axb|a, b \in A, x \in I\}$. Since AIA is a non-zero ideal of A and A is simple, AIA = A and so z = 1; this implies that $I^{\circ \circ} = eA^{**}e$ and so $I = L \cap \widetilde{L}$, a contradiction. This completes the proof.

THEOREM 1. Let N be a type II_1 -factor or a countably decomposable type III-factor, and let M be a maximal left ideal of M. Then $M \cap \widetilde{M}$ is a simple C*-algebra without unit and the quotient C*-algebra $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is one-dimensional, where $\widetilde{M} = \{x^* | x \in M\}$.

PROOF. It is well known that N is a simple C^* -algebra with unit. Therefore by Proposition 1, $M \cap \tilde{M}$ is a simple C*-algebra. $M \cap \tilde{M}$ does not have a unit; in fact, if $M \cap \widetilde{M}$ has a unit e, then e is a projection of M. Since Ne=M, (1-e)N(1-e) is one-dimensional and so N is a type I-factor, a contradiction. Let ρ be the identical mapping of $M \cap \overline{M}$ in $D(M \cap \overline{M})$ onto $M \cap \overline{M}$ in N. Since $M \cap \overline{M}$ is a two-sided ideal of $D(M \cap \widetilde{M})$, ρ can be extended to a *-homomorphism (denoted again by ρ) of $D(M \cap M)$ into N (cf. [1], [8]). Since $D(M \cap M)$ is primitive and $M \cap \widetilde{M}$ is simple, the extended ρ must be a *-isomorphism. Therefore we may identify $D(M \cap M)$ with $\rho(D(M \cap M))$; then we have $M \cap M \subset D(M \cap M) \subset N$. If $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is not one-dimensional, there is a non-zero commutative C*-subalgebra C of $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ which does not contain the unit of $D(M \cap \widetilde{M})/M \cap \widetilde{M}$. Let C_1 be the inverse image of C in $D(M \cap \widetilde{M})$. Then C_1 is a C*-subalgebra of N which does not contain the unit of N. Since $1 \in C_1$, ||1-x|| ≥ 1 for $x \in C_1$; hence there exists a bounded linear functional φ on N such that $\varphi(C_1)=0$ and $\varphi(1)=\|\varphi\|=1$. Then φ is a state (cf. [1]). Let $M_{\varphi}=\{x | \varphi(x^*x)=0, z^*\}$ $x \in N$; then $M \cap \widetilde{M} \subset C_1 \subset M_{\varphi}$. For $x \in M, x^*x \in M \cap \widetilde{M}$, so that $x^*x \in M_{\varphi}$; hence $\varphi(x^*x) \leq \varphi(1)^{1/2} \varphi((x^*x)^2)^{1/2} = 0$. Therefore $M \subset M_{\varphi}$. Since M is maximal, $M = M_{\varphi}$ and so $C_1 = M \cap \widetilde{M}$, a contradiction. Hence $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is one-dimensional. This completes the proof.

The above C*-algebra $M \cap \widetilde{M}$ has the following remarkable properties.

560

COROLLARY 1. Let A be a C*-algebra. Suppose that $(M \cap \tilde{M}) \otimes A$ is *-isomorphic to $M \cap \tilde{M}$; then A is the field of all complex numbers, where \otimes is the C*-tensor product.

PROOF. Since $(M \cap \widetilde{M}) \otimes A$ is *-isomorphic to $M \cap \widetilde{M}$, A is simple. Clearly, $D((M \cap \widetilde{M}) \otimes A) \supset D(M \cap \widetilde{M}) \otimes A \supset 1 \otimes A$. Hence we have $1 \otimes A = 1 \otimes (\lambda 1)$ (λ , complex numbers) and so A is the field of complex numbers. This completes the proof.

COROLLARY 2. Let A_1 , A_2 be two C*-algebras. Suppose that $M \cap \widetilde{M} = A_1 \otimes A_2$. Then A_1 or A_2 is the field of complex numbers.

PROOF. Clearly, A_1 and A_2 are simple; moreover either of them is a C^* -algebra without unit. Suppose that A_1 does not have a unit. Since $D(M \cap \widetilde{M}) = D(A_1 \otimes A_2)$ $\supset D(A_1) \otimes D(A_2) \supseteq A_1 \otimes D(A_2) \supset A_1 \otimes A_2 = M \cap \widetilde{M}$. Hence $A_1 \otimes D(A_2) = A_1 \otimes A_2$; therefore $D(A_2) = A_2$. If A_2 is not one-dimensional, dim $(D(A_1 \otimes A_2)/A_1 \otimes A_2) \ge$ dim $(1 \otimes A_2)$, a contradiction. This completes the proof.

The following problem is interesting.

PROBLEM 1. Let A be an infinite-dimensional simple C*-algebra with unit, and let M be a maximal left ideal of A. Then can we conclude that $D(M \cap \widetilde{M})$ $/\widetilde{M} \cap M$ is one-dimensional?

If A is an infinite-dimensional simple C^* -algebra with unit, then it is not a type I C^* -algebra and so it has a type III-factor *-representation ([3], [6]). If the following problem is affirmative, the problem 1 is affirmative.

PROBLEM 2. Let *B* be an arbitrary *C**-algebra which contains the *C**-algebra *A* in the problem 1 as a proper *C**-subalgebra. Then, can we conclude that there exists a *-representation $\{\pi, \mathfrak{H}\}$ of *B* on a Hilbert space \mathfrak{H} such that $\overline{\pi(A)}$ is a type II (or III) *W**-algebra and $\overline{\pi(A)} \subseteq \overline{\pi(B)}$, where $\overline{\pi(A)}$ (resp. $\overline{\pi(B)}$) is the weak closure of $\pi(A)$ (resp. $\pi(B)$)?

Next we shall construct a simple C^* -algebra A such that D(A)/A is a type I_n -factor $(n=1, 2, \dots)$.

PROPOSITION 2. Let B_n be a type I_n -factor $(n=1, 2, \dots)$, and let A be a simple C*-algebra. Then $D(A \otimes B_n) = D(A) \otimes D(B_n)$.

PROOF. It is clear that $D(A \otimes B_n) \supset D(A) \otimes D(B_n) = D(A) \otimes B_n$. Let $\{\pi, \mathfrak{F}\}$ be an irreducible *-representation of A on a Hilbert space \mathfrak{F} . Then $\overline{\pi(A)} \otimes B_n$ is a W*-algebra, where $\overline{\pi(A)}$ is the weak closure of $\pi(A)$; hence $\overline{\pi(A)} \otimes B_n$

S. SAKAI

 $\supset D(\pi(A) \otimes B_n)$ ([5]). Since $\overline{\pi(A)} \otimes B_n$ can be considered as the matrix algebra of all $n \times n$ matrices over the algebra $\overline{\pi(A)}$, for $d \in D(\pi(A) \otimes B_n)$ there is an element $(a_{ij})(a_{ij} \in \overline{\pi(A)})$ in $\overline{\pi(A)} \otimes B_n$ such that $[d, (x_{ij})] = [(a_{ij}), (x_{ij})]$, where $x_{ij} \in \pi(A)$. Put $x_{ij} = \delta_{ij}a$ $(a \in \pi(A))$, where δ_{ij} is the Kronecker symbol; then $[d, (\delta_{ij}a)] = [(a_{ij}), (\delta_{ij}a)] = [(a_{ij}, a])$. Hence $[a_{ij}, a] \in \pi(A)$ $(i, j = 1, 2, \dots, n)$ and so $a_{ij} \in D(\pi(A))$. This completes the proof.

REMARK. In Proposition 2, we can not replace the algebra B_n by an arbitrary simple C^* -algebra – for example, let $C(\mathfrak{F})$ be the C^* -algebra of all compact operators on an infinite-dimensional Hilbert space \mathfrak{F} ; then $D(C(\mathfrak{F}))=B(\mathfrak{F})$, where $B(\mathfrak{F})$ is the C^* -algebra of all bounded operators on \mathfrak{F} , and $C(\mathfrak{F})\otimes C(\mathfrak{F})=C(\mathfrak{F}\otimes\mathfrak{F})$. On the other hand, $D(C(\mathfrak{F})\otimes C(\mathfrak{F}))=B(\mathfrak{F}\otimes\mathfrak{F})$ and $D(C(\mathfrak{F}))\otimes D(C(\mathfrak{F}))=B(\mathfrak{F})\otimes B(\mathfrak{F})$.

The following problem is interesting.

PROBLEM 3. Let A be a simple C*-algebra with unit. Then, can we conclude that $D(A \otimes B) = D(A) \otimes D(B)$, where B is a simple C*-algebra ?

COROLLARY 3. Let $M \cap \widetilde{M}$ be the simple C*-algebra in Theorem 1, and let B_n be a type I_n -factor $(n=1, 2, \cdots)$. Then $D((M \cap \widetilde{M}) \otimes B_n)/(M \cap \widetilde{M}) \otimes B_n$ is a type I_n -factor $(n=1, 2, \cdots)$.

PROOF. By Proposition 2, $D((M \cap \widetilde{M}) \otimes B_n) = D(M \cap \widetilde{M}) \otimes B_n$. Hence $D((M \cap \widetilde{M}) \otimes B_n)/(M \cap \widetilde{M}) \otimes B_n = 1 \otimes B_n$. This completes the proof.

Now we shall show a generalization of Theorem 1.

THEOREM 2. Let N be a type II₁-factor or a countably decomposable type III-facor, and let $\{\pi_i, \tilde{\mathfrak{g}}_i\}$ $(i=1, 2, \dots, n)$ be a finite family of mutually inequivalent irreducible *-representations of N. Let $\Re_1, \Re_2, \dots, \Re_n$ be finite dimensional linear subspaces of $\tilde{\mathfrak{g}}_1, \tilde{\mathfrak{g}}_2, \dots, \tilde{\mathfrak{g}}_n$ respectively, and let $L = \{x \mid \pi_i(x) \Re_i\}$ $= 0, i = 1, 2, \dots, n; x \in N\}$. Then $L \cap \widetilde{L}$ is a simple C*-algebra such that $D(L \cap \widetilde{L})/L \cap \widetilde{L} = \sum_{i=1}^n \bigoplus B(\Re_i)$, where $B(\Re_i)$ is the C*-algebra of all bounded operators on \Re_i .

PROOF. Let $\mathfrak{H} = \sum_{i=1}^{n} \oplus \mathfrak{H}_{i}$, $\mathfrak{R} = \sum_{i=1}^{n} \oplus \mathfrak{R}_{i}$ and $\pi = \sum_{i=1}^{n} \pi_{i}$, and let E be the orthogonal projection of \mathfrak{H} onto \mathfrak{R} . Let $A = \{x \mid \pi(x) \mid E = E\pi(x), x \in N\}$; then A is a C^* -subalgebra of N with unit. If $x \in A$ with $\pi(x) \mid E = 0$ and $x^* = x$, then $x \in L \cap \widetilde{L}$; conversely if $x \in L \cap \widetilde{L}$ with $x^* = x$, then $\pi(x) \mid E = 0$ and so $E\pi(x) = (\pi(x)E)^* = 0$, so that $x \in A$. Therefore $L \cap \widetilde{L} = \{x \mid \pi(x) \mid E = 0, x \in A\}$. Moreover

562

563

if $x \in A$, then $\pi(y) \pi(x) E = \pi(y) E \pi(x) = 0$ for $y \in L \cap \widetilde{L}$; hence $yx \in L \cap \widetilde{L}$, and analogously $xy \in L \cap \widetilde{L}$. Therefore $L \cap \widetilde{L}$ is a two-sided ideal of A. On the other hand, $D(L \cap \widetilde{L})$ can be realized as a C*-subalgebra of N, since $L \cap \widetilde{L}$ is a two-sided ideal of $D(L \cap \widetilde{L})$.

Since $L \cap \widetilde{L}$ is weakly dense in the W^* -algebra $N, A \subset D(L \cap \widetilde{L})$. Since the weak closure of $\pi(L \cap \widetilde{L})$ on \mathfrak{F} is $(1_{\mathfrak{F}} - E) \overline{\pi(N)}(1_{\mathfrak{F}} - E)$, where $1_{\mathfrak{F}}$ is the identity operator on \mathfrak{F} and $\overline{\pi(N)}$ is the weak closure of $\pi(N)$ on \mathfrak{F} , and since $L \cap \widetilde{L}$ is a two-sided ideal of $D(L \cap \widetilde{L})$, for $y \in D(L \cap \widetilde{L})$, $\pi(y)(1_{\mathfrak{F}} - E)$, $(1_{\mathfrak{F}} - E)\pi(y) \in (1_{\mathfrak{F}} - E) \cdot \overline{\pi(N)}(1_{\mathfrak{F}} - E)$, and so $(1_{\mathfrak{F}} - E)\pi(y)(1_{\mathfrak{F}} - E) = \pi(y)(1_{\mathfrak{F}} - E) = (1_{\mathfrak{F}} - E)\pi(y)$; hence $y \in A$ and so $D(L \cap \widetilde{L}) = A$.

Now by Kadison's theorem [1], for an arbitrary self-adjoint element H of $\sum_{i=1}^{n} \oplus B(\Re_i)$, there exists a self-adjoint element h in N such that $\pi(h)E=HE$. Since EHE=HE, $(\pi(h)E)^*=E\pi(h)=\pi(h)E$; hence $h \in A$. Therefore the *-homomorphism $y \to \pi(y)E$ of A into $\sum_{i=1}^{n} \oplus B(\Re_i)$ is onto, and its kernel is $L \cap \widetilde{L}$. Hence $D(L \cap \widetilde{L})$ $/L \cap \widetilde{L} = \sum_{i=1}^{n} \oplus B(\Re_i)$. This completes the proof.

COROLLARY 4. For an arbitray finite-dimensional C*-algebra B, there exists a simple C*-algebra A such that D(A)/A=B.

Since the algebra N in Theorem 2 has uncountably many inequivalent irreducible *-representations, this is clear.

Now the following problems are interesting.

PROBLEM 4. In Theorem 2, can we replace the algebra N by an arbitrary infinite-dimensional simple C^* -algebra with unit?

PROBLEM 5. For an arbitrary commutative C^* -algebra C with unit, does there exist a simple C^* -algebra A such that D(A)/A=C?

PROBLEM 6. For an arbitrary simple C^* -algebra B with unit, does there exist a simple C^* -algebra A such that D(A)/A = B?

This problem is closely related to Problem 3.

PROBLEM 7. For an arbitrary C*-algebra B with unit, does there exist a simple C*-algebra A such that D(A)/A=B?

PROBLEM 8. Investigate the derived C^* -algebras of matroid C^* -algebras (cf. [2]).

References

[1] J. DIXMIER, Les C*-algèbres et leurs représentations, Paris, Gauthier-Villars, 1964.

S. SAKAI

- [2] J. DIXMIER, On some C*-algebras considered by Glimm, J. Functional Analysis, 1(1967), 182-203.
- [3] J. GLIMM, Type I C*-algebras, Ann. of Math., 73(1961), 572-612.
- [4] R. KADISON, Derivations of operator algebras, Ann. of Math., 83-(1966), 280-293.
- [5] S. SAKAI, Derivations of W*-algebras, Ann. of Math., 83(1966), 273-279.
- [6] S. SAKAI, A characterization of type I C*-algebras, Bull. Amer. Math., 72(1966), 508-512.
- [7] S. SAKAI, Derivations of simple C*-algebras, J. Functional Analysis. 2(1968), 202-206.
- [8] S. SAKAI, Derivations of simple C*-algebras, II, Bull. Soc. Math. France, 99.
- [9] Z. TAKEDA, Conjugate spaces of operator algebras, Proc, Japan Acad., 30(1954), 90-95.

ADDED IN PROOF (Sept. 22, 1971)

After writing this paper, the author found that the problems 1, 2 and 4 are negative for arbitrary uniformly hyperfinite C^* -algebra. Next, G. Elliot proved more generally that the problems 1, 2 and 4 are negative for arbitrary infinite-dimensional separable simple C^* -algebra with unit.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, U. S. A. AND MATHEMATICAL INSTITUTE TÓHOKU UNIVERSITY SENDAI, JAPAN

564