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ON CLOSED GEODESICS OF LENS SPACES"

TAKASHI SAKAI

(Received October 31, 1970)

We shall consider a generalized lens space L(q; po» +<+, p,) which is defined as
follows. Let S®*~! be a unit hypersphere in R?*", and G= {T"*},<4<,-1 be a group
of isometries of R*" with
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We assume that p, =1 and p,s(2=:=n) are relatively prime to g(>2). Then we
define M = L(q; Py **+» Pn)=S?""!/G which is a compact Riemannian manifold of
constant curvature 1 with =,(M)=G=Z,. In this note we are coricerned with
the cut locus of a point and closed geodesics of L{g; py +<+, p,). K.Shiohama ([1])
has studied the cut locus of L(g; 1). The methods are completely elementary.

1. Let ¢: S**'>M be a covering projection. Because the diameter of M is
not greater than z/2, no cut point of pe M along any geodesic through p can be
conjugate to p. Thus a point g belongs to the cut locus C(p) of p if and only
if the following holds.

(%) If we put pc @Y (p), §,<c @ Yq), then there exist §,<c @ *q) with G, G,
and # € (|5, ¢ % € I £» T, |l such that length 7 =length #, = d(p, q), where
Il 7, G lll denotes the set of minimizing geodesics between $ and §.

1) The author wishes to express his sincere thanks to Professor S. Sasaki for the suggestion of
the poblem,
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In this section we shall consider the (tangent) cut locus of m=¢ (1,0---,0).

2np: _ oS —ZéL(i =1,---,n) hold, since in this

This loses no generality when cos

case and only in this case M is homogeneous. (Wolf([2]) The same method is
applicable to more general situation. See the Remark 2 after Theorem 1.

Now the equation of geodesic of S*"~! with initial point m = (1,0,+++,0)
and initial direction y = (0, ¥, **+,¥s,) is given by

(1. 1) [ t_)<COSt; ygsint’ e ,yznsint) .
Then the condition (*) is equivalent to the following: @&(#) is a cut point of m
along ¢ = @o if and only if

(**) there exisists a unit vector 2 = (0, 2y, ***, 25,) Which is different from y and
such that
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holds for some 1=k=g—1, and 0<6 =<7#/2 is the minimum value of # which
satisfies (1. 2).
Now this ¢ is determined by

(1.3) cos&(;i cost — ¥, sin—z—zisint = cost ,
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and z is determined by
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By (1.3) we have cot t =— yzcot—;r—k. Since cott is monotone decreasing for

0<t=mn/2, 6 in search is determined as follows:

If y,=0: then 6 = #/2 and possible &’s are 1,2,+++,g—1 (mod q).

If y,>0: then 2=g—1 (mod g), and 0=cot“(y2 cot%).

If y,<<0: then 2=1 (mod q), and 6=cot“<—y2 cot%).

Thus we get,

THEOREM 1. Let M= L(q; py,+++,p,) be a lens space which we have
considered as a compact Riemannian manifold of constant sectional curvature
1. Then the cut point ¢, of m=@(1,0,--+,0) along a geodesic o, with the
initial direction y = (0,5 +++,¥:,) is given as 1ollows:

(1) If y.=0, then cy = oy(n/2) and this point coincides with c.,= o, (n/2)
with

zk=(0’07y3005 27;P2k s sin PZ ky ++e, Y3, cOS an k+ y3n-1 sin an )’
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(1) If(1=) y:>0, then cy=0y (cot“(y2 cot%))and this point coincides

with ¢, =, (cot"( Vs cot%)) with

2nps
q

. (o, a0 2P, 27p, . 2np, )

+ y4sin—-—q ot YepCOS—— = — Y, ;SIN

(i) If (—1=) ,<0, then c,=oy (cot“(—y2 cot%))and this point coin-

cides with ¢,= o, (cot‘l (—y2 cot i‘;—)) with

’...,y2ncos

2np, . 2mp, 2D, + Yo sin 2np, '
q q q

Z = (0;—3’2,3’3 (03]

REMARK 1. The tangent cut locus of m = ¢(1,0,«++,0)is given in Figure 1.

fi¢) = cot™!(cost cot w/q)
Figure 1.

REMARK 2. Let{éy, *«, 2,3 fr,010 ***» 285 * 3 Lxays1> ** *» 2z, = I,} be a partition
of {1,---,n} such that
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2m
COSM: ..o:COS‘—I)iL:C(I),
q q
oS 27 Pi e — COSZLI)‘K_:___ c®
q q
SLIP“‘"-'“ = e = cos—Z”Pi"" =c®,
q q

and ¢, «+.,c® are all distinct. Now fix any se {1,+--,a}, then for every point
¢(x1) *y .7.‘2,,) With Xoj1 = XToj = 0 for j € {1, 2, e, n} - {ik,-ﬁ-l’ cey ik,} Py cut locus
of this point may be determined by the same way.

Next we consider the angle between the geodesics when they meet at their
cut points,

THEOREM 2. Let o,(6) be the cut point of m=@(1,0,--+,0) along the
geodesic o, with the initial direction y=(0,%,,++*¥s,). Then ay(0)=0,(0) holds
where z has been determined in Theorem 1. Now the angle a between &,(6)

and ¢&,(0) is determined as follows.
(i) If y.=0, then the angle a, between &y(n/2)and ¢.,(n/2) is given by

2nk/q, if k/q=1/2,

(l. 5) a, =
2n(q—k)/q, if k/q>1/2.

(ii) If ys# 0, then we have
(1.6) cos @ = cos 2r/q — (1 + cos2m/q)ys.

PROOF. Since @y5,(8) = (@oT*)45(0) = @ (T*45,(8)), we have
cos a = < q)*é-,,(ﬁ), ¢*:&z(6) > =< Tk*éy(o)’ é'z(a) >

In case y, >0, we get
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cos a =
27!?, anl . .
Ccos n - - 6
p $ 7 sinf sin
0
—sin 27 08 2np y, cosf —y, cosf
q q
27 pn n
COS ”P n 27I'P Yon-1 COS 6 (y2n-—lcn +y2n5n)0050
0 q q

—sin 27[Pn COS '_qu’l Yaon COS 0 (y2ncn _yZn—lsn)Coso

= ¢; sin%@ — 2y,s, sinf cosf — yjc; cos?d
+ i {(yar-16r o8O + yy;5; cosh)? + (—

=q ks=izn?€ — 2,5, sinf cosf — yic; cos?é + cos?0(1 — yj3)

(cos20 + 1)/2{(1 — y3 — (1 + »3)} — yus:8in20 = ¢, —

2n P
q
of y,<<0 or y, =0, the same calculation is valid. q. e.d.

YVor—1S; €080 — yg,Ci cost)?}

=+ (L + c1)y3s

where we have put ¢, = cos , S = sin qP k for the sake of simplicity. In case

REMARK 3. If ¢,(0) =
respectively,

= <y,z>= —yz‘l'z Yia-1+Y3a) COS T~

be given by (0, +1, O, -,0), then<a,,(7r/q),
simple closed geodesic of length 27/q.

o.(0) be the cut point of m along geodesics ¢y and o,
then the initial directions y and =z are at an angle 8 with cosB®

an

. In particular let the initial directions

7,(w/q) >=—1 holds, and we have a

2. Closed geodesics. Next we shall consider closed geodesics of M= L(q;ps,**=:f,).
First, note that every geodesic loop in M of length 6 may be obtained as follows.
Let pc M and pc @ '(p), then the geodesic with initial point p= (z;, ¢, Zs,)
and initial direction y = (y;, «*+,¥,,) is given as follows.

xycost +y,sint
(2.1) c:l—> .

Z9,C0SE + Yy, sint

Now o=@z is the geodesic loop of length ¢ with base point p if and only if there
exists some integer %k determined by modulo g such that
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. — S 0 x ;0086 + y;sind

s o Zy 240080 + 7y,sind
(2.2) e P = :

C;z _S;L TLon-1 xZn—lcose +y2n—]Sin6
0 Sn o Cnl \Zoy Z9nc0s0 + y,,sin0

holds where we put ¢’, = cos 27;15 “k and s,=sin 27;1) Lk, Since<<x, y>=0, and
|z]=1 holds, we have easily from (2. 2)
(2.3) cost = (a} + x3)ey + + o+ + (&hnor + 2)Ch

Secondly we calculate the angle a between ¢(0) =y and &(0). By the same
way as the proof of Theorem 2 (81), we get

¢, — St 0 M — x;8inf + y,cos6
T Vs — Z8inb + y,sinf
cos @ = R : :
Cn —5Sn || Yon1 — Zyp_1Sin6 + ¥,, _;cos
0 Sn €Cn) \Yon — Zy,8inf + y,,c0s0

= JZ (¢'3y23-1— 5;{3’21)(- Zg5—1SIn0 -+ y5;_,0080)

+ (Siy2s5-1 + €505)(— Zas8In0 + y5;0056)
A1 — 2cjcosf + cos?8)cost }

[
-

{A;(s}2 — ) + Ajcjeos8 +

Ma

sin%@

Jj=1

1 n n 2

= -—_n—‘_z—{l - ZZA,'C? + (ZA,C;) }
1— (Z Ajc;> j=1 j=1

i=1

where we put A;=x},_;+x}. Note that > A;=1,0=A4,;=1, and cosf = >_ Ay
J=1

j=1

hold by virtue of (2.3). In particular, for @ =0 it is necessary and sufficient that
n 2 n

(2.4) (ZAjC}) =2 Axp
i=1 =1

holds. On the other hand by Cauchy-Schwarz ineqality we have
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n 2 n
(z VA ) =5 A
=1

Jj=1

where eqality holds if and only if (1/Ajcj)//A;=constant. j=1,-++,7. And in

this case we have cosf =Y Ayc; = cos%‘b—° k, where p, is one of p;.
j=1

Thus closed geodesics on M of length <2z and multiplicity 1 are given as
follows :

1) Case of py,=1. If q is odd, then k=1 or ¢—1(mod. ¢) and 6 = 27 /g holds.
If g is even, then k=1, or ¢/2 (mod. ¢), and 6=2x/q (corresponding to the
case k=1 or g—1) or 0 = = (corresponding to the case k= g/2) holds.

2) Generally, since p, is relatively prime to ¢, there exists an integer s, (mod.
q) such that ps,+qt =1 holds for some integer . Thus cos 6 = cosz—”q?l So

2

q
(mod. q) and we have 6 =2z/q. If g is even, then k=s,, g—s, or ¢s,/2
(mod. q) and we have 6 = 2z /q (corresponding to the case k=s, or g—s,)
or §=gx (corresponding to the case k= gs,/2).

= cos holds. So we get the following: if ¢ is odd, k=s, or g—s,

Now we introduce the following equivalence relation ~ in {p;,+--,p,}. Let
s;(mod. g) be an integer such that p;s,4+g¢;=1 holds for some integer ;,(i=1,--,n).

Then we define p,~ p; if and only if cosz—ff’—si — cos%s, - cos%rholds. Let
{P1=Pj,> "”Pj,,.l; ".’ij»-xh’ "”ij,, =Pj,,} be a partition Of {Pl’ “',Pn}, Wlth

respect to this equivalence relation, Then we have

THEOREM 3. (i) Case of odd q. Fix amy s< {my,++-,m;}, then through
every point Ty ++s Ton) With Tojy=235=0 for p;& {py +== pu} — {me,_lﬂ’ °** PJ,,,,}’
there exists a wunique simple closed geodesic with initial direction @y(x,,
—&yy 00y Lan—Lon—y) and of length 2r/q. Another geodesics are closed geodesics
of length 2n and of muldtiplicity 1.

(ii) Case of even q. Fix amy s< {my+--,m;}, then through every point
P(T1s 5 Lon) With Loy 1= Z95=0 for pse {pp =+, pu}— {me,_ﬁ_l, M) me,} » there
exists a unique simple closed geodesic with initial direction @y(Zy — Iy ++ 5 Lons
—Zyn-1) and of length 2m/q. Another geodesics are closed geodesics of length
n and of multiplicity 1.

Zﬂpi (i =1,.

..’n.
q )

Finally we shall treat some special cases. We put ¢; = cos
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COROLLARY 1. If ¢;=c¢,=--+=c, holds, that is, i} p;=1 or g—1(mod. q),
then through every point of M, there exists a unique simple closed geodesic of
length 2x/q. If q is odd (respectively even,)another geodesics are closed geodesics
of length 27 (respectively =) and of mudtiplicity 1.

COROLLARY 2. Let q be a prime, and (i1, ***3 Txgri1. ***> 01, = in} be
a partition of {1,+++,n} such thatc, = +++=cun, =P eee;Cp s+ =Cp,=C?
holds andc®,««-,c® are all distinct Fix any s< {1,+++,a}, then through every
point @(xy, ¢+, Xyy) With Zyjo1=x9;=0 for je {1,+++,n} — {ix, 41+ *»1s}, there
exists a unique simple closed geodesic of length 2m/q. Another geodesics are
closed geodesics of langth 2mand muitiplicity 1,

REMARK 4. (i) ¢;=-+++=c, holds if and only if M is homogeneous.
(ii)  {(z1s+++sZan) | X251 =205=0 for j € {1,+++,7} — {i, 41> =21} } 5 @ homogeneous
totally geodesic submanifold of M which is isometric to L(q; 1,+++,1)
of dimension 2(ks—k,_;)—1. K=kt
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