ON A SEMI-DIRECT PRODUCT DECOMPOSITION OF AFFINE GROUPS OVER A FIELD OF CHARACTERISTIC 0

MITSUHIRO TAKEUCHI

(Received Feb. 8, 1972)

Let G be an abstract group and $f_1: G \to GL_k(V_1)$ and $f_2: G \to GL_k(V_2)$ be two finite dimensional representation of G over a field k of characteristic 0. It is well known that if f_1 and f_2 are semi-simple then $f_1 \otimes f_2$ is also semi-simple [3, IV, §3, 3.5; 4, Th. 12.2]. In view of this fact we first show

PROPOSITION 0. The coradical R of a commutative Hopf algebra A over a field k of characteristic 0 is a sub-Hopf algebra.

PROOF. The Jacobson radical of a ring is the intersection of its maximal left (or right) ideals. Dually the coradical of a coalgebra C over a field is identical with the socle of C as a right (or left) C-comodule. Since k is perfect, the coradical of $\overline{k} \otimes_k A$ is $\overline{k} \otimes_k R$, where \overline{k} is the algebraic closure of k. Hence we can assume that $k = \overline{k}$. Moreover A can be assumed to be finitely generated as a k-algebra. Let V_i , i = 1, 2 be two finite dimensional right A-comodules. Becauce $G(A^o) = \operatorname{Alg}_k(A, k)$ is dense in $A^* = \operatorname{Hom}_k(A, k)$ [6, Lem. 3.6], V_i is a semisimple A-comodule iff V_i is a semisimple left $G(A^o)$ -module. Hence by the remark above if V_i are semisimple, then $V_1 \otimes V_2$ is also semi-simple. This means that $R \otimes R$ is a semisimple right A-comodule. Since the multiplication $\mu: A \otimes A \to A$ is a right A-comodule map, $R \cdot R$ is contained in R. Clearly R is stable under the antipode of A. Hence R is a sub-Hopf algebra of A.

The purpose of this paper is to prove

THEOREM 1. Let A be a commutative Hopf algebra over a field k of characteristic 0 and R its coradical. Then there exists a Hopf algebra map π : $A \to R$ such that $\pi = identity$ on R.

This follows from the following three propositions, where A and R are as in Theorem 1. We assume k is of characteristic 0 throughout this paper.

PROPOSITION 2. Let B be a sub-Hopf algebra of A which contains R. If $B \neq A$, then there exists a sub-Hopf algebra C of A which contains B properly such that $C/(C \cdot B^+)$ is cocommutative, where $B^+ = \text{Ker } (\varepsilon \colon B \to k)$.

PROPOSITION 3. Let B be a sub-Hopf algebra of A which contains R. If $\pi: B \to R$ is a Hopf algebra map such that $\pi = identity$ on R, then the ideal I of A generated by $\pi^{-1}(0)$ is a Hopf ideal of A and we have $I \cap R = 0$.

Proposition 4. Theorem 1 is valid when $A/(A \cdot R^+)$ is cocommutative.

First we show that Propositions 2, 3 and 4 imply Theorem 1. Indeed consider the set of pairs (B,π) , where B is a sub-Hopf algebra of A which contains R and π is a Hopf algebra map from B to R which is identity on R. Introducing the usual ordering on this set, take a maximal element (B,π) by Zorn's lemma. Assume $B \neq A$. Then there exists a sub-Hopf algebra C of A as in Proposition 2. Let I be the ideal of C generated by $\pi^{-1}(0)$. Then by Proposition 3 we have $R \subseteq C/I$. R can be identified with the coradical of C/I [5, Exercise 4), p. 182]. Because we have $B^+ = \pi^{-1}(0) + R^+$, $(C/I)/((C/I) \cdot R^+)$ is a quotient Hopf algebra of a cocommutative Hopf algebra $C/(C \cdot B^+)$ and therefore $R \subseteq C/I$ satisfies the condition in Proposition 4. Hence there exists a Hopf algebra map $\rho\colon C/I \to R$ such that $\rho = 1$ on R. Since we have $b - \pi(b) \in I$ for any $b \in B$, the composite $B \subseteq C \to C/I \xrightarrow{\rho} R$ is identical with π . Hence (C, ρ) is properly larger than (B, π) . This is a contradiction. So B is equal to A and the proof of Theorem 1 is complete.

Let B be a sub-Hopf algebra of A which contains R. Then $H = A/(A \cdot B^+)$ is an irreducible Hopf algebra since its coradical is contained in the image of $R \to H$ [5, Exercise 4), p. 182]. We have shown in [6, Lemma 4.2] that H is a quotient A-comodule of A under the left A-comodule structure

$$\rho:A \to A \bigotimes A, \ a \mapsto \sum a_{\scriptscriptstyle (1)} S(a_{\scriptscriptstyle (3)}) \bigotimes a_{\scriptscriptstyle (2)}$$
 .

LEMMA 5. $P(H) = \{the \ primitive \ elements \ of \ H\}$ is a sub-A-comodule of H. If H is cocommutative, then H is a left B-comodule, i.e. $\rho(H) \subset B \otimes H$, where ρ is the left A-comodule structure map of H.

PROOF. It is easy to see that we can assume k is algebraically closed and A is finitely generated. Then $G(A^{\circ})$ is dense in A^{*} since k is of characteristic 0. Hence it suffices to show that P(H) is $G(A^{\circ})$ -stable. But this is clear because the $G(A^{\circ})$ -action on H is compatible with the Hopf algebra structure of H. Next we suppose that H is cocommutative. Since A is faithfully flat over B [6, Th. 3.1], it suffices to show we have

$$\sum a_{\scriptscriptstyle (1)} S(a_{\scriptscriptstyle (3)}) \otimes 1 \otimes a_{\scriptscriptstyle (2)} = \sum 1 \otimes a_{\scriptscriptstyle (1)} S(a_{\scriptscriptstyle (3)}) \otimes a_{\scriptscriptstyle (2)}$$

in $A \otimes_B A \otimes H$ for any $a \in A$ in order to prove $\rho(H) \subset B \otimes H$. But we have an isomorphism [6, Lem. 3.9]

$$A \otimes_{B} A \rightarrow A \otimes H, x \otimes y \mapsto \sum xy_{(1)} \otimes y_{(2)}$$
.

Through this isomorphism the equation above reduces to

$$\sum a_{\scriptscriptstyle (1)} S(a_{\scriptscriptstyle (3)}) \otimes 1 \otimes a_{\scriptscriptstyle (2)} = \sum a_{\scriptscriptstyle (1)} S(a_{\scriptscriptstyle (5)}) \otimes a_{\scriptscriptstyle (2)} S(a_{\scriptscriptstyle (4)}) \otimes a_{\scriptscriptstyle (3)}$$

in $A \otimes H \otimes H$, which is valid by the cocommutativity of H.

PROOF OF PROPOSITION 2. In the notation of Lemma 5, $H = A/(A \cdot B^+) \neq k$ implies $P(H) \neq 0$ [5, Cor. 11.0.2]. On the other hand Lemma 5 means that the kernel J of $A \to H \to H/H \cdot P(H)$ is a normal Hopf ideal of A [6, Def. 4.1]. Hence there exists a sub-Hopf algebra C of A such that $J = A \cdot C^+$ [6, Th. 4.3]. Because $B \subset C \subset A$, we have $C/(C \cdot B^+) \subset A/(A \cdot B^+)$ [6, Proof of Th. 3.1]. In view of

$$H/(H \cdot (C/(C \cdot B^+))^+) = A/(A \cdot C^+) = H/(H \cdot P(H))$$

we have $C/(C \cdot B^+) = k[P(H)]$ [6, Th. 3.10]. Because $P(H) \neq 0$, C contains B properly. Hence the proof of Proposition 2 is complete.

PROOF OF PROPOSITION 3. I is clearly a Hopf ideal of A. Because A is faithfully flat over B [6, Th. 3.1], we have $I \cap B = \pi^{-1}(0)$ [2, I, § 3, n° 5, Prop. 9, d)]. Hence $I \cap R = 0$.

PROOF OF PROPOSITION 4. First we show that $H = A/(A \cdot R^+)$ can be assumed to be finitely generated. Indeed in the argument below Proposition 4, we can assume $C/(C \cdot B^+)$ is finitely generated. Then $(C/I)/((C/I) \cdot R^+)$ is also finitely generated, and therefore $\rho \colon C/I \to R$ exists. Now V = P(H) is a finite dimensional vector space over k and H is isomorphic as a Hopf algebra to U(V), the universal enveloping algebra of V, since H is irreducible cocommutative [5, Th. 13.0.1]. Hence $\mathfrak{Sp}(H)$, the affine k-group represented by H, is isomorphic to $\mathfrak{D}_a(V) = (V^*)_a$ [3, II, §1,2.1]. Since [3, III, §4,6.6] can be extended to "torseurs durs" [3, III, §5,1.4], the following exact sequence

$$(*) \hspace{1cm} 0 \longrightarrow \mathfrak{Sp} \hspace{0.1cm} (H) \longrightarrow \mathfrak{Sp} \hspace{0.1cm} (A) \longrightarrow \mathfrak{Sp} \hspace{0.1cm} (R) \longrightarrow 1$$

in \widetilde{Gr}_k [3, III, § 3,7.2] is an "H-extension" [3, II, § 3,2.1]. On the other hand by Lemma 5, P(H) is a sub-R-comodule of H. This means that the action of $\mathfrak{Sp}(R)$ on $\mathfrak{Sp}(H) = \mathfrak{D}_a(V)$, which is determined naturally by (*), is linear [3, II, § 2,1.1]. Since R is co-semi-simple, the Hochschild cohomology $H_0^2(\mathfrak{Sp}(R),\mathfrak{Sp}(H))$ is zero [3, II, § 3,3.7]. By [3, II, § 3,2.3] the extension (*) splits and the proof of Theorem 1 is complete.

COMMENT 6. Theorem 1 is essentially proved in [4, Th. 14.2]. But the proof there is due to Levi's theorem on the structure of Lie algebra [4, Th. 13.5]. Our proof is free from Lie algebra theory. Abe and Doi

announce the same results in [1, (3.5) and (3.6)]. But I think their proof has gaps. Now we have used the extension theory of affine algebraic k-groups in [3, III, §6] to prove Proposition 4. But it is easy to translate it into the Hopf algebra language and prove it again.

COROLLARY 7. Let A be a commutative Hopf algebra over a field of characteristic 0 and R its coradical. Let $\pi: A \to R$ be a Hopf algebra map such that $\pi = 1$ on R. Then we have an isomorphism of k-algebras

$$f: A \to (A/(A \cdot R^+)) \otimes R, \ a \mapsto \sum a_{(1)} \otimes \pi(a_{(2)})$$
.

(If we introduce the concept of "semidirect product of Hopf algebras" of [1, § 4], this becomes a Hopf algebra isomorphism. Compare our proof with that of [1, § 5].)

PPOOF. Because A is faithfully flat over R[6, Th. 3.1] and f is clearly R-linear, it suffices to construct the inverse of

$$f \otimes_R A: A \otimes_R A \to (A/(A \cdot R^+)) \otimes A, x \otimes y \mapsto \sum_{(1)} x_{(1)} \otimes \pi(x_{(2)})y$$
.

But the algebra map

$$h: A \otimes_R A \leftarrow A \otimes A, \sum x_{(1)} \otimes S(\pi(x_{(2)}))y \leftarrow x \otimes y$$

is 0 on $(A \cdot R^+) \otimes A$, and induces the inverse of $f \otimes_R A$.

REFERENCES

- [1] E. ABE and Y. Doi, Decomposition theorem for Hopf algebras and proaffine algebraic groups, to appear.
- [2] N. BOURBAKI, Algèbre commutative, Hermann, Paris, 1961.
- [3] M. DEMAZURE et P. GABRIEL, Groupes algébriques, Masson & Cie., Paris; North-Holland, Amsterdam, 1970.
- [4] G. HOCHSCHILD, Introduction to affine algebraic groups, Holden-Day, San Francisco, 1971.
- [5] M. E. SWEEDLER, Hopf algebras, Benjamin, New York, 1969.
- [6] M. TAKEUCHI, A correspondence between Hopf ideals and sub-Hopf algebras, to appear.

DEPARTMENT OF MATHEMATICS
TOKYO METROPOLITAN UNIVERSITY
FUKAZAWA-CHO, SETAGAYA
TOKYO, JAPAN