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Let F be an algebraic function field over a finite field. It is known
that the Galois group of the maximal “S-unramified” extension of F has
cohomological /-dimension 2 in case S # @ and [ = the characteristie, and
that there are duality theorems in Galois cohomology (Takahashi [6],
Tate [7] and Uchida [8]). In this paper we shall study the maximal
unramified extension of F' (i.e., S = @). The author should point out
that Milne [4] has found a duality theorem which is one of the results
obtained here by more elementary means.

0. Notations. Let Z, Q, Z, and @, denote the ring of integers, the
field of rational numbers, the ring of l-adic integers and the field of I-
adic numbers for a prime number [, respectively. By m we shall under-
stand a power of the prime number ! in question. We put A* = Hom(A4,
Q/Z), A, ={acA|ma =0}, , A= A/mA and A(l) = AR Z, for a module
A. If A is a G-module, we let A denote the subgroup of all G-invariant
elements of A; A° = H°(G, A). Throughout this paper we assume that the
constant field of the algebraic function field F' is finite and of characte-
ristic p, and that the genus of F is not zero. We use following notations;

p:  the group of roots of unity,

U: the group of unit ideles,

V: the group of unit idele classes,

C: the group of idele classes,

Cl: the group of divisor classes,
Cl*: the group of divisor classes of degree 0, i.e., the torsion part of

Cl.
Then we have exact sequences
(1) 0 )2 U Vv 0,
(2) 0 V—C Cl >0

and

(3) 0 — Cl — C1 2%
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where the map deg means (f/[K: F])degx on Cl, with the degree f of the
constant field extension in a finite extension K/F. It is well known (by
the exact sequences (1) and (2)) that there is an exact sequence

(4) O0— HYG(K/F), ttg) —> Cly — CI§'*I — HYG(K/F), ptx) — 0
for an unramified Galois extension K of F' (possibly of infinite degree).

1. The maximal unramified extension. Let 2 be an unramified
Galois extension of F' with Galois group G satisfying the following three
conditions for a fixed prime number I = p:

(A) Every proper l-extension of 2 ramifies.

(B) I~|[Q: 2], where £° is the maximal constant field extension of
F contained in Q.

© 92opu.

Of course, when 2 is the maximal unramified extension of F, it
satisfies the above three conditions.

For each ce (Cl,),, there exists a finite extension K of F contained
in 2 and there exists a divisor D of K representing ¢ such that ID = (f)
is a divisor of a function f of K. Since the field K(f*") is an unramified
l-extension of K if we choose K containing f,, we have f''e 2 by the
condition (A) hence ¢ = 0. This shows that Cl, has no l-primary torsion
part. Since Cl,/Cl, is l-divisible by the exact sequence (3) and by the
condition (B), Cl, is uniquely I-divisible. Using the exact sequence (4),
we have an isomorphism

(5) H(G, 1) = Cl:(0) .
Consider a commutative exact diagram

HYG, 1) — QIZ

00— Cl¥ — ClI§ — @

0O0—Cly — Cl, — Z — 0.

Both the kernel and the cokernel of the induced homomorphism of H*(G, )
into @/Z have no l-primary torsion part, and the image of that is I-
divisible, hence we have

(6) HYG, p(1) = Q/Z, .
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Since U, and Cl, are cohomological I-trivial modules in the exact sequences
(1) and (2), we get isomorphisms
H"(G, #()) = HY(G, Vo)() = H(G, Co) ()

for » = 3. Hence we have

(7) HG, p(l)) = Qi/Z,
and
(8) H(G, (1)) = 0 (r=4

cf. [6; § 8, Lemma 1]. Now, it is easy to determine the cohomology groups
of m-th roots of unity, using the exact sequence

0— ptp — () = p(l) — 0
and the isomorphisms (5), (6), (7) and (8):

(9) 0 — .t — HY(G, ptn) — (Cly) — 0 (exact) ,
(10) H(G, ttn) = #Clp ,

(11) H¥G, t,) = Z/mZ

and

(12) H (G, t,) =0 r=4.

By a G-module we shall always understand a discrete G-module. For
a G-module M, we put

D.(M) = lim H"(G(@/K), M)(D)* ,

K
E,=D,Z),
the limit being taken over the extensions of F contained in 2 of finite
degree, and with respect to cores*, and put
E] =lim D.(Z/mZ) .
T
Then Tate showed the following theorems (I) and (I)’ (cf. Serre [5; Chap.
I, Annexe)):
(I) H"(G,Hom(M, E,)) = H"(G, M)())* for all » and for all G-
modules M of finite type over Z if and only if sed, G = n, E, is divisible

and D.(Z) = 0 for r <mn.

(1) H"(G, Hom(M, E,)) = H*"(G, M)* for all » and for all finite I-
primary G-modules M if and only if ¢d,G=n and D.(Z/lZ) =0 for
r< n.
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For any unramifield Galois extension 2 of F with group G, we have,
by class field theory,

D(Z|mZ) = lim ,,Cly = ,Cl,
K
and
Dy(Z) = lim HY(G(R/K), Q,/Z)* = lim Clx(l) = Cl,(1) .

THEOREM 1. Let | be a prime mumber = p and let 2 be an un-
ramified Galois extension of F with Galois group G satisfying the three
conditions (A), (B) and (C). Then we have

(i) ed,G = scd,G = 3,

(ii) H*"(G, M)* = H"(G, Hom(M, p(l))
for all r and for all finite l-primary G-modules M,

(iii) H*G, M)()* = Homy(M, p(1))
for all G-modules M of finite type over Z.

PrROOF. (i): Let H be a I-Sylow subgroup of G and L be its in-
variant field. Then we have L D, and

H'(H, Z/1Z) = H'(H, ) th HYG(2/K), ) .
KCL

We get H‘(H, Z/lZ) = 0 by (12) and we get cd,G = 3. Using the isomor-
phism (11): HYG, t.) = Z/mZ and p(l) = Q,/Z, as abelian groups, the
dualizing module E; must be isomorphic to the module ¢(l) as G-modules
by the same way as the proof of Th. 1 in Chap. II, section 5 of Serre [5].
Since px(l) are finite for all extensions K of F of finite degree, we get
sed;, G = 8.

(ii): DJ(Z/1Z) = 0 by 1|[2: F] and D,(Z/1Z) = ,Cl, = 0, for Cl, is I-
divisible. Using the isomorphism (10), we have

Dy(Z1Z) = lim HYG(2/K), pm)* = lim (Clp)* = (lim ,Clo)* ,
K K K

the projective limit being taken with respect to the norm map. Let L
be the unramified class field over K for the subgroup ICly of Clg, then
the norm map of ,Cl, into ,Clix is the null map. Hence we have
D,Z/1Z) = 0. By the Tate’s duality theorem (I)’ we get the isomor-
phisms (ii).
(iii)s We have
E, = hm H (GRQ/K), Q/Z)* = 11m 11m HYGRQ/K), Z|ZmZ)*

‘”l

=~ hm hmH (GQ/K), tt,) »
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the last isomorphism is given by the isomorphisms (ii). Consider a com-
mutative exact diagram (cf. (9))

00— ux — HY(GQ/K), p,) — (Cl%),, — 0
1
i [ [

00— ptx — H(G(Q/K), ) — (Cl%)p— 0.

Since Cl% is finite, lim (Cl%), = 0. Hence we have

m

lim H(G(Q/K), ttn) = lim ,ptx = px(l)

m m

and
E; = lim px(l) = (1) Q.E.D.
=

2. The maximal unramified l-extension. Let 2, be the maximal
unramified l-extension of F. It is easy to see that 2, is a constant field
extension of F if and only if the class number A; of F (i.e., the order
of Cl%) is prime to I. When [ |h; we have I*|[2: 2] (the condition (B))
where 2° is the maximal constant field extension of F' contained in £,
because the l-class field tower of F' is infinite by Madan [3].

THEOREM 2. Let 2 be an unramified Galois extemsion of F with
Galois group G satisfying the condition (A) and (B). If 2 2 p or l = p,
then we have

(i) Cl(1) is a formation for the extension Q/F, that is,

Cl(l) = H(G(L/K), Cl.(1))

for each Galois extension L/K of finite degree such that 2 DL DKDF.

(ii) cle = SCle = 2.

(iiiy H* (G, M)()* = H"(G, Hom(M, Cly (1))
for all r and for all G-modules M of finite type over Z.

Proor. (i): Consider the exact sequence (4):

0 — HYG(L/K), tt;) — Clxy — Cl§"'® — H*G(L/K), p;) — 0 .
Since H"(G(L/K), p.)(I) = 0 by the assumption 2 » p,, we have
Clg(l) = CI§E®() = Cl (l)eEi® |

(ii): Let w, denote the norm residue map of the idele class group
C. into the Galois group G(2/L)*® of the maximal abelian extension of L
contained in 2. Since 2 contains the maximal unramified abelian I-
extension of L, (Ker ®,)/V, and Coker w, are uniquely I-divisible. In the
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exact sequence (1), g, is uniquely I-divisible and U, is cohomologically
trivial, hence Ker w, is ecohomologically I-trivial. By Brumer [2], we get
sed, G£2. And we have cd,G = scd,G = 2, since the torsion part CIy(()
of the dualizing module E, = Cl,(l) is not zero.

(iii): To show this duality it suffices to show that E, = Cl,() is
divisible. Let K be an extension of F of finite degree contained in 2,
and let 2, be the maximal constant field extension of K. We abbreviate
Cl;, by Cl} and Cly, by CI} where 2,=02,NQ2. We put H= G(2/2).
Then the “Jacobian variety” CI! of K is divisible and [} [2:: 2]. Using
the exact sequence

0 — (CL), — CI —— Clt —— 0
and by H°(H, Cl)) = Cl}, we get an exact sequence
Cl - Cls— HY(H, (CL)) -

Since (Cl)), is an [-primary torsion group and [} (H:1), we have
H'(H, (Cl});) = 0. Hence CI and Cl} = lim CI} are l-divisible. Consequently,

K
Cly(l) is I-divisible, for Cl,(1)/Cly(l) is isomorphic to @, by the condition
(B). Q.E.D.

3. Remarks. Let 2 and £, denote the maximal unramified Galois
extension of F' and the maximal unramified l-extension of F respectively.
Put G = G(Q/F) and G(l) = G(2,/F).

REMARK 1. There is an isomorphism
H¥G, M)* = Hom(M, )
for each G-module M by Th. 1 and Th. 2.

REMARK 2. For the Galois group N of the extension 2 over 2,, we
have H(N, Z/mZ) = H"(N, Z)(l) = 0 for r = 1. Hence we have

H"(G(), M)(l) = H(G, M)(})
for all » and for all G(l)-modules M.

REMARK 3. Let ¢ be the number of elements of the constant field
of F'. Then F contains the I-th roots of unity if and only if ¢ =1 mod{.
We see by Th. 1 that if ¢ =1 mod! and h;=0 mod !, then the Galois
group G(I) of the maximal unramified l-extension over F is a Poincaré
pro-l-group of dimension 3, cf. Serre [5; Chap.l, n° 4.5].

REMARK 4. Let M be a finite G-module. It can be proved by the
method of Serre [5; Chap. I, #n° 5.7] that the “Euler-Poincaré characteristic”



GALOIS COHOMOLOGY IN UNRAMIFIED EXTENSIONS 39

of M has the value one.

_ |H'(G, M)| | HYG, M)
FM = =
1M = G 5G]
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