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Let G be an abstract group and f,: G-+GLh(Vύ and f2: G—>GLk(V2)
be two finite dimensional representation of G over a field k of characteristic
0. It is well known that if fx and f2 are semi-simple then fx®f2 is also
semi-simple [3, IV, §3, 3.5; 4, Th. 12.2]. In view of this fact we first show

PROPOSITION 0. The coradical R of a commutative Hopf algebra A
over a field k of characteristic 0 is a sub-Hopf algebra.

PROOF. The Jacobson radical of a ring is the intersection of its
maximal left (or right) ideals. Dually the coradical of a coalgebra C over
a field is identical with the socle of C as a right (or left) C-comodule.
Since k is perfect, the coradical of fc(g)fc A is k®kR, where k is the algebraic
closure of k. Hence we can assume that k — k. Moreover A can be as-
sumed to be finitely generated as a fc-algebra. Let Vi9 i = 1, 2 be two
finite dimensional right A-comodules. Becauce G(A°) = Algfc(̂ 4., k) is dense
in A* = Hom^A, k) [6, Lem. 3.6], V* is a semisimple A-comodule iff Vi is
a semisimple left G(A°)-module. Hence by the remark above if V4 are
semisimple, then Vι ® V2 is also semi-simple. This means that R (x) R is
a semisimple right A-comodule. Since the multiplication μ: A (x) A —> A
is a right A-comodule map, R R is contained in R. Clearly R is stable
under the antipode of A. Hence R is a sub-Hopf algebra of A.

The purpose of this paper is to prove

THEOREM 1. Let A be a commutative Hopf algebra over a field k of
characteristic 0 and R its coradical. Then there exists a Hopf algebra
map π: A-+R such that π = identity on R.

This follows from the following three propositions, where A and R
are as in Theorem 1. We assume k is of characteristic 0 throughout this
paper.

PROPOSITION 2. Let B be a sub-Hopf algebra of A which contains R.
If B Φ A, then there exists a sub-Hopf algebra C of A which contains B
properly such that C/(C B+) is cocommutative, where B+ = Ker (ε: B—>k).
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PROPOSITION 3. Let B be a sub-Hopf algebra of A which contains R.
If π: B —• R is a Hopf algebra map such that π = identity on R, then the
ideal I of A generated by π~ι(G) is a Hopf ideal of A and we have IΠ R—0.

PROPOSITION 4. Theorem 1 is valid when A/(A'R+) is cocommutative.

First we show that Propositions 2, 3 and 4 imply Theorem 1. Indeed
consider the set of pairs {B, π), where B is a sub-Hopf algebra of A which
contains R and π is a Hopf algebra map from B to R which is identity
on R. Introducing the usual ordering on this set, take a maximal element
(B, π) by Zorn's lemma. Assume B Φ A. Then there exists a sub-Hopf
algebra C of A as in Proposition 2. Let I be the ideal of C generated
by π~\ϋ). Then by Proposition 3 we have R Q C/I. R can be identified
with the coradical of C/I [5, Exercise 4), p. 182]. Because we have B+ =
π-\0) + R+, (C/I)/((C/I) R+) is a quotient Hopf algebra of a cocommuta-
tive Hopf algebra C/(C B+) and therefore R Q C/I satisfies the condition
in Proposition 4. Hence there exists a Hopf algebra map p: C/I—+R such
that p = 1 on R. Since we have b — π(b) e I for any be B, the composite

BQC —* C/I -̂> R is identical with 7Γ. Hence (C, p) is properly larger than
(B, π). This is a contradiction. So B is equal to A and the proof of
Theorem 1 is complete.

Let B be a sub-Hopf algebra of A which contains R. Then H =
A/(A B+) is an irreducible Hopf algebra since its coradical is contained
in the image of R-+H [5, Exercise 4), p. 182], We have shown in [6,
Lemma 4.2] that H is a quotient A-comodule of A under the left A-
comodule structure

p\ A~->A®A, α κ > Σ α(1,S(α(s)) (x) α(2, .

LEMMA 5. P(H) — {the primitive elements of H) is a sub-A-comodule
of H. If H is cocommutative, then H is a left B-comodule, i.e. p(H) c
B (x) H, where p is the left A-comodule structure map of H.

PROOF. It is easy to see that we can assume k is algebraically closed
and A is finitely generated. Then G(A°) is dense in A* since k is of
characteristic 0. Hence it suffices to show that P{H) is G(A°)-stable. But
this is clear because the G(A°)-action on H is compatible with the Hopf
algebra structure of H. Next we suppose that H is cocommutative. Since
A is faithfully flat over B [6, Th. 3.1], it suffices to show we have

Σ aa)S(a(3}) (X) 1 (g) α(2) = Σ 1 ® ^ωS(a{3)) (x) α(2)

in A (x)B A (x) H for any ae A in order to prove p(H) c I?(x) H. But we
have an isomorphism [6, Lem. 3.9]
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A(x)BA->A(g)H, a? (g) 2/ h-> Σ %Vω Θ Vw

Through this isomorphism the equation above reduces to

Σ α<i>S(α(8>) (x) 1 (x) α(2) = Σ α<i>S(α(β>) (x) α(2)S(α(4)) (x) α(3,

in A (x) H (x) H, which is valid by the cocommutativity of H.

PROOF OF PROPOSITION 2. In the notation of Lemma 5, H= A/(A B+) Φ
k implies P(H) Φ 0 [5, Cor. 11.0.2]. On the other hand Lemma 5 means
that the kernel J of A-> H-+H/H P(H) is a normal Hopf ideal of A
[6, Def. 4.1]. Hence there exists a sub-Hopf algebra C of A such that
J = A C+ [6, Th. 4.3]. Because S c C c 4 , w e have C/(C £ + ) c A/(A £ + )
[6, Proof of Th. 3.1]. In view of

H/(H. (C/(C B+))+) = A/(A . C+) = fl7(H P(ff))

we have C/(C B+) = k[P(H)] [6, Th. 3.10]. Because P{H) Φ 0, C contains
B properly. Hence the proof of Proposition 2 is complete.

PROOF OF PROPOSITION 3. I is clearly a Hopf ideal of A. Because A
is faithfully flat over B [6, Th. 3.1], we have I f) B = π~\0) [2,1, §3, n° 5,
Prop. 9, d)] Hence I n R = 0.

PROOF OF PROPOSITION 4. First we show that H — A/(A R+) can be
assumed to be finitely generated. Indeed in the argument below Proposi-
tion 4, we can assume C/(C-B+) is finitely generated. Then (C/I)/((C/I)-R+)
is also finitely generated, and therefore p: C/I-+R exists. Now V = P(H)
is a finite dimensional vector space over k and H is isomorphic as a Hopf
algebra to U(V)9 the universal enveloping algebra of V, since H is irre-
ducible cocommutative [5, Th. 13.0.1]. Hence @p (if), the affine λ -group
represented by H, is isomorphic to S)β(F) = (F*) β [3, II, §1,2.1]. Since
[3, III, §4,6.6] can be extended to "torseurs durs" [3, III, §5,1.4], the
following exact sequence

(*) 0 — @t> (H) -> &p (A) -> (2ψ (R) -* 1

in Gr4 [3, III, §3,7.2] is an "iϊ-extension" [3, II, §3,2.1]. On the other
hand by Lemma 5, P(H) is a sub-iϋ-comodule of H. This means that the
action of &p (R) on &p (H) — ®α(F), which is determined naturally by (*),
is linear [3, II, §2,1.1]. Since R is co-semi-simple, the Hochschild coho-
mology H0

2(&p (R), gψ (H)) is zero [3, II, §3,3.7]. By [3, II, §3,2.3] the
extension (*) splits and the proof of Theorem 1 is complete.

COMMENT 6. Theorem 1 is essentially proved in [4, Th. 14.2]. But
the proof there is due to Levi's theorem on the structure of Lie algebra
[4, Th. 13.5]. Our proof is free from Lie algebra theory. Abe and Doi
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announce the same results in [1, (3.5) and (3.6)]. But I think their proof
has gaps. Now we have used the extension theory of affine algebraic k-
groups in [3, III, §6] to prove Proposition 4. But it is easy to translate
it into the Hopf algebra language and prove it again.

COROLLARY 7. Let A be a commutative Hopf algebra over a field of
characteristic 0 and R its coradical. Let π: A—> R be a Hopf algebra map
such that π = 1 on R. Then we have an isomorphism of k-algebras

f: A—+ (A/(A'R+)) (g) R, a ι—• Σ aω ® π(a(2))

(// we introduce the concept of "semidirect product of Hopf algebras" of
[1, §4], this becomes a Hopf algebra isomorphism. Compare our proof
with that of [1, §5].)

PPOOF. Because A is faithfully flat over i?[6, Th. 3.1] and/is clearly
ϋMinear, it suffices to construct the inverse of

f ®RA:A®RA-> (A/(A R+)) (x) A, x (x) y H> Σ &(I> (8) π(xw)y .

But the algebra map

h: A (g)R A*- A (g) A, Σ &<υ Θ S(π(x{2)))y *-\x®y

is 0 on (A R+) (x) A, and induces the inverse of / (g)Λ A.
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