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ON THE ALGEBRA OF MEASURABLE OPERATORS
FOR A GENERAL AW*-ALGEBRA 11
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1. Introduction, Let us consider the following problem: Let II M, be the
c*-sum of a family (M) of AW%*-algebras, that is, the algebra of all bounded
sequences {a;}, a;€ M,, with natural ncrm and *-operations (note that M., = IT M,

7

is an AW*-algebra ([ 51])) and C.(resp. C,) be the algebra of “measurable operators”
affiliated with M. (resp. M,)([81]), then is it true that (. is the complete direct sum
of Cfthe set of all families x=(x,) with z;€ C, for each 7, with the coordinatewise
operations)? S K.Berberian [ 2] showed that it is true when M., is of finite type.

However, we shall show that the answer to this problem is negative in general.
Then we shall define a “locally measurable operator” affiliated with the given
AW*.algebra M(LMO(M))when M is of finite class or a factor, then any LMO(M)
is a “measurable operator” affiliated with M(MO(M)X[21,[81])) and show that with
suitable operations, then set (M) of all LMO(M)is a *-algebra in which the set
C(M)of all MO(M) is naturally imbedded as a *-subalgebra. Moreover we shall
prove: Suppose M., is the c*-sum of a family (M) of AW*-algebras and H.(resp.
M,) is the algebra of all LMO(M..)(resp. LMO(M,)), then H.. is the complete
direct sum of the 5, In the course of the proof, we shall show, along the same
lines with [8], for any given AW*-algebra M,(1) H(M) is a Baer*-ring in the
sense of [7],(2) every element x of .#(M) has a polar decomposition x=w(x*x)"2,
where w*w and ww* are the right and left projections of x{in particular
RP(x)~LP(x), where RP(x)(resp. LP(x)) is the right (resp. left) projection of x)
and (3) if MM) is regular([10], Defmition 2. 2), then M is of finite class (an
alternative proof of ([ 6]) Theorem) and MM )= CM)([2] Lemma). Finally we
remark that if M is a semi-finite von Neumann algebra, then any integrable element
of MM) with respect to a normal trace is necessarily measurable. All other
notations and definitions are referred to [ 8 1.

2. A characterization of the algebra of measurable operators. We
shall start with the following characterization of C(M) for any given AW¥*-algebra
M. Suppose N is an algebra over the complex numbers with involution *, the unit
element 1 and containing the given AW®*-algebra M as a *-subalgebra. Assume
further that (1 )z, y < N and x¥z+y*y=1, then x,yc M(2) for any € N, 1+zx*x
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is invertible and (1+x*x) e M and (3) let # be a unitary element in M, write
{u}” = CQ) (where {«}” is the double commutant of {#} in M and C(Q) is the
algebra of all complex-valued continuous functions on a Stone space Q [4]) and let
Q, be the open set {w, ® < Q, u(w)7* 1}, then 1—u is invertible in N if and only if

Q, is dense in Q and there exist clopen subsets Q, such thatUQ,,,=Qo and {XQ,}

n=1

(where XQ, is the characteristic function of Q, for each n) is an SDD, that is,
XQ, 1 (n) and 1—XQ, is a finite projection in M for each 7([8], Definition 3.1).
Then we have

PROPOSITION 2.1. For any AW*-algebra M,N is *-isomorphic to C(M).

PROOF. Note first by([ 3], Theorem 2.3) that IV is a Baer*-ring in the sense of
[7]. By axiom (2), for any x € N with x=a%, 2471 and £—71 are invertible in N and
(x+21)7, (x—141)"* € {x}"(the double commutant of {x}in N). Let u=(x—i1)x+:1)7},
then # is a unitary element in M and 1—u is invertible in N, Therefore by axiom
(3), thereisan SDD{e,} in {&#}" such that we,—e, is invertible in e,Me, for each =,
Observe that {x}”"NM = {u}” and x=i1+u)l—u), xe, =i(l+u)ll—u)'e,c M
for each n. Therefore for any x€ N with & =y,+iy,(y,, ¥, € Ns, the self-adjoint
part of N )let u,(resp. u,) be the Cayley transform of y,(resp. ¥,), then there exist
SDD’s{e,(1)}(C {#,}”) and {e,( 2 )}(C {us}”) such that y,e,(1), y.e,(2)e M for all
n. Now put e,(1)Ae,(2), z,=e,xe, and f, = (xe,) [e.]\[x¥e,) [e,] where
x~'[e] is the largest projection right-annihilating (1—e)x in N(note that N is a
Baer*-ring and by axiom (1) it has no new projections), then by the definition and
({8] Lemma 3.1), {e,} and {f,} are SDD’s and {z,,f,} is an EMO(according
to ([ 8], Definition 3.1), a pair of sequences{z,,f,} with x,€ M and f, € M, (the
set of all projections in M) is an EMO if {f,} is an SDD and m<n implies
ZnSw = Tnfw and 2, %, = 2, *%f,). Let us consider the Cayley transforms of the
real and imaginary parts of the MO[x,,f,] ([ 8], Definition 3.4 and Theorem 3. 1.
Two EMO’s{x,, €,} and {y,,f,} are equivalent if there exists an SDD{g,} such
that TpGn = VYuGn> Tu*gn =¥.*g, for all n. [x,,e,] is its equivalence class and
is said a “measurable operator” (MO)). Then, an easy calculation shows that
[1/2(.’13,, +xn*)’ fn] = [ylem en]’ [1/21(.13,,—.’&,.*), fn] = [y2em en]’(yl +i1)~len €M for
each n and (i 1+[y., €,))" = [(¥1+71)7e,,e,]. Therefore the Cayley transform
Of [1/2(3?,, +xn*)’fn] (r%p. [1/27'(xn"xn*)’jn]) is ul(resp. u2)- Th\lS fOl‘ any z, [xmfn]
is uniquely determined. Set ®(z) = [x,,f.], then by a direct calculation ® is one to
one, linear and *-preserving map of N into C(M). For any x,y and xyeN, let
{en(2)}, {fal@)}s {ea(3)}s {f2(3)}, {enlzxy)} and {fa(zy)} be SDD’s such that ®(x)
=[en(x)zen (), [n(x)], P(y)=[en(y)ven (), [n(¥)] and R(xy)=[e.(xy)zyen(x2y), fulzy)],
then since ®(x)®(y) = [e,(x)xe,(x)en(y)yen(y), gl for some SDD{g,} by ([81],
Theorem 3. 1), the SDD {A,} (where &, =f,(x) A\ fu(y) A Sfulzy) \((vea () ea(x)])
A ((znedf )7 [ea( Y)]) N\ (xyeq(y)) " [ea(x)]) A\ (y*2¥en(x)) ' [en(y)])) implements the
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equivalence {e,(z)ze,(x)e.()yeq(y), ga} = {ea(xy)xye,(zy), fulzy)}. Thus @ is a
*.isomorphism of N into C(M). Using axiom (3) and Cayley transform, it is easy
to see that this map ® is onto. This completes the proof.

Now let M., be the c*-sum of a family (M) of AW*-algebras, C..(resp. C;) be
the algebra of MO(M..) (resp. M;) and let 9 be the set of all families A = (a,)
with a, € C, and a; = [z,(i), e,(¢)] such that |x,(z)e,(i)| =%, for all i for each =
where %, is a positive real number which is independent on . The operations in
9 are coordinatewise, then one knows that & is a *-algebra over the complex
numbers field with unit 1 = (1) which contains M as the *-subalgebra.

PROPOSITION 2.2. Let 9 be defined as above. Then 9 is *-isomorphic
to C..

PrROOF. We have only to show that 9 satisfies axioms (1)—(3) mentioned in
the first paragraph of this section. Since for any x € C., 1+ %z is invertible in C.
and 0= (1+x*x) ' =1, it is easy to verify that 9 satisfies axioms (1) and (2).
For any A= (a;) € @ with A= A%, let u be the Cayley transform of A and
{u}” = C(Q) (where C(Q) is the algebra of continuous complex-valued functions on
a Stone space ). Since 1—u is invertible in 9, Q, = {w; u(w)7#1} is dense in
Q. Taking an increasing sequence {r,} of positive numbers satisfying 7, > £, for
each 7 and we define clopen subset Q, = {o; |u(w)—1] >2/((r,)?+1)?}". Note
that if e, = (x})where x’ = 0(z#%j) and xi=1 (the unit of M,), then e, is a central
projection of M., and M.e,=M,, we can easily show that (1—XQ,)e, is finite
for each 7, which implies {XQ,} is an SDD. Conversely if for given unitary
element # of M.., there is an SDD{e,} which satisfies the condition of axiom (3 ),
we can take a self-adjoint element x of C. such that u is the Cayley transform of
(ze,) (¢ @). Thus 9 satisfies axiom (3 ), which implies 9=C... The proposition
follows.

Note (1). In Proposition 2.1, the axiom (3 )cannot be dropped. In fact, let
H be an infinite dimensional Hilbert space and B(H) be the algebra of all bounded
linear operators on H. Then an easy calculation shows that the algebra of MO
affiliated with B(H) is exactly B(H). Now suppose given a countable set of infinite
dimensional Hilbert spaces H;, H,,+-+, let K be tht direct sum of the spaces
H,H,,---. We may suppose that for each 7, H, becomes a subspace of K. For
any family (T,) with T, B(H,) (for each 7) set D(T r,) = {&; 3| P,T,P£|? < o0
where P, is the orthogonal projection on H;}and define a linear operator T'(r,, on
D(Tr,) by Trpf=3,PT P§, £ D(T (1), then T, is a densely defined closed
linear operator such that Tr,* = T'(rpy. Let @D = {Try; T,€ B(H,)}, then for

T(T‘), T(S‘) € g), a.nd a Complex number N T(TH-S() =T(T,) +T(s‘) (Where T(T‘) +T(S‘)
is the minimal closed extension of T(T‘) + T(s‘)), )LT(T‘) = T(u") and T( TS = T(T‘) ‘T(s‘)
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(where T'(z,,+T (s, is the minimal closed extension of T'(r,Ts,). Thus @' is a
*.algebra with unit relative to the sum + and product - which contains the ¢*-sum

1l B(H) of (B(H.)) as the *-subalgebra and it is easy to verify that &/ satisfies

i=1

axioms (1) and (2). Let us consider an element T',,,, in 9" where 1, is the

identity operator on H, for each n and suppose g is *-isomorphic to C ( I .@(H,,)),

n=1

then there is a *-isomorphism ¢ of 9 onto C (ﬁ Q(H,,)) such that ¢(T¢ni)
n=1

= [sm’fm] ([ 8 ]) ([sm’fm] € c(ij: (-@(Hn))) . ThUS ¢(T("1n))¢(Pﬂ) = n¢(Pn) and
(T n1,)$(Po)fn=19(Pa) fn=5nfm for exchmand n. Since $(Po)fn# 0, n=|ls,fnl

for all m and #n. This is a contradiction and &)’ is not *-isomorphic to C| ]I QH,,)) .

n=1
We also note that the above example is a negative one to the problem mentioned
in the introduction,

3. The algebra of “locally measurable operators™ affiliated with an
AW *.algebra. Let M be an arbitrary AW*.-algebra and let C(M) be the algebra
of MO(M).

DEFINITION 3.1. An essentially locally measurable operator affiliated with
M(ELMO(M)) is an indexed family of ordered pairs {z.,e.} where x.< C(M)
and {e.} is an orthogonal family of central projections such that S.e,=1.

DEFINITION 3.2. Two ELMO(M )s{x.e.} and {ysfs} are equivalent,
denoted by {Za €} = {¥s, S5} if €afpXe=€.fsys for all a and B.

Since C(M) is a Baer*-ring, it is immediate that the relation just defined is
an equivalence relation,

DEFINITION 3.3. An equivalence class (x.,¢e.) of an ELMO(M){x,, e} is
called a “locally measurable operator affiliated with M”(LMO(M)); the set of all
LMO(M) is denoted by H(M) and we use letters z,y, 2, ++-for the elements of
M(M).

We shall define the algebraic operations in H(M). If (. e.) and (yg, fs) are
LMO(M)’s and A is a complex number, we define A(Ze, €:) = (AZas €0)s (Zas €a) + (Ve f3)

- (x., ‘l'yﬁ, eafﬂ), (x,, ea)* = ((xa)*) ea) and (xm ed) (yﬁ’fﬁ) = (xﬂyﬂ’ e‘fﬂ)'
Since C(M) is a Baer*-ring, the above definitions are unambiguous, With these
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definitions, ¥ (M) becomes a *-algebra over complex numbers. By the Baer*-ring
property of C(M), it is easy to see that x( € ((M))—(z, 1)((x, 1)is an equivalence
class of an ELMO(M) {x,1})is a *-isomorphism of C(M) into #(M) and (1,1)
is the unit element ot #(M). To simplify the notations, we shall denote (x,1)
by x; and thus M is a *-subalgebra of H(M).

LEMMA 3.1. If z=(z.€.) € H(M) and all the x. are invertible in C(M),
then x is invertible in H(M) and x7' = ((x.)7} €.).

PROOF. z((x.)7!, €x) = (Zw, € )((xa) 7, €2) = (T alxa) e ) = (1,€) = (1,1)=1.
The lemma follows.

LEMMA 3.2, If e HM(M) with x=x¥*, then we can write x=(x,,e.) with
(xa)* = z, for each a.

Now let £« C(M) and {e.} be an orthogonal family of central projections such
that xe,=0 for all @ and 3..,=1, then £=0. In fact, since C(M) is a
Baer*-ring, x is automatically self-adjoint and by [8] we can write = [z,,e€,]
with x,=x,*% for each n. By the assumption e,x,¢,e.=0 for all » and a@. Noting
that e, € {e,x,e,}” for all n, if we assume that there are a non-zero projection
g€ {e,x,e,}” and a real number 8 <0 such that ge,r,e, =8g, then ge.=0 for
all @, which implies g = 0, contradicting the above result ¢ #0. Thus e,z,e,=0
for all # and by ([ 8], Theorem 5.5), x=0 follows.

THEOREM 3.1. M(M) satisfies axioms (1) and (2) mentioned in the
first paragraph of this section and M(M)is a Baer*-ring.

PROOF. Suppose & = (Za€a)s ¥ = (Y5 f3) € M(M), and x*z+y*y=1. Then
(XXt Ye*ys)eafr=6.1s for all @ and B, z.*z.e.fs =f for all B8, which implies
by the considerations following Lemma 3.2, x.*z.e.=1. Therefore x.e,€M and
|zx..|=1. By ([5] Lemma 2.5), there is a unique element x €M such that
xe,=x.6, This implies x= (x,1)=x¢e M. By the same way ye M. Now for
any x = (Za€.) € MM), 1+x*x = (1+x.*Z., €.). Therefore by Lemma 3.1, 1+x*x
is invertible in HM(M) and (1+x*z)'= ((1+x¥zx.) ' e.). Since (1+z*x.) e M
and (1+x.*x.)'=1 for each @, by ([5] Lemma 2.5), (1+x*x)"'e M. Thus
M(M) satisfies axioms (1) and (2). By ([3] Theorem 2.3) H#(M) is a Baer*-
ring. This completes the proof.

Now we discuss the spectral theory for HM(M). Let x e M(M) with x = x¥,
then x+:1 is invertible in H(M). Put u= (x—71)(x+:i1)7?, » is unitary in M
and {x}"NM= {u}”. Write {e}” = C(Q) (where C(Q) is the algebra of complex-
valued continuous functions on a Stone space Q). We may write = (za,e.) with
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z. = x,* and (1—u)e, = 2ie.(x.+11)7? for all . Since e.<c {u}”, let Q. be the
clopen subset of Q corresponding to e,, then Q,= {®; u(®)7~ 1} is dense in Q and

there exist clopen subsets Q,(a) such thatUQn(a)= Q,NQ, and XQ.—XQ,(a)is a
n=1

finite projection for each 7 and a. Conversely for given unitary element u e M, if
Qo= {w; u(w)7#1} is dense in Q and there are clopen subsets Q. and Q,(a) such that

Uﬂn(a)=ﬂoﬂﬂa, XQ, is a central projection for each @ and {XQ.,(a)} is an

n=1
SDD in Me., then ue, is a Cayley transform of some self-adjoint element z, of
C(Me.. A direct calculation shows that « is the Cayley transform of {(z..e.) € F(M).

PROPOSITION 3.1. Let ue M,, write {u}” = CQ) with Q a Stone space
([4]) and let Q= {0; ulw)~=1}. Then 1—u is invertible in H(M) if and
only if Q, is dense in Q and there exist families {Q.} and {Q.(a)} of clopen

subsets such that U Q,=Q, Q.NQ, = UQ,,(a), XQ. is a central projection for
n=1

each a and {XQ,(a)} is an SDD in M;o, for each a. In this case, u is the
Cayley transform of some self-adjoint element of MM).

COROLLARY. Let x be a self-adjoint element of MM), and u be its
Cayley transform. Then we can write x = (., e.) with z.= [z,(Q) e Q)] such
that z,(a), eia)e {u}”, z,(a)e,(dle.=x,(a)=x,(@)* and =z, (af?(n) (that is,
To(@)f = Zp4i(@)).

Next we introduce a partial order in the self-adjoint part of H(M).

DEFINITION 3.4. An element xe¢ (M) is non-negative (x=0) if = =y*y
for some y e H(M). If x,ye HMM) are self-adjoint, write x=1y if y—zx=0.

To show that (M), . (the self-adjoint part of H(M)) form a partially
ordered real linear space with respect to this order, we have only to prove the
following:

PROPOSITION 3.2. Let x be a self-adjoint element of MUM), u be its
Cayley transform. Then the following four conditions are equivalent:
(1) z=0,
(2) we can write x={ysf3) with y:=0 for each B;
(3) olu)(the spectrum of u)C {e¥: —mx = 6 = 0};
(4) we may write x =(Zae.) with x.=[x,(a), e Q)] such that z.(a) e, a)
e {u}’, x(ae,(a)e. = x,(@)=0 and z, Q) (n) for each a.
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Observe that for any family {y,;} of self-adjoint elements in C(M) and a
negative number N, (yp+71)(yp—2A1)* e Mand [|(ys+21)(ys—A1l)"'| =% for some
positive number & which is independent on B, by ([5] Lemma 2.5),(2)—>(3)
follows. The proofs of (1)—>(2),(3)—>(4)—>(1) are the same as those of
([81, Theorem 5.5), so we omit them.

COROLLARY. If =0 (x e MM)), then there exists a unique y=0 in
M(M) such that x=y* and ye {x}”, that is to say, the Baer*-ring MM)
satisfies the (SR)-axiom in the sense of ([7] p.37).

Proof is the same as that of ([8] Corollary 5. 2).

DEFINITION 3.5. Let xe HMM) with =0, write y=z'? for the unique
¥y=0in {z}” such that =732 For xe M(M), write |x| = (x¥x)"2.

THEOREM 3.2. For any x e H(M), let u(resp. v) be the Cayley transform
of z*xlresp. xx*), e=LP(1+u) and f=LP(1+v). Then we may write
x=w|x|, where w is a partial isometry such that w¥w=e, ww*=f. In
particular e~f and e =RP(z), f=LP(x).

PROOF. By [ 4], we may write {u}"(resp. {v}”) as the algebra C(Q) (resp. C(T))
of continuous complex-valued functions on a Stone space Q (resp. I'). A direct
calculation shows by ([ 3], Lemma 2. 1) that the characteristic function of {@; #(w)+1
#0}~ (resp. {7 »(¥)+15£0}")is e=RP(z)(resp. f=LP(x)). Now let z*x
= (¥ €.) such that y. =[y.(@), €,(@)], ya(a), ena)e {u}”, ya(a) =0, ya.(a)T (n)
and y,(q)e,(a)e. = y,.(a). For each y,(a), we can choose families {ci(a)}, {er(a)}
satisfying the conditions (1)—(5) in the proof of ([8], Theorem 6.3). Now let
ch = (cr(a), e.) (€ MM)), er = S.er(a)e, and e, = Z.e,(a)e., then we have x*x(ch)?
=ep, and ehe,Te(m,n). In fact, x*x(ch)? = (Yue.) (cH(@)? €) = (Vach(a))?, ea)
=(y.(a)(ch(@)? e.) = (en(a), e.)S.en(a)e = en. The last statement is proved by the
same method as that of ([8], Theorem 6.3). Thus (M) satisfies the (EP)-axiom
in the sense of ([ 7], p.37). Therefore by ([ 7] Appendix 11, Theorem 2), x=w|x]|
with w*w =e, ww¥ =f. It remains to prove the unicity of such decomposition,
Let x=w,y with y=0, w,*w,=e,ey =y, then x*x = yey = y* and by the unicity
of the square root of z*z, y=|z| and w,|z|*=w|x|? implies w|x|*cp)?
=w|x|¥ch)p, wen=wey for all m,n. we=we, that is, w,=w. This completes
the proof.

4. Algebraic structure of % (M). S.XK.Berberian showed in([ 2], Lemma):
Let M be a finite AW*-algebra, and {e.} a set of orthogonal central projections with
S..=1. Then C(M) is isomorphic to the complete direct sum of {C(M)e.}. As
we showed in Note in section 2, we cannot drop the condition that M is of
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finite class, but we have

THEOREM 4. 1. Suppose M.. is a c*-sum of a family (M,) of AW*-al gebras,
Mw(resp. M,) is the algebra of LMO’s affiliated with M. (resp. M,). Then
M. is the complete direct sum of the H,.

PROOF. Let § be the complete direct sum of the %, that is the set of all
families x = (z;) with x, € 9, with coordinatewise operations and let e; = (x,) with
x,=0 if 7 and x;=1; the unit of ;. Then for any x e M. with z=(z,,e.)(z.
€ C(M..)), observe that C(M..)e,= C(M,) (the algebra of MO’s of M,) if we put
z,=(z.e;, ee.), then x, e H, and(x,) € S is uniquely determined by x e H... By an
easy calculation £—(x;) is a *-isomorphism of .%.. into S. By the nature of the
construction, it is easy to show that this map is onto. This completes the proof.

Because of the inherent nature of the construction of .H(M), we have:

- THEOREM 4.2. Let M and N be AW*-algebras and HM(M) (resp. HM(N))
be the algebra of LMO(MYs (resp. LMO(NY)s). There exists a one to one
correspondence between the *-isomorphisms ®: HM)— M N) and the *-isomor-
phisms ¢: M——>N and the correspondence ®—¢ is obtained by restricting
® to M. Moreover for any ec M,, the algebra of all LMQ’s of eMe is
*.isomorphic to e HM(Me.

THEOREM 4.3. HM(M) is regular in the sense of [10] if and only if M
is finite. “

PROOF. Suppose M is finite, then HM)= C(M) and C(M) is regular by
({11, Corollary 7.1). Conversely if H(M) is regular, and suppose M is not finite,
then there exists a family of increasing projections {e;} in M such that 1—e, is
not finite and ¢, 1 1. By the same way as in the proof of ([ 8], Theorem 6. 2), we
can find a non-negative invertivle elements in M. Thus there is ye MM) with
¥=(Ya €.) and ys=sy=1. Since C(M)e.==C(Me.), we can show that (1—e,)e. is
finite for each » and @, and contradicting the choice of {e;}, that is, M is of fmite
class. This completes the proof.

5. Complements. We first remark the following: (1) If M has the
monotone convergence property, that is, it satisfies that if {a,} is a monotone
increasing sequence of self-adjoint elements in M such that @, =<b(n=1,2,3,+-*)
for some self-adjoint element & of M, then Sup a, exists with respect to the
ordering defined in Definition 3.4, then so does H(M). (2) If M has the monotone
convergence property, and if x,y< H(M) satisfy 0=x =y, then £?=y"%. The
proofs are the same as those of [ 3], so we omit them. The rest of this section
is devoted to the non-commutative integration theory.
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DEFINITION 5.1. We call that a sequence {z(n)} of HM(M) converges
nearly everywhere (or converges n.e.) to an element x in (M) if for any
positive &, there exist a positive integer 7,(€) and an SDD{e,(&)} such that
| (z(n) —x)e,q(€)] =&-1 for all n=n,(&).

REMARK. By the same way as that in C(M), we can show that a limit n.e
is unique.

Now let M be a von Neumann algebra and = be a faithful normal semi-finite
trace on M, then we have

PROPOSITION 5.1. If xe MM) is integrable with respect to T, that is,
there exists a sequence {x(n)} of elements of T-finite rank such that a(n)—
z n.e. and T|x(n)—axm)|)—>0n, m—>oo), then x < C(M).

PROOF. Let x=w|x| be the polar decomposition of x, then w*x(n)— |x|n. €.
and 7(|w*z(n) —w*z(m)|)—>0(m, n—>o0), that is, |x| is integrable with respect
to 7. Let u be the Cayley transform of |x|, then 1+u=(1/7)(—u+1)|x| implies
1+u is integrable with respect to 7. Write{u}” =C(Q) with Q a Stone space
([4]), and let Q= {@; u(w)#1}. Set Q,= {o; |ul@)—1|>2/((n+12+1)"?}",

then Q, = UQ and Q5 C {0; |u(w)+1]|>2n/(n*+1)"?}-. Let f, be the projection

con'espondmg to the clopen set {w; |u(w)+1|>2n/(n*+1)"}-, then write w,

=(1+u{w))"!f, and observe w, € M, and we have w,(1+u)=f, is also T-integrable,
that is, f, is T-finite. Thus XQ¢ is a finite projection and {XQ,} is an SDD.
Therefore by([ 81, Theorem 5.1), |x| € C(M) and x=w|x| € C(M). The proposition
follows.

The result of this paper should prove to be useful for attacking the Widom’s
problem concerning to the “Embedding as a double commutator in algebras of type
1” for the semi-finite case. We propose to investigate this in a subsequent paper.,
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