Tôhoku Math. Journ. 24 (1972). 33-39.

GALOIS COHOMOLOGY IN UNRAMIFIED EXTENSIONS OF ALGEBRAIC FUNCTION FIELDS

TOYOFUMI TAKAHASHI

(Received June 28, 1971)

Let F be an algebraic function field over a finite field. It is known that the Galois group of the maximal "S-unramified" extension of F has cohomological *l*-dimension 2 in case $S \neq \emptyset$ and $l \neq$ the characteristic, and that there are duality theorems in Galois cohomology (Takahashi [6], Tate [7] and Uchida [8]). In this paper we shall study the maximal unramified extension of F (i.e., $S = \emptyset$). The author should point out that Milne [4] has found a duality theorem which is one of the results obtained here by more elementary means.

0. Notations. Let Z, Q, Z_l and Q_l denote the ring of integers, the field of rational numbers, the ring of *l*-adic integers and the field of *l*-adic numbers for a prime number *l*, respectively. By *m* we shall understand a power of the prime number *l* in question. We put $A^* = \text{Hom}(A, Q/Z)$, $A_m = \{a \in A \mid ma = 0\}$, ${}_mA = A/mA$ and $A(l) = A \otimes Z_l$ for a module A. If A is a G-module, we let A^{c} denote the subgroup of all G-invariant elements of A; $A^{c} = H^{\circ}(G, A)$. Throughout this paper we assume that the constant field of the algebraic function field F is finite and of characteristic p, and that the genus of F is not zero. We use following notations;

- μ : the group of roots of unity,
- U: the group of unit ideles,
- V: the group of unit idele classes,
- C: the group of idele classes,
- Cl: the group of divisor classes,
- Cl⁰: the group of divisor classes of degree 0, i.e., the torsion part of Cl.

Then we have exact sequences

$$(1) \qquad \qquad 0 \longrightarrow \mu \longrightarrow U \longrightarrow V \longrightarrow 0 ,$$

$$(2) \qquad \qquad 0 \longrightarrow V \longrightarrow C \longrightarrow Cl \longrightarrow 0$$

and

 $(3) \qquad \qquad 0 \longrightarrow Cl^{\circ} \longrightarrow Cl \xrightarrow{\text{deg}} Q$

T. TAKAHASHI

where the map deg means $(f/[K: F]) \deg_{K}$ on Cl_{K} with the degree f of the constant field extension in a finite extension K/F. It is well known (by the exact sequences (1) and (2)) that there is an exact sequence

 $(4) \qquad 0 \longrightarrow H^{1}(G(K/F), \mu_{K}) \longrightarrow Cl_{F} \longrightarrow Cl_{K}^{G(K/F)} \longrightarrow H^{2}(G(K/F), \mu_{K}) \longrightarrow 0$

for an unramified Galois extension K of F (possibly of infinite degree).

1. The maximal unramified extension. Let Ω be an unramified Galois extension of F with Galois group G satisfying the following three conditions for a fixed prime number $l \neq p$:

(A) Every proper *l*-extension of Ω ramifies.

(B) $l^{\infty} | [\Omega: \Omega^0]$, where Ω^0 is the maximal constant field extension of F contained in Ω .

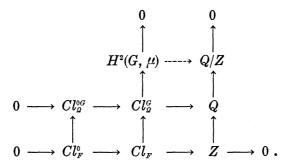
(C) $\Omega \supset \mu_{l}$.

Of course, when Ω is the maximal unramified extension of F, it satisfies the above three conditions.

For each $c \in (Cl_a)_i$, there exists a finite extension K of F contained in Ω and there exists a divisor D of K representing c such that lD = (f)is a divisor of a function f of K. Since the field $K(f^{1/l})$ is an unramified *l*-extension of K if we choose K containing μ_i , we have $f^{1/l} \in \Omega$ by the condition (A) hence c = 0. This shows that Cl_a has no *l*-primary torsion part. Since Cl_a/Cl_a^o is *l*-divisible by the exact sequence (3) and by the condition (B), Cl_a is uniquely *l*-divisible. Using the exact sequence (4), we have an isomorphism

 $(5) H^1(G, \mu(l)) \cong Cl^0_F(l) .$

Consider a commutative exact diagram



Both the kernel and the cokernel of the induced homomorphism of $H^2(G, \mu)$ into Q/Z have no *l*-primary torsion part, and the image of that is *l*divisible, hence we have

34

Since U_{a} and Cl_{a} are cohomological *l*-trivial modules in the exact sequences (1) and (2), we get isomorphisms

$$H^{r}(G, \mu(l)) \cong H^{r-1}(G, V_{g})(l) \cong H^{r-1}(G, C_{g})(l)$$

for $r \geq 3$. Hence we have

(7)
$$H^{3}(G, \mu(l)) = Q_{l}/Z_{l}$$

and

(8)
$$H^{r}(G, \mu(l)) = 0$$
 $(r \ge 4)$

cf. [6; § 3, Lemma 1]. Now, it is easy to determine the cohomology groups of m-th roots of unity, using the exact sequence

$$0 \longrightarrow \mu_m \longrightarrow \mu(l) \xrightarrow{m} \mu(l) \longrightarrow 0$$

and the isomorphisms (5), (6), (7) and (8):

$$(9) 0 \longrightarrow {}_m \mu_F \longrightarrow H^1(G, \mu_m) \longrightarrow (Cl_F^0)_m \longrightarrow 0 (exact) ,$$

(10) $H^2(G, \mu_m) \cong {}_m Cl_F,$

(11)
$$H^{3}(G, \mu_{m}) \cong Z/mZ$$

and (12)

$$H^r(G, \mu_m) = 0$$
 $(r \ge 4)$.

By a G-module we shall always understand a discrete G-module. For a G-module M, we put

$$egin{aligned} D_r(M) &= \lim_{K \to K} H^r(G(\mathcal{Q}/K), \ M)(l)^* \ , \ &E_r &= D_r(Z) \ , \end{aligned}$$

the limit being taken over the extensions of F contained in Ω of finite degree, and with respect to cores^{*}, and put

$$E'_r = \varinjlim_m D_r(Z/mZ)$$
.

Then Tate showed the following theorems (I) and (I)' (cf. Serre [5; Chap. I, Annexe]):

(I) $H^{r}(G, \operatorname{Hom}(M, E_{n})) \cong H^{n-r}(G, M)(l)^{*}$ for all r and for all G-modules M of finite type over Z if and only if $\operatorname{scd}_{l} G = n$, E_{n} is divisible and $D_{r}(Z) = 0$ for r < n.

(I)' $H^r(G, \operatorname{Hom}(M, E'_n)) \cong H^{n-r}(G, M)^*$ for all r and for all finite *l*-primary G-modules M if and only if $\operatorname{cd}_l G = n$ and $D_r(Z/lZ) = 0$ for r < n.

T. TAKAHASHI

For any unramifield Galois extension Ω of F with group G, we have, by class field theory,

$$D_1(Z/mZ) \cong \varinjlim_K {}_mCl_K \cong {}_mCl_L$$

and

$$D_2(Z) \cong \varinjlim_{K} H^1(G(\Omega/K), Q_l/Z_l)^* \cong \varinjlim_{K} Cl_K(l) \cong Cl_2(l) .$$

THEOREM 1. Let l be a prime number $\neq p$ and let Ω be an unramified Galois extension of F with Galois group G satisfying the three conditions (A), (B) and (C). Then we have

(i) $\operatorname{cd}_{i}G = \operatorname{scd}_{i}G = 3$,

(ii) $H^{3-r}(G, M)^* \cong H^r(G, \operatorname{Hom}(M, \mu(l)))$

for all r and for all finite l-primary G-modules M,

(iii) $H^{3}(G, M)(l)^{*} \cong \operatorname{Hom}_{G}(M, \mu(l))$

for all G-modules M of finite type over Z.

PROOF. (i): Let H be a l-Sylow subgroup of G and L be its invariant field. Then we have $L \supset \mu_l$ and

$$H^{*}(H, \mathbb{Z}/l\mathbb{Z}) \cong H^{*}(H, \mu_{l}) \cong \lim_{K \subset L} H^{*}(G(\mathbb{Q}/K), \mu_{l})$$
.

We get $H^4(H, Z/lZ) = 0$ by (12) and we get $\operatorname{cd}_l G = 3$. Using the isomorphism (11): $H^3(G, \mu_m) \cong Z/mZ$ and $\mu(l) \cong Q_l/Z_l$ as abelian groups, the dualizing module E'_3 must be isomorphic to the module $\mu(l)$ as G-modules by the same way as the proof of Th. 1 in Chap. II, section 5 of Serre [5]. Since $\mu_K(l)$ are finite for all extensions K of F of finite degree, we get $\operatorname{scd}_l G = 3$.

(ii): $D_0(Z/lZ) = 0$ by $l \mid [\Omega: F]$ and $D_1(Z/lZ) \cong {}_lCl_{\Omega} = 0$, for Cl_{Ω} is *l*-divisible. Using the isomorphism (10), we have

$$D_2(Z/lZ) \cong \lim_{K} H^2(G(\Omega/K), \ \mu_l)^* \cong \lim_{K} ({}_lCl_K)^* \cong (\lim_{K} {}_lCl_K)^*,$$

the projective limit being taken with respect to the norm map. Let L be the unramified class field over K for the subgroup lCl_{κ} of Cl_{κ} , then the norm map of $_{l}Cl_{L}$ into $_{l}Cl_{\kappa}$ is the null map. Hence we have $D_{2}(Z/lZ) = 0$. By the Tate's duality theorem (I)' we get the isomorphisms (ii).

(iii): We have

$$E_{3} \cong \varinjlim_{K} H^{2}(G(\Omega/K), Q_{l}/Z_{l})^{*} \cong \varinjlim_{K} \varprojlim_{m} H^{2}(G(\Omega/K), Z/ZmZ)^{*}$$

 $\cong \varinjlim_{K} \varprojlim_{m} H^{1}(G(\Omega/K), \mu_{m}),$

36

the last isomorphism is given by the isomorphisms (ii). Consider a commutative exact diagram (cf. (9))

$$\begin{array}{cccc} 0 & \longrightarrow {}_{m}\mu_{K} & \longrightarrow H^{1}(G(\Omega/K), \ \mu_{m}) & \longrightarrow (Cl_{K}^{\circ})_{m} & \longrightarrow 0 \\ & & & \uparrow 1 & & \uparrow l & & \uparrow l \\ 0 & \longrightarrow {}_{ml}\mu_{K} & \longrightarrow H^{1}(G(\Omega/K), \ \mu_{ml}) & \longrightarrow (Cl_{K}^{\circ})_{ml} & \longrightarrow 0 \end{array}$$

Since Cl_{K}^{0} is finite, $\lim_{\underset{m}{\longleftarrow}} (Cl_{K}^{0})_{m} = 0$. Hence we have

$$\lim_{{\leftarrow} m} H^1(G(\Omega/K), \, \mu_m) \cong \lim_{{\leftarrow} m} {}_m \mu_K \cong \mu_K(l)$$

and

$$E_{3} \cong \lim_{\kappa} \mu_{\kappa}(l) \cong \mu(l)$$
. Q.E.D.

2. The maximal unramified *l*-extension. Let Ω_l be the maximal unramified *l*-extension of *F*. It is easy to see that Ω_l is a constant field extension of *F* if and only if the class number h_F of *F* (i.e., the order of Cl_F^0) is prime to *l*. When $l \mid h_F$, we have $l^{\infty} \mid [\Omega: \Omega^0]$ (the condition (B)) where Ω^0 is the maximal constant field extension of *F* contained in Ω , because the *l*-class field tower of *F* is infinite by Madan [3].

THEOREM 2. Let Ω be an unramified Galois extension of F with Galois group G satisfying the condition (A) and (B). If $\Omega \not\supset \mu_l$ or l = p, then we have

(i) Cl(l) is a formation for the extension Ω/F , that is,

 $Cl_{\kappa}(l) \cong H^{0}(G(L/K), Cl_{L}(l))$

for each Galois extension L/K of finite degree such that $\Omega \supset L \supset K \supset F$. (ii) $\operatorname{cd}_{i}G = \operatorname{scd}_{i}G = 2$.

(iii) $H^{2-r}(G, M)(l)^* \cong H^r(G, \operatorname{Hom}(M, Cl_{\varrho}(l)))$

for all r and for all G-modules M of finite type over Z.

PROOF. (i): Consider the exact sequence (4):

 $0 \longrightarrow H^{1}(G(L/K), \ \mu_{L}) \longrightarrow Cl_{K} \longrightarrow Cl_{L}^{G(L/K)} \longrightarrow H^{2}(G(L/K), \ \mu_{L}) \longrightarrow 0 \ .$

Since $H^r(G(L/K), \mu_L)(l) = 0$ by the assumption $\Omega \not\supset \mu_l$, we have

$$Cl_{\kappa}(l) \cong Cl_{L}^{G(L/\kappa)}(l) \cong Cl_{L}(l)^{G(L/\kappa)}$$
.

(ii): Let ω_L denote the norm residue map of the idele class group C_L into the Galois group $G(\Omega/L)^{ab}$ of the maximal abelian extension of L contained in Ω . Since Ω contains the maximal unramified abelian *l*-extension of L, (Ker ω_L)/ V_L and Coker ω_L are uniquely *l*-divisible. In the

T. TAKAHASHI

exact sequence (1), μ_L is uniquely *l*-divisible and U_L is cohomologically trivial, hence Ker ω_L is cohomologically *l*-trivial. By Brumer [2], we get scd_l $G \leq 2$. And we have cd_l $G = \text{scd}_l G = 2$, since the torsion part $Cl_{\rho}^o(l)$ of the dualizing module $E_2 = Cl_{\rho}(l)$ is not zero.

(iii): To show this duality it suffices to show that $E_2 = Cl_{\varrho}(l)$ is divisible. Let K be an extension of F of finite degree contained in Ω , and let Ω_1 be the maximal constant field extension of K. We abbreviate $Cl_{\Omega_0}^{\iota}$ by Cl_0^{ι} and $Cl_{\Omega_1}^{\iota}$ by Cl_1^{ι} where $\Omega_0 = \Omega_1 \cap \Omega$. We put $H = G(\Omega_1/\Omega_0)$. Then the "Jacobian variety" Cl_1^{ι} of K is divisible and $l \nmid [\Omega_1; \Omega_0]$. Using the exact sequence

$$0 \longrightarrow (Cl_1^0)_l \longrightarrow Cl_1^0 \xrightarrow{l} Cl_1^0 \longrightarrow 0$$

and by $H^{0}(H, Cl_{1}^{0}) = Cl_{0}^{0}$, we get an exact sequence

$$Cl_0^0 \xrightarrow{\iota} Cl_0^0 \longrightarrow H^1(H, (Cl_1^0)_l)$$

Since $(Cl_{1}^{0})_{l}$ is an *l*-primary torsion group and $l \not\models (H: 1)$, we have $H^{1}(H, (Cl_{1}^{0})_{l}) = 0$. Hence Cl_{0}^{0} and $Cl_{2}^{0} \cong \lim_{K \to K} Cl_{0}^{0}$ are *l*-divisible. Consequently, $Cl_{2}(l)$ is *l*-divisible, for $Cl_{2}(l)/Cl_{2}^{0}(l)$ is isomorphic to Q_{l} by the condition (B). Q.E.D.

3. Remarks. Let Ω and Ω_l denote the maximal unramified Galois extension of F and the maximal unramified *l*-extension of F respectively. Put $G = G(\Omega/F)$ and $G(l) = G(\Omega_l/F)$.

REMARK 1. There is an isomorphism

$$H^{\mathfrak{s}}(G, M)^* \cong \operatorname{Hom}_{G}(M, \mu)$$

for each G-module M by Th. 1 and Th. 2.

REMARK 2. For the Galois group N of the extension Ω over Ω_l , we have $H^r(N, Z/mZ) = H^r(N, Z)(l) = 0$ for $r \ge 1$. Hence we have

$$H^{r}(G(l), M)(l) \cong H^{r}(G, M)(l)$$

for all r and for all G(l)-modules M.

REMARK 3. Let q be the number of elements of the constant field of F. Then F contains the *l*-th roots of unity if and only if $q \equiv 1 \mod l$. We see by Th. 1 that if $q \equiv 1 \mod l$ and $h_F \equiv 0 \mod l$, then the Galois group G(l) of the maximal unramified *l*-extension over F is a Poincaré pro-*l*-group of dimension 3, cf. Serre [5; Chap.I, n^0 4.5].

REMARK 4. Let M be a finite G-module. It can be proved by the method of Serre [5; Chap. II, n^0 5.7] that the "Euler-Poincaré characteristic"

of M has the value one.

$$\chi_{\scriptscriptstyle F}(M) = rac{\mid H^{\scriptscriptstyle 0}(G,\,M) \mid \ \mid H^{\scriptscriptstyle 2}(G,\,M) \mid \ \mid H^{\scriptscriptstyle 2}(G,\,M) \mid \ \mid H^{\scriptscriptstyle 3}(G,\,M) \mid \ \mid M^{\scriptscriptstyle 3}(G,\,M) \mid \)$$

References

- A. BRUMER, Galois groups of extensinos of algebraic number fields with given ramification, Michigan Math. J., 13 (1966), 33-40.
- [2] A. BRUMER, Pseudocompact algebras, profinite groups and class formations, J. of Alg., 4 (1966), 442-470.
- [3] M. MADAN, Class number relations in fields of algebraic functions, J. reine u. angew. Math., 238 (1969), 59-92.
- [4] J. MILNE, The Tate-Safarevic group of a constant abelian variety, Inventions math., 6 (1968), 91-105.
- [5] J.-P. SERRE, Cohomologie galoisienne, 1965, Springer.
- [6] T. Takahashi, Galois cohomology of finitely generated modules, Tôhoku Math. J., 21 (1969), 102-111.
- [7] J. TATE, Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math., 1962, 288-295.
- [8] K. UCHIDA, On Tate's duality theorms in Galois cohomology, Tôhoku Math. J., 21(1969), 92-101.

DEPARTMENT OF MATHEMATICS Yamagata University Yamagata, Japan