Tohoku Math. Journ. 23(1971), 559-564.

DERIVATIONS OF SIMPLE C* ALGEBRAS, III

SHÔICHIRÔ SAKAI^{*}

(Rec. May 14, 1971)

1. In the previous paper [8], the author introduced the notion of the derived C^* -algebra of a simple C^* -algebra into the study of derivations on C^* -algebras – i. e. let A be a simple C^* -algebra. Then there exists one and only one primitive C^* -algebra $D(A)$ with unit (called the derived C^* -algebra of A) satisfying the following conditions. (1) A is a two-sided ideal of *D(A);* (2) for every derivation δ on A, there is an element d (unique modulo scalar multiples of unit) in $D(A)$ such that $\delta(x) = [d, x]$ $(x \in A)$; (3) every derivation of $D(A)$ is inner.

If A has a unit, then $A = D(A)$, so that $D(A)/A = (0)$.

In the present paper, we shall show that for an arbitrary finite-dimensional C^* -algebra *B*, there exists a simple C^* -algebra *A* such that $D(A)/A=B$. In particular, there is a simple C^* -algebra A such that $D(A)/A$ is one dimensional and so there is a simple C^* -algebra without unit in which all derivations are inner.

Also, some problems on derived C^* -algebras are stated.

2. Construction of examples. Let A be a simple C*-algebra, and let *L* be a closed left ideal of A. Then $L \cap \widetilde{L}$ is a C*-subalgebra of A, where $\widetilde{L} = \{x^* | x \in L\}.$

PROPOSITION 1. $L \cap \widetilde{L}$ is a simple C^{*}-algebra.

PROOF. Let A* be the dual Banach space of A, and let *A*** be the second dual of A. Then A^{**} is a W^{*}-algebra and A is a $\sigma(A^{**}, A^{*})$ -dense C^{*} -subalgebra of A^{**} , when A is canonically embedded into A^{**} (cf. [9]). Let L° (resp. $(L \cap \widetilde{L})^{\circ}$ ^o) be the bipolar of L (resp. $(L \cap \widetilde{L})$) in A^{**} . Then $L^{\circ\circ}$ is a $\sigma(A^{**},A^*)$ -closed left ideal of A^{**} ; hence there is a projection *e* in A^{**} such that $L^{\circ} = A^{**}e$. For $x \in L$, $x*x \in L \cap \widetilde{L}$ and so $(L \cap \widetilde{L})^{\circ}$ ^o = $eA^{**}e$. In fact, it is clear that $(L \cap \widetilde{L})^{\circ}$ ° $\subset eA^{**}e$. Suppose that $(L \cap L)^{\circ}e^{\subseteq}eA^{**}e$; then there exists a self-adjoint element f of A^* such that $f(L \cap \tilde{L})=0$, but $f(eA^{**}e) \neq 0$. Since $f(x^*x)=0$ for $x \in L$ and $\text{since } y^*x = (1/4)\{(y+x)^*(y+x)-(y-x)^*(y-x) - i(y+ix)^*(y+ix) + i(y-ix)^*(y-ix)\}$

^{*)} This research is supported by Guggenheim Foundation and National Science Foundation.

560 s. SAKAI

for $x, y \in L$, $f(y^*x)=0$ for $x, y \in L$.

Take a directed set (x_{α}) in L such that $\sigma(A^{**}, A^*)$ - $\lim x_{\alpha} = e$; then $f(y^{*}e) = 0$ for $y \in L$ and so $f(\widetilde{L}e) = 0$, so that $f(eA^{**}e) = 0$, a contradiction.

Now suppose that $L \cap \widetilde{L}$ is not simple; then there exists a non-zero proper closed ideal *I* of $L \cap \widetilde{L}$. Then the bipolar I° of *I* in A^{**} is a $\sigma(A^{**}, A^{*})$ -closed ideal of $eA^{**}e$; hence there exists a central projection p of $eA^{**}e$ such that I° ^{\circ} = *eA**ep*. On the other hand, the center of *eA**e* = Ze, where Z is the center of A^{**} ; hence there exists a central projection z of A^{**} such that $I^{\circ\circ} = eA^{**}e\overline{z}$. Therefore the bipolar $(AIA)^{\circ}$ of AIA is contained in $A^{**}z$, where AIA is the closed linear subspace of A generated by $\{axb \mid a, b \in A, x \in I\}$. Since AIA is a non-zero ideal of A and A is simple, $AIA = A$ and so $z=1$; this implies that I° ^{\circ} =eA**e and so $I = L \cap \widetilde{L}$, a contradiction. This completes the proof.

THEOREM 1. *Let N be a type Il -factor or a countably decomposable type Ill-factor* , *and let M be a maximal left ideal of M. Then MΠ M is a* simple C*-algebra without unit and the quotient C*-algebra $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ *is one-dimensional, where* $\widetilde{M} = \{x^* | x \in M\}$.

PROOF. It is well known that N is a simple C^* -algebra with unit. Therefore by Proposition 1, $M \cap \widetilde{M}$ is a simple C^{*}-algebra. $M \cap \widetilde{M}$ does not have a unit; in fact, if $M \cap \tilde{M}$ has a unit e, then e is a projection of M. Since $Ne = M$, $(1-e)N(1-e)$ is one-dimensional and so N is a type I-factor, a contradiction. Let ρ be the identical mapping of $M \cap \widetilde{M}$ in $D(M \cap \widetilde{M})$ onto $M \cap \widetilde{M}$ in N. Since $M \cap \widetilde{M}$ is a two-sided ideal of $D(M \cap \widetilde{M})$, ρ can be extended to a *-homomorphism (denoted again by ρ) of $D(M \cap \tilde{M})$ into N (cf. [1], [8]). Since $D(M \cap \tilde{M})$ is primitive and $M \cap \widetilde{M}$ is simple, the extended ρ must be a *-isomorphism. Therefore we may identify $D(M \cap \overline{M})$ with $\rho(D(M \cap \overline{M}))$; then we have $M \cap \overline{M} \subset D(M \cap \overline{M}) \subset N$. If $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is not one-dimensional, there is a non-zero commutative C^* -subalgebra C of $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ which does not contain the unit of $D(M \cap \widetilde{M})/M \cap \widetilde{M}$. Let C_1 be the inverse image of C in $D(M \cap \widetilde{M})$. Then C_1 is a C^{*}-subalgebra of *N* which does not contain the unit of *N*. Since $1 \notin C_1$, $||1-x||$ ≥ 1 for $x \in C_1$; hence there exists a bounded linear functional φ on N such that $\varphi(C_1) = 0$ and $\varphi(1) = ||\varphi|| = 1$. Then φ is a state (cf. [1]). Let $M_{\varphi} = \{x \mid \varphi(x*x) = 0,$ $x \in N \}$; then $M \cap \widetilde{M} \subset C_1 \subset M_{\bullet}$. For $x \in M,$ $x^* x \in M \cap \widetilde{M}$, so that $x^* x \in M_{\bullet}$; hence $\varphi(x^*x) \le \varphi(1)^{1/2}$ $\varphi((x^*x)^2)^{1/2} = 0$. Therefore $M \subset M_a$. Since M is maximal, $M=M$ and so $C_1 = M \cap \widetilde{M}$, a contradiction. Hence $D(M \cap \widetilde{M})/M \cap \widetilde{M}$ is one-dimensional. This completes the proof.

The above C^* -algebra $M \cap \widetilde{M}$ has the following remarkable properties.

COROLLARY 1. Let A be a C^{*}-algebra. Suppose that $(M \cap \tilde{M}) \otimes A$ is **-isσmorphic to MΓ\ M\ then A is the field of all complex numbers, where ® is the C*-tensor product.*

PROOF. Since $(M \cap \widetilde{M}) \otimes A$ is *-isomorphic to $M \cap \widetilde{M}$, A is simple. Clearly, $D((M\cap\widetilde{M})\otimes A)\supset D(M\cap\widetilde{M})\otimes A\supset 1\otimes A$. Hence we have $1\otimes A=1\otimes(\lambda 1)$ (λ,λ) complex numbers) and so *A* is the field of complex numbers. This completes the proof.

COROLLARY 2. Let A_1 , A_2 be two C^{*}-algebras. Suppose that $M \cap \widetilde{M}$ $=A_1 \otimes A_2$. Then A_1 or A_2 is the field of complex numbers.

PROOF. Clearly, A_1 and A_2 are simple; moreover either of them is a C^\ast -algebra without unit. Suppose that A_1 does not have a unit. Since $D(M \cap \tilde{M}) = D(A_1 \otimes A_2)$ $D(D(A_1) \otimes D(A_2) \supsetneq A_1 \otimes D(A_2) \supset A_1 \otimes A_2 = M \cap M$. Hence $A_1 \otimes D(A_2) = A_1 \otimes A_2$; therefore $D(A_2) = A_2$. If A_2 is not one-dimensional, $\dim(D(A_1 \otimes A_2)/A_1 \otimes A_2) \ge$ $\dim(1 \otimes A_2)$, a contradiction. This completes the proof.

The following problem is interesting.

PROBLEM 1. Let A be an infinite-dimensional simple C^* -algebra with unit, and let M be a maximal left ideal of A. Then can we conclude that $D(M \cap M)$ $/M \cap M$ is one-dimensional?

If A is an infinite-dimensional simple C^* -algebra with unit, then it is not a type I C^* -algebra and so it has a type III-factor $*$ -representation ([3], [6]). If the following problem is affirmative, the problem 1 is affirmative.

PROBLEM 2. Let *B* be an arbitrary C^* -algebra which contains the C^* -algebra *A* in the problem 1 as a proper C^* -subalgebra. Then, can we conclude that there exists a *-representation $\{\pi, \tilde{\psi}\}\$ of *B* on a Hilbert space $\tilde{\psi}$ such that $\pi(A)$ is a type II (or III) W^{*}-algebra and $\overline{\pi(A)} \subsetneq \overline{\pi(B)}$, where $\overline{\pi(A)}$ (resp. $\overline{\pi(B)}$) is the weak closure of $\pi(A)$ (resp. $\pi(B)$)?

Next we shall construct a simple C^* -algebra A such that $D(A)/A$ is a type I_n -factor $(n=1, 2, \cdots).$

PROPOSITION 2. Let B_n be a type I_n -factor $(n=1, 2, \cdots)$, and let A be *a* simple C^* -algebra. Then $D(A \otimes B_n) = D(A) \otimes D(B_n)$.

PROOF. It is clear that $D(A \otimes B_n) \supset D(A) \otimes D(B_n) = D(A) \otimes B_n$. Let $\{\pi, \varnothing\}$ be an irreducible *-representation of A on a Hilbert space \mathfrak{H} . Then $\overline{\pi(A)} \otimes B_n$ is a W^{*}-algebra, where $\overline{\pi(A)}$ is the weak closure of $\pi(A)$; hence $\overline{\pi(A)} \otimes B_n$

562 S. SAKAI

Z)D{n[A)®Bⁿ) ([5]). Since *π{A)®Bⁿ* can be considered as the matrix algebra of all $n \times n$ matrices over the algebra $\overline{\pi(A)}$, for $d \in D(\pi(A) \otimes B_n)$ there is an element $(a_{ij})(a_{ij} \in \overline{\pi(A)})$ in $\overline{\pi(A)} \otimes B_n$ such that $[d, (x_{ij})]=[(a_{ij}), (x_{ij})]$, where $x_{ij} \in \pi(A)$. Put $(a \in \pi(A)),$ where δ_{ij} is the Kronecker symbol; then $[d, (\delta_{ij}a)] =$ $[(a_{ij}), (\delta_{ij}a)] = ([a_{ij}, a])$. Hence $[a_{ij}, a] \in \pi(A)$ $(i, j = 1, 2, \dots, n)$ and so $a_{ij} \in D(\pi(A))$. This completes the proof.

REMARK. In Proposition 2, we can not replace the algebra *Bⁿ* by an arbitrary simple C^* -algebra – for example, let $C(\mathfrak{H})$ be the C^* -algebra of all compact operators on an infinite-dimensional Hilbert space \mathfrak{H} ; then $D(C(\mathfrak{H})) = B(\mathfrak{H})$, where $B(\mathfrak{H})$ is the C^{*}-algebra of all bounded operators on \mathfrak{H} , and $C(\mathfrak{H})\otimes C(\mathfrak{H})=C(\mathfrak{H}\otimes \mathfrak{H})$. On the other hand, $D(C(\mathfrak{H})\otimes C(\mathfrak{H}))=B(\mathfrak{H}\otimes \mathfrak{H})$ and $D(C(\mathfrak{H}))\otimes D(C(\mathfrak{H}))=B(\mathfrak{H})\otimes B(\mathfrak{H})$.

The following problem is interesting.

PROBLEM 3. Let A be a simple C^* -algebra with unit. Then, can we conclude that $D(A \otimes B) = D(A) \otimes D(B)$, where *B* is a simple C^{*}-algebra?

COROLLARY 3. *Let MΓ)M be the simple C*-algebra in Theorem* 1, *and* Let B_n be a type I_n -factor $(n=1,2,\cdots)$. Then $D((M\cap M) \otimes B_n)/(M\cap M) \otimes B_n$ *is a type* I_n -factor $(n=1, 2, \cdots).$

PROOF. By Proposition 2, $D((M \cap \tilde{M}) \otimes B_n) = D(M \cap \tilde{M}) \otimes B_n$. Hence $D((M\cap M)\otimes B_n)/(M\cap M)\otimes B_n=1\otimes B_n$. This completes the proof.

Now we shall show a generalization of Theorem 1.

THEOREM 2. Let N be a type II_1 -factor or a countably decomposable *type III-facor, and let* $\{\pi_i, \mathfrak{H}_i\}$ $(i=1, 2, \cdots, n)$ be a finite family of mutually i nequivalent i rreducible * -representations of N . Let $\real_1, \real_2, \cdots, \real_n$ be finite *dimensional linear subspaces of* $\mathfrak{H}_1, \mathfrak{H}_2, \dots, \mathfrak{H}_n$ respectively, and let $L = \{x | \pi_i(x)\Re_i\}$ $= 0, i = 1, 2, \cdots, n; x \in N$. Then $L \cap \widetilde{L}$ is a simple C^* -algebra such that *i)> where B(®^t) is the C*-algebra of all bounded* operators on \mathcal{R}_{i} .

PROOF. Let $\mathfrak{H} = \sum_{i=1}^{\infty} \bigoplus \mathfrak{H}_i$, $\mathfrak{K} = \sum_{i=1}^{\infty} \bigoplus \mathfrak{K}_i$ and $\pi = \sum_{i=1}^{\infty} \pi_i$, and let E be the orthogonal projection of \tilde{p} onto \tilde{R} . Let $A = \{x | \pi(x)E = E_{\pi}(x), x \in N\}$; then A is a C^{*}-subalgebra of N with unit. If $x \in A$ with $\pi(x)E=0$ and $x^*=x$, then $x \in L \cap \widetilde{L}$; conversely if $x \in L \cap \widetilde{L}$ with $x^* = x$, then $\pi(x)E = 0$ and so $E_{\pi}(x)$ $=(\pi(x)E)^*=0$, so that $x\in A$. Therefore $L\cap \widetilde{L}=\{x\mid \pi(x)E=0, x\in A\}$. Moreover

if $x \in A$, then $\pi(y)$ $\pi(x) E = \pi(y) E \pi(x) = 0$ for $y \in L \cap \widetilde{L}$; hence $yx \in L \cap \widetilde{L}$, and analogously $xy \in L \cap \widetilde{L}$. Therefore $L \cap \widetilde{L}$ is a two-sided ideal of A. On the other hand, $D(L \cap \widetilde{L})$ can be realized as a C*-subalgebra of N, since $L \cap \widetilde{L}$ is a two-sided ideal of $D(L \cap \widetilde{L})$.

Since $L \cap \widetilde{L}$ is weakly dense in the W^{*}-algebra $N, A \subset D(L \cap \widetilde{L})$. Since the weak closure of $\pi(L \cap \widetilde{L})$ on $\widetilde{\phi}$ is $(1_{\widetilde{\phi}}-E)\overline{\pi(N)}(1_{\widetilde{\phi}}-E)$, where $1_{\widetilde{\phi}}$ is the identity operator on \mathfrak{H} and $\overline{\pi(N)}$ is the weak closure of $\pi(N)$ on \mathfrak{H} , and since $L \cap \widetilde{L}$ is a two-sided ideal of $D(L \cap \widetilde{L})$, for $y \in D(L \cap \widetilde{L})$, $\pi(y)(1_{\mathfrak{g}}-E)$, $(1_{\mathfrak{g}}-E)\pi(y) \in (1_{\mathfrak{g}}-E)$. $\overline{\pi(N)}(1_{\mathfrak{F}}-E)$, and so $(1_{\mathfrak{F}}-E)\pi(y)(1_{\mathfrak{F}}-E) = \pi(y)(1_{\mathfrak{F}}-E) = (1_{\mathfrak{F}}-E)\pi(y)$; hence $y \in A$ and so $D(L \cap L) = A$.

Now by Kadison's theorem [1], for an arbitrary self-adjoint element *H* of **TO** $\sum_{i=1}$ \oplus $D(\mathfrak{d}_i)$, there exists a self-adjoint element *h* in *N* such that $\pi(n)E$ –*HE.* Since *EHE=HE,* $(\pi(h)E)^* = E\pi(h) = \pi(h)E$; hence $h \in A$. Therefore the *-homomorphism $\mathcal{Y} \to \pi(\mathcal{Y})E$ of A into $\sum \oplus B(\Re_i)$ is onto, and its kernel is $L \cap \widetilde{L}$. Hence $/L \cap L = \sum_{i=1} \bigoplus B(\hat{\mathfrak{K}}_i)$. This completes the proof.

COROLLARY 4. For *an arbitray finite-dimensional C*-algebra B, there exists a simple C*-algebra A such that D(A)/A=B.*

Since the algebra *N* in Theorem 2 has uncountably many inequivalent irreducible *-representations, this is clear.

Now the following problems are interesting.

PROBLEM 4. In Theorem 2, can we replace the algebra *N* by an arbitrary infinite-dimensional simple C^* -algebra with unit?

PROBLEM 5. For an arbitrary commutative C^* -algebra C with unit, does there exist a simple C^* -algebra A such that $D(A)/A=C$?

PROBLEM 6. For an arbitrary simple C*-algebra *B* with unit, does there exist a simple C^* -algebra A such that $D(A)/A=B$?

This problem is closely related to Problem 3.

PROBLEM 7. For an arbitrary C^* -algebra B with unit, does there exist a simple C^* -algebra A such that $D(A)/A=B$?

PROBLEM 8. Investigate the derived C^* -algebras of matroid C^* -algebras (cf. [2]).

REFERENCES

[1] J. DIXMIER, Les C*-algέbres et leurs representations, Paris, Gauthier-Villars, 1964.

564 S. SAKAI

- [2] J. DIXMIER, On some C^* -algebras considered by Glimm, J. Functional Analysis, 1(1967), 182-203.
- [3] J. GLIMM, Type I C*-algebras, Ann. of Math., 73(1961), 572-612.
- [4] R.KADISON, Derivations of operator algebras, Ann. of Math., 83-(1966), 280-293.
- [5] S. SAKAI, Derivations of W^* -algebras, Ann. of Math., 83(1966), 273-279.
- [6] S.SAKAI, A characterization of type I C*-algebras, Bull. Amer. Math., 72(1966), 508- 512.
- [7] S. SAKAI, Derivations of simple C*-algebras, J. Functional Analysis. 2(1968), 202-206.
- [8] S. SAKAI, Derivations of simple C*-algebras, II, Bull. Soc. Math. France, 99.
- [9] Z.TAKEDA, Conjugate spaces of operator algebras, Proc, Japan Acad., 30(1954), 90-95.

ADDED IN PROOF (Sept. 22,1971)

After writing this paper, the author found that the problems 1, 2 and 4 are negative for arbitrary uniformly hyperfinite C*-algebra. Next, G. Elliot proved more generally that the problems 1, 2 and 4 are negative for arbitrary infinite-dimensional separable simple C*-algebra with unit.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, U. S. A. AND MATHEMATICAL INSTITUTE TÓHOKU UNIVERSITY SENDAI, JAPAN