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Let F be an algebraic function field over a finite field. It is known
that the Galois group of the maximal "S-unramified" extension of F has
cohomological Z-dimension 2 in case S Φ 0 and I Φ the characteristic, and
that there are duality theorems in Galois cohomology (Takahashi [6],
Tate [7] and Uchida [8]). In this paper we shall study the maximal
unramified extension of F (i.e., S = 0 ) . The author should point out
that Milne [4] has found a duality theorem which is one of the results
obtained here by more elementary means.

0. Notations. Let Z, Q, Zt and Qt denote the ring of integers, the
field of rational numbers, the ring of Z-adic integers and the field of Z-
adic numbers for a prime number Z, respectively. By m we shall under-
stand a power of the prime number I in question. We put A* = Hom(A,
Q/Z), Am = {aeA\ma = 0}, mA = A/mA and A(l) = A (x) Zx for a module
A. If A is a G-module, we let AG denote the subgroup of all G-invariant
elements of A; AG = H°(G, A). Throughout this paper we assume that the
constant field of the algebraic function field F is finite and of characte-
ristic p, and that the genus of F is not zero. We use following notations;

μ: the group of roots of unity,
U: the group of unit ideles,
V: the group of unit idele classes,
C: the group of idele classes,
Cl: the group of divisor classes,
Cl°: the group of divisor classes of degree 0, i.e., the torsion part of

Cl.
Then we have exact sequences

(1) 0 >μ > U > V >0,

(2) 0 > V >C >Cl >0

and

(3) 0 > Cl° > Cl — Q
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where the map deg means (f/[K: F])άegκ on Clκ with the degree / of the

constant field extension in a finite extension K/F. It is well known (by

the exact sequences (1) and (2)) that there is an exact sequence

4 ) U • ΓL\(jr(K/r ), μκ) > L i F > Loκ > ii \(JΓ(K/Γ , μκ) > Ό

for an unramified Galois extension K of F (possibly of infinite degree).

1. The maximal unramified extension. Let Ω be an unramified
Galois extension of F with Galois group G satisfying the following three
conditions for a fixed prime number I Φ p:

(A) Every proper Z-extension of Ω ramifies.
(B) l°° I [Ω: Ω0], where Ω° is the maximal constant field extension of

F contained in Ω.
(C) Ω ID μ % .
Of course, when Ω is the maximal unramified extension of F, it

satisfies the above three conditions.
For each ce(ClΩ)ι, there exists a finite extension K of F contained

in Ω and there exists a divisor D of K representing c such that ID = (/)
is a divisor of a function / of K. Since the field K(flβ) is an unramified
ϊ-extension of K if we choose K containing μl9 we have flβ e Ω by the
condition (A) hence c = 0. This shows that ClΩ has no ϊ-primary torsion
part. Since ClΩ/Cl°Ω is ^-divisible by the exact sequence ( 3 ) and by the
condition (B), ClΩ is uniquely Z-divisible. Using the exact sequence ( 4 ) ,
we have an isomorphism

t) ) JLL IVJΓ A"\v/) ΞΠ \jvp\v)

Consider a commutative exact diagram

0 0

ί !
H\G, μ) • Q/Z

I
0 * CVS * Cl°0 > Q

ί I ί
0 > Cl°F > ClF > Z > 0 .

Both the kernel and the cokernel of the induced homomorphism of H2(G, μ)
into Q/Z have no Z-primary torsion part, and the image of that is l-
divisible, hence we have

( 6 ) H\G, μ(l)) = Qι/Zι .
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Since UΩ and ClΩ are cohomological i-trivial modules in the exact sequences

( I ) and (2), we get isomorphisms

H*(G, μ{l)) ~ H^iG, VΩ)(l) ~ H^(G, CΩ)(l)

for r ^ 3 Hence we have

(7) H\G, μ{l)) = QJZt

and

(8) Hr(G,μ(l)) = 0 ( r ^ 4 )

cf. [6; § 3, Lemma 1]. Now, it is easy to determine the cohomology groups
of m-th roots of unity, using the exact sequence

0 >μm >μ(l)-^μ(l) >0

a n d t h e i s o m o r p h i s m s ( 5 ) , ( 6 ) , ( 7 ) a n d ( 8 ) :

( 9 ) 0 >mμF > iΓ(G, μm) > (ClF)m > 0 (exact) ,

(10) H\G, μm) s mClF ,

(II) H*(G, μm) s ZlmZ

and

(12) H'(G, μm) = 0 (r ^ 4) .

By a G-module we shall always understand a discrete G-module For
a G-module M, we put

Dr(M) - lim Hr(G(Ω/K), M){1)* ,

Er = Dr(Z) ,

the limit being taken over the extensions of F contained in Ω of finite
degree, and with respect to cores*, and put

E'r = lim Dr(Z/mZ) .

Then Tate showed the following theorems (I) and ( I ) ' (cf. Serre [5; Chap.
I, Annexe]):

( I ) Hr(G, Hom(ikf, En)) = Hn~r(G, M)(l)* for all r and for all G-
modules M of finite type over Z if and only if scdz G = n, En is divisible
and Dr(Z) = 0 for r < n.

( I ) ' Hr(G, Hom(M, Ei)) = Hn~r(G, M)* for all r and for all finite U
primary G-modules M if and only if cdz G = n and Dr(Z/lZ) = 0 for
r<n.
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For any unramifield Galois extension Ω of F with group G, we have,
by class field theory,

D^Z/mZ) s lim mClκ = nClΩ

K

and

D2(Z) = limHι{G{ΩjK), QJZJ* = lim Clκ(l) = ClΩ(l) .

THEOREM 1. Let I be a prime number Φ p and let Ω be an un-
ramified Galois extension of F with Galois group G satisfying the three
conditions (A), (B) and (C). Then we have

( i ) cd,G = scdzG = 3,
(ii) H3-"(G, M) * = Hr(G, Hom(M, μ(l))

for all r and for all finite l-primary G-modules M,
(iii) H\G,M)(l)* = RomG(M^(l))

for all G-modules M of finite type over Z.

PROOF. ( i ) : Let H be a Ϊ-Sylow subgroup of G and L be its in-
variant field. Then we have L ZD μι and

H4(H, Z/IZ) = H4(H, μ%) = lim H4(G(Ω/K), μt) .
KcL

We get H\H, Z/IZ) = 0 by (12) and we get cdzG = 3. Using the isomor-
phism (11): HS(G, μm) = Z/mZ and μ(l) ~ QX\ZX as abelian groups, the
dualizing module El must be isomorphic to the module μ(l) as G-modules
by the same way as the proof of Th. 1 in Chap. II, section 5 of Serre [5].
Since μκ{l) are finite for all extensions K of F of finite degree, we get
scdz G = 3.

(ii): DO(Z/IZ) = 0 by 11 [Ω: F] and D^Z/IZ) = jCh = 0, for ClΩ is U
divisible. Using the isomorphism (10), we have

D2(Z/IZ) = lim H2(G(Ω/K), μt)* = lim (%Clκ)* = (lim tClκ)* ,
K K K

the protective limit being taken with respect to the norm map. Let L
be the unramified class field over K for the subgroup ICIK of Clκ, then
the norm map of xClL into xClκ is the null map. Hence we have
D2(Z/IZ) = 0. By the Tate's duality theorem ( I ) ' we get the isomor-
phisms (i i) .

(iii): We have
# 3 = lim H\GψlK), Qι/Zιy s lim lim H2(G(Ω/K), Z/ZmZ)*

, μm) ,
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the last isomorphism is given by the isomorphisms (i i) . Consider a com-
mutative exact diagram (cf (9))

0 >mμκ >H1(G(Ω/K),μn) >(Cl%)m >0

I' I' ϊ-
0 > mlμκ > Hl(G(Q/K), μml) > (Cl%)ml > 0

Since Cl°κ is finite, l im (Cl°κ)m = 0. Hence we h a v e

lim H'iGψlK), μm) = lim mμκ £5 μκ(l)

m m

and

E3 = lim μκ{l) = μ(l) . Q.E.D.
K

2. The maximal unramified Z-extension. Let Ωx be the maximal
unramified i-extension of F. It is easy to see that Ωt is a constant field
extension of F if and only if the class number hF of F (i e., the order
of Cl°F) is prime to I. When I \ hF, we have l°° \ [Ω: Ω°] (the condition (B))
where Ω° is the maximal constant field extension of F contained in Ω,
because the ϊ-class field tower of F is infinite by Madan [3].

THEOREM 2. Let Ω be an unramified Galois extension of F with
Galois group G satisfying the condition (A) and (B). If Ω 2> μ% or I = p,
then we have

( i ) Cl{l) is a formation for the extension Ω/F, that is,

Clκ(l) = H\G(L/K), ClL{l))

for each Galois extension L/K of finite degree such that ΩID LZD KZ> F.
(ii) cd,G= scdzG = 2.
(iii) H2-r(G, M)(iy = Hr(G, Hom(ikf, Cl&))

for all r and for all G-modules M of finite type over Z.

PROOF. ( i ) : Consider the exact sequence (4):

0 > H\G{LIK), μL) > Clκ > CIVL'K) > H2(G(L/K), μL) > 0 .

Since Hr(G(L/K), μL){l) — 0 by the assumption Ω^ύμl9 we have

Clκ(l) ~ ClG

L

{LIK){l) = ClL(l)G{LIK)

(i i) : Let ωL denote the norm residue map of the idele class group
CL into the Galois group G(Ω/L)ab of the maximal abelian extension of L
contained in Ω. Since Ω contains the maximal unramified abelian l-
extension of L, (Ker ωL)/VL and Coker ωL are uniquely ϊ-divisible. In the
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exact sequence (1), μL is uniquely Z-divisible and UL is cohomologically
trivial, hence Kerω^ is cohomologically I-trivial. By Brumer [2], we get
scdz G ^ 2. And we have cdΣG = scdtG = 2, since the torsion part Cl°Ω(l)
of the dualizing module E2 = ClΩ(l) is not zero.

(iii): To show this duality it suffices to show that E2 = ClΩ{l) is
divisible. Let K be an extension of F of finite degree contained in Ω,
and let Ωx be the maximal constant field extension of K. We abbreviate
CI°ΩQ by Cll and Cl°Ωί by Cll where Ωo = Ω1 Π Ω. We put H = G(ΩJΩQ).
Then the "Jacobian variety" Cll of K is divisible and DdΩ^ Ωo]. Using
the exact sequence

0 > (CVOi > Cl°L - U Cll > 0

and by H°(H, Cll) = Cl°0, we get an exact sequence

Cll -^-> CZS > Hι(H, (Cllh) .

Since (Cll)ι is an i-primary torsion group and 11 ( i ϊ : 1), we have
iΓCfiΓ, (C2?),) = 0. Hence Cll and Cl°Ω = lim CZ? are ^-divisible. Consequently,

K

ClΩ(l) is Z-divisible, for ClΩ(l)/Cl°Ω(l) is isomorphic to Qt by the condition
(B) Q.E.D.

3. Remarks. Let Ω and Ωx denote the maximal unramified Galois
extension of F and the maximal unramified i-extension of F respectively.
Put G = G(Ω/F) and G(l) = G(ΩJF).

REMARK 1. There is an isomorphism

H\G, My = RomG(M, μ)

for each G-module M by Th. 1 and Th. 2.

REMARK 2. For the Galois group N of the extension Ω over Ωu we
have Hr(N, Z/mZ) = Hr{N, Z)(l) = 0 for r ^ 1. Hence we have

H'(G{1), M){1) = H'(G, M){1)

for all r and for all G(i)-modules ikf.

REMARK 3. Let q be the number of elements of the constant field
of F. Then F contains the Z-th roots of unity if and only if q = 1 mod I.
We see by Th. 1 that if q = 1 mod I and hF = 0 mod I, then the Galois
group G(l) of the maximal unramified ϊ-extension over F is a Poincare
pro-Z-group of dimension 3, cf. Serre [5; Chap.I, n° 4.5].

REMARK 4. Let M be a finite G-module. It can be proved by the
method of Serre [5; Chap. II, n° 5.7] that the "Euler-Poincare characteristic"
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of M has the value one.

= \H\G,M)\ \H\G,M)\ = -
\H\G,M)\ \H*(G,M)\
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