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In this paper we study the approximation of an abstract Cauchy
problem and its convergence through the notion of semigroups of operators.

Let X be a Banach space, A a closed linear operator in X, and let
us consider a differential equation

(d/dt)u(t) = Au(t) , t > 0 .

By an (abstract) Cauchy problem we mean the problem composed of
this equation and the initial condition

u(0) = xQ, xoeX.

Our object is to find the solution to this problem. By a family of
solution operators to the Cauchy problem we mean a one-parameter family
{U(t); t > 0} of linear operators defined on a linear manifold D((zX) such
that for each xeD the function u(t) = U(t)x is a solution of the problem.
To find the solution operators of our problem, we proceed as follows.

Let {An} be a sequence of closed linear operators in X which are
"regular" in comparison with A and approximate A in an appropriate sense,
and let us consider a sequence of approximating equations

(d/dt)uu(t) = Anun(t) , t > 0 ,

under the initial conditions

un(0) = x0 , n = 1, 2, .

Then the problem of our interest in this paper is to find sufficient condi-
tions under which the solution operator of the original Cauchy problem
is obtained as the limit of the solution operators of these approximating
Cauchy problems. This kind of problem is sometimes reduced to the
problem of convergence of semigroups of operators and many interesting
results on the relation between the convergence of semigroups of operators
and that of the corresponding generators have been obtained. For instance,
see [3], [5], [9], [12] and [15].

Among others, we shall derive some sufficient conditions under which
(1) the solution operators Un(t) of the approximating Cauchy problems

exist;
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(2) the sequence {Un{t)} converges to the solution operator U(t) of the
original Cauchy problem in an appropriate sense as 7̂ —>co (Section 2).
It should be noted that the domain D of the solution operator U(t) is not
necessarily dense in X and U(t) need not be bounded on D.

The solution operators constructed there are not necessarily extensible
to semigroups of bounded linear operators. In fact, if An satisfies our
assumptions and is densely defined in X, then it is proved only that An

is the infinitesimal generator of a distribution semigroup. Hence, the
limit operator A will not be more than the infinitesimal generator of a
distribution semigroup. To obtain a semigroup of bounded linear operators
which are bounded extensions of solution operators, we need some addi-
tional restrictions. By imposing a stability condition together with the
above restrictions, we shall obtain some convergence theorems of semi-
groups of bounded linear operators (Section 3). The convergence (Co)-,
(1, A)-, (0, A)- and (A)-semigroups can be treated in view of these results.

Another aspect of our arguments is an abstract setting of semi-discrete
finite difference approximation of a Cauchy problem. We shall introduce
the notion of well-posedness of a Cauchy problem in terms of (distribution)
semigroup, the semigroup being determined by the corresponding solution
operator (Section 4), and show the relationship between the well-posedness
and the convergence of semi-discrete difference approximation (Section 5).
In this setting, our results are directly applicable to the convergence
problem of the finite difference approximation of Cauchy problems in con-
crete function spaces.

1. Preliminaries. In this section we introduce some notations and
basic notions which will be used in this paper.

Let X be a Banach space and let A be a linear operator from X into
itself. We say simply that A is an operator in X. We denote the domain
of A by D(A), the resolvent set of A by p(A) and the resolvent of A at
ξ G p(A) by R(ξ; A). For any closable operator B such that B = A (B
denotes the closure of B), its domain D(B) is called a core of A] in other
words, a linear manifold D(czD(A)) is a core of A, if D is dense in D(A)
with respect to the graph norm of A. Let A be a closed operator in X.
Then for any nonnegative integer k, D(Ak) can be regarded as a Banach
space with respect to the norm || \\k defined by 11811* = Σ*=oII A*x ||, x e D(Ak),
where A0 = I (the identity operator on X). We write [D(Ak)] for the
Banach space.

In this paper, we treat the resolvents of a countable number of closed
operators. For the brevity in notation, we use the following notations:
Let {An} be a sequence of closed operators in a Banach space X. We then
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denote by Rn(ξ) the resolvent of An at ξ e ρ(An). Also, we write J"Λ(λ)
for the operator (I - XAJ-1 = λ - ^ λ " 1 ) .

We denote by &(X, Y) the class of all bounded operators on a Banach
space X into a Banach space Y. We write &(X) for ^ ( X , X). Let

We mean by T[S] the image of S c l under T. If a sequence
converges to some T(e&(X)) in the sense of the strong

operator topology, then we write s-liπv^ Tn = T.
Let A be an operator in X, 0 < r <; + oo, and let us consider a dif-

ferential equation

(1.1) (d/dt)u(t) = Au(t) , 0 < t < T ,

where (d/dt) means the differentiation in the sense of the strong topology
of X. We then formulate the following problem:

ACP Given an element x e l , find an X-valued function u(t) = u(t; x),
defined on [0, τ), such that

( i ) u(t) is continuously differentiable in [0, τ) (or in (0, τ)),
(ii) for each t e (0, τ), u(t) e D(A) and u(t) satisfies (1.1),
(iii) lim^+0 u(t) = u(0) = x.
This problem is called the (abstract) Cauchy problem, ACP, on (0, τ)

for A and x and the function u{t) satisfying (i), (ii) and (iii) is called the
solution of the ACP. There are two alternatives for condition (i); the
corresponding problems will be denoted by ACPi and ACP2, respectively.
We shall omit the term "on (0, τ)" unless we need to specify the r.

A one-parameter family {T(t); t > 0} c &(X) is called a semigroup
(of bounded operators) on X, if it has the following properties;

(1.2) T(t + s) = T(t)T(s) , ί , β > 0 ,

(1.3) s-lim T(t) = T(t0) , ί0 > 0 .
«-*o

For a semigroup {T(t); t > 0} on X, we define the infinitesimal gener-
ator Ao by Aox = limh^+0Ahx, Ah = hrι[T(h) — I], whenever the limit exists.
If Ao is closable, then A = Ao is called the complete infinitesimal gener-
ator. Also, we define the type ω0 by ω0 = lim^+o, iΓUog || T(t)\\ (< + oo).
The set Σ = {xeX; lim^+o T(t)x = x} is called the continuity set. We
denote by RQ(X), Re (λ) > ωQ, the operator which is defined by the Laplace
transform of T(t)x, xeΣ:

R0(X)x= [°e-λtT(t)xdt ,
Jo

xeΣ

where the integral is taken in the sense of Bochner.
Let {T(t); t > 0} be a semigroup on X and let us consider the follow-
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ing conditions;
(SJ Xo = Ut>o T(t)[X] is dense in X,
(S2) there is a real number Q)1(> ω0) and for each λ with Re(λ) > ωl9

there exists an invertible operator R(X) e &{X) such that R(λ)x = R0(\)x
for xeX0,

(S8; k) there are a nonnegative integer k and a complex number λ0

with Re (λ0) > ωx such that R(X0)
k[X] c Σ.

If a semigroup {T(£); ί > 0 } on I satisfies conditions (Si) and (S2), then
its generator Ao is closable and densely defined. Also, the closure A(= Ao)
has the following properties: {λ; Re (λ) > ω j c ρ(A) and i2(λ; A) = Λ(λ) for
Re (λ) > ω lβ Therefore, condition (Sa; fc) can be restated as follows;

(S3; &) there is a nonnegative integer & such that D(Ak) c 2\
There are a countable number of alternatives for condition (S8; &); a

semigroup satisfying (SJ, (S2) and (S8; A;) will be called the semigroup of
class (C(k)). In view of well-known facts for classes (Co), (1, A), (0, A) and
(A) (for the definitions and the detailed properties of these classes, see
[2]), it is easily seen that (Co) = (C(o)), (1, A) c (0, A) c (C(1)) and (A) c (C(2))
in the set theoretical sense. The basic properties of classes (C{k)) are
mentioned in [7].

2. Convergence of Solution Operators. Let A be a closed operator
in a Banach space X, co a real number and let r be a fixed positive number.
Let us consider the following conditions:

(I ω) {ξ ξ >ω}ap(A),
(II; k) there are a nonnegative integer k and a positive number M

such that

for x e D(Ak), ξ > ω and m ^ 1 with m/f e (0, r).
We denote by Gx{ω, k, r) the set of all closed operators in X satisfy-

ing (I; ω) and (II; k). Let A e Gι(ωί k, τ) and 6 = 2A + 1. Then it can be
proved (see [7; Th. 2.3]) that there is a uniquely determined one-parameter
family {U(t); t e (0, τ)}(c ^([D(A% X)) such that

(a) /or each x 6 Z)(Aδ) cmd each t e (0, r), U(t)x = lim,^^ (/ - (t/m)A)~mx
exists uniformly in (0, r), ί7(ί)a? is strongly continuous in (0, r) α^ώ Ϊ7(ί)α;-->ίc
as t —> + 0,

(b) / o r eacΛ, a? e D(Aδ) α^d eαc/^ ί e (0, r ) , || ί7(ί)α? || ^ J ί || a? ||fc>

(c) for each positive integer p and each t e (0, τ), U(t) maps D{Ah+p)
into D(AP) and ApU(t) = U(t)Ap on D(Ah+p),

(d) for each x e D(A2b) and ί, s > 0 mίfc t + s e (0, τ), Ϊ7(ί + φ =
U(t)U(s)x,
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(e) for each nonnegative integer p and each x e D(Ab+p+i), there is a
positive number β = β(p, x) such that

\\U(t)x- U(s)x\\p^β\t-s\ , ί , β e ( 0 , r ) ,

(f) for each x e D(Ah+1) and each t e (0, τ), U(t)x - x = [*U(s)Ax ds =

S t Jo

AU(s)xds. If in addition, D(A) is dense in X, then all assertions men-
0

tioned above hold for b — k.
The above-mentioned states that for each x e D(Ab+1), u(t) = U(t)x is

a unique solution of ACPi for A with the initial value x. In view of this,
we call U(t) the solution operator of ACP]. for A.

Let {An} be a sequence of closed operators in X which belong to the
same class G^a), Jc, τ). Then each An has the resolvent Rn{ξ) at ξ > ω.
In this section we consider ACP/s for the An, n = 1, 2, •••, on a fixed
interval (0, r) and discuss the relation between the convergence of the
solution operators Un(t) and the convergence of Rn(ξ).

Our main results of this section are the following:
THEOREM 2.1. Let ( i J c G ^ f t ) , k, τ). Assume the following conditions',
( I ) or/ βαcfc f > ω, sup, || Λn(f)| | < + « ,
(II) ί/ierβ is α positive number M, independent of n, such that

for xeD(At), ξ >ω and m ^ l with m/ξ e (0, τ), -M Λere llα?!^^ = Σf=o l

(III) /or some f 0 > ω, ί/iβrβ is an invertible operator E(ζ0) e
such that R(ξ0) = s-lim,^^ Rn(ξ0)

Then there exists an operator A e G^o), k, τ) satisfying
(a) R(ξ) = s-lim^^ Rn{ξ) for ξ > ω, where R(ξ) is the resolvent of A

at ξ,
(b) for each x e X and ξ > ω, let yn = Rn(ξ)2k+ί x and y = R(ξ)2k+1x,

then lim^^yn = y and l im^^ Un(t)yn = U(t)y hold uniformly in (0, r), where
Un(t) and U(t) are the corresponding solution operators of ACP/s for An

and A, respectively.

THEOREM 2.2. In addition to conditions (I)—(III) of Theorem 2.1, as-
sume that each An is densely defined and also that R(ξo)[X] is dense in
X. Then A is densely defined and the assertion (b) holds for k, instead
of 2k + 1.

We shall prove these theorems by several lemmas. In the following,
we assume conditions (I)—(III).

LEMMA 2.3. Let φ(ξ) = supw | |Rn{ξ) \\ for ξ>ω. Then φ(ξ) is uniformly
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bounded on each compact subinterval of (a), oo).

PROOF. It suffices to show that for each ξ0 > ω, φ(ξ) is uniformly

bounded in some neighbourhood of ξ0. From the resolvent equations

R n ( ξ ) = R n ( ξ 0 ) [ I + (ξ0 - ξ)Rn(ξ)] , ξ>ω,n^l,

it follows that φ(ξ) ^ φ(ξQ) + \ξ - ξo\Φ(ξ)Φ(ξo)m, this means that φ(ξ) is uni-
formly bounded in a small neighbourhood of ξ0. q.e.d.

The following is obtained by the same method as in T. Kato [3; Th.
IX. 2.17]. (His argument is done in a half-plane {ξ; Re (ξ) > ω}.)

LEMMA 2.4. For every ξ > ω, there is an operator R(ξ) e &(X) such
that R(ξ) = s-lim^oo Rn{ξ) holds uniformly for ξ on each compact subinterval
of (α>, oo). Moreover, {R{ξ)\ ξ > co} satisfies the resolvent equation:

R(ξ) - R{η) = ft - ξ)B(ξ)B(η) , ξ,η>ω.

LEMMA 2.5. Put A = ξ0 — [^(fo)]"1- Then A is a closed operator with
D(A) = B(ξo)[X], {ξ; ξ>co}c: p(A), and R(ξ; A) - R(ξ) for ξ > ω. Further-
more, A satisfies condition (II; k) for the constant M which is given in
(II). Therefore, A e Gx(ω, k, τ).

PROOF. The first half is evident from condition (III) and Lemma 2.4.
In order to prove the last half, it suffices to show that

l i m _ AiRn(ξ0)
kx = A'R{Qkx

for x£ X and i = 0, 1, , k. But this follows from condition (I), Lemma
2.4 and the relations:

AiRn(ξ0)
kx = [ξ0B%(ξQ) - iγBn(ξQ)k~'x , i = 0 , 1 , , fc . q.e.d.

By this lemma, Theorem 2.1 (a) has been proved. Also, by the result
mentioned at the begining of this section, we can obtain the family
{U(t); t e(0, τ)} of solution operators of ACPi for A such that U(t)x =
limm^J(t/m)mx for xeD(A2k+1), where J(t/m) = (I - (t/nήA)"1. We then
prove Theorem 2.1 (b) after preparing the following three lemmas; the
first is given in [1; Lem. 1.4], the second is a linear version of [1; Lem.
1.3] and the third is crucial for the proof of (b).

LEMMA 2.6. Let p Ξ> q be positive integers and let ay β be positive
numbers satisfying a + β = 1. Then

(i) Σ pCja'β'-'iq - 0) ^ [(pa - qf + paβ]u* >
j0
Σ
j=0

(ϋ) Σ ί_ιC,_1α«/8y-ί(p - 5) ^
=Q
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LEMMA 2.7. Let p ^ q be positive integers and let λ, μ be positive
numbers satisfying λ ^ μ and λ"1 > ω. Then

= Σ pCja'β'-'JΛμni - J.(λ)«->]
3=0

j=q

where a = μ/X and β = 1 — μ/X.

LEMMA 2.8. Let x e X and ξ > ω be fixed. Then there is a positive
number C, independent of n = 0,1, 2, , such that

(2.1) Un(t)Rn(ξ)u+ιx - jS-
\m

^ tC\\χ\\/VΈ

for t e (0, τ) and m sufficiently large, and

(2.2) 11 Un(t)Rn(ξ)2k+1x ~ RΛξ)u+1x i ί ̂  tC\ I x 11

for t G (0, r), where Ao means the limit operator A and U0(t) means the
solution operator U(t) corresponding to A.

PROOF. We first prove (2.1). By conditions (I) and (II), a positive
number C, independent of n, can be found such that

(2.3) WUμyJMVM - I\RJW™x\\

^ v\\UμyB%(ξ)"\\ \\JMι+ιRJ£)k\\ \\AnR%{ξ)\\ II*II

for n = 0,1, 2, , v ^ μ and i, j with l<.i + l,j^,p< τ/v. Combining
Lemma 2.7 with (2.3) and then applying Lemma 2.6 with λ = t/q and
μ = tjp, we obtain

(2.4) \\jJ±)'R.(ξγ
II \p/ q

f Λ 1 \V2

^ ί C ( - - - lla l\q p)

for t e (0, τ) and j), ̂  sufficiently large. Letting p —» oo in (2.4), we obtain
(2.1).

Next, let us prove (2.2). By (2.3), we obtain
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Σ
i=o

Jj—)\jj—)-

+ P

— Σ
P 3 = 1

p

for ίe(0, τ) and p sufficiently large. Letting
q.e.d.

oo, we obtain (2.2).

Remark 2.9. The inequality (2.4) shows that if AeG^ω, k,τ), then
for each x e D(A2Ie+1), the sequence {(/ — (t/p)A)~px} forms a Cauchy sequence
which converges uniformly in (0, τ). This proves the existence of the
solution operator U(t). We note that the estimate obtained here is more
precise than that given in [7].

Theorem 2.1 (b) is proved by the following:

LEMMA 2.10. Let ξ > ω be fixed. Then

holds uniformly in (0, τ).

PROOF. Let xeX. It follows from (2.2) that for any e > 0, there is
a positive number δ — δ(ε) such that

(2.5) 11 Un(t)RΛξyk+ι% ~ U(t)R(ξy+ίx 11

+ ii u(t)R(ξγk+ιx - R(ξyk+ix\\

^± + \\Rn(ξyk+iχ-R(ξrk+iχ\\ ,

Δ

for t e (0, δ). On the other hand, by virtue of (2.1),

(2.6) \\Un(t)Rn(ξyk+ix- U(t)R(ξy+ίx\\

un(t)Rn(ξy+iχ - jJ-t)mRM2k+l4

Λ(-)"Λ.(f)"+ 1a! - . / . ( - ) " R(ξyk+1x

χ- u(t)R(ξyk+lx\
II



APPROXIMATION OF OPERATOR SEMIGROUPS 513

rg 2tc\\χ\\/vm + [ ^ ( ^ )

- jfJLY

for £ e [<5, τ) and m sufficiently large. Choosing m0 sufficiently large so
that 2τC\\x\\/v/m0 < ε/3 and then applying Lemmas 2.4 and 2.5 to the
remaining terms of (2.6), we see that for each ε > 0, there is an integer
N = N(e) such that

|| Un(t)Rn(ξ)2k+ιx - U(t)R(ξ)2k+'x\\ < e for n ^ i\Γ and t e [δ, τ) .

This estimate and (2.5) imply that l i m _ Un(t)Rn(ξ)2k+ίx = U(t)R(ξ)2k+1x
holds uniformly in (0, τ). q.e.d.

The following lemma proves Theorem 2.2.

LEMMA 2.11. Under the assumption of Theorem 2.2,

s-lim_ Un{t)Rn{ξ)k = U(t)R(ξ)k

holds uniformly in (0, τ) for each ξ > ω.

PROOF. First, in this case, we recall that Un(t) and U(t) are well-
defined on D(Al) and on D{Ak), respectively. Now, let xeD(Ak+1) and
λ > 0 be sufficiently small. Then

\\Un{t)Rn{ξ)kx - U(t)R(ξ)kx\\

^ || Un{t)Rn{ξ)kx ~ Un(t)En(ξ)kJn(X)k+1x\\

+ \\Un{t)Rn{ξ)kJn{X)k^x - U(t)R(ξ)kJ(X)k^x\\

+ || U(t)R(ξ)kJ(X)k+ίx - U(t)R(ξ)kx\\

^ C(\\x - Λ(λ)fe+1α;|| + \\x - J(X)k+ίx\\)

+ || Un{t)Rn{ξ)kJn{X)^x - U(t)R(ξ)kJ(X)k^χ\\

for t e (0, r), where C is a positive number, independent of n and λ. From
the proof of Lemma 2.8, it is easily seen that the last term of the above
inequality converges to 0 uniformly in (0, τ) as n —• oo. Therefore,

f) f cα;- U(t)R(ξ)kx\\

S 2C\\x -

Since λ > 0 is arbitrary, l i m ^ Un{t)Rn{ξ)kx = U{t)R{ξ)kx holds uniformly
in (0, r) for x e D(Ak+1). It is evident that the convergence holds uniformly
in (0, τ) for all xeX, because D(Ak+1) is dense in X and || Un{t)Rn{ξ)k\\ is
uniformly bounded for t e (0, τ) and n. q.e.d.
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Finally we give a variation of Theorem 2.2 which is convenient in
applications.

Let {An) be a sequence of densely defined closed operators in X which
belong to the same class G^ω, k, τ) and let us consider the following
conditions;

(IIP) there exist a densely defined closed operator A and a set D con-
tained in D{A) and Πn^i D(An) such that

( i ) p{A) Π {ξ ξ > o)} is non-empty,
(ii) D is a core of A,
(iii) lim^o, Anx — Ax for x e D.

The condition (III') will be proposed as the consistency condition in the
finite difference method (see Section 5). Employing this condition, instead
of (III), we obtain the following:

COROLLARY 2.12. Let {An} c G^ω, k, τ) be a sequence of densely defined
closed operators in X satisfying conditions (I), (II) and (III'). Then the
conclusion of Theorem 2.2 holds. If in addition, we assume that D is
contained in D(Ak) and f]n^iD(Ak) and l im^^ A\x = A*x for xeD and
% = 2, 3, , k, then for each x e JO, l im*^ Un(t)x = U(t)x holds uniformly
in (0, τ).

PROOF. In a similar way to [3; Th. VIII. 1.5], it is proved that under
condition (I), (IIP) implies that s - l i m ^ i ^ f ) = R(ξ) for ξ e p(A) Π {ξ ξ > ω}.
Therefore, it suffices to prove only the second assertion under the addi-
tional assumption. Let xeD, then x = R(ξ)kz for some zeX and ξ > ω.
By assumption, zn = (ξ — An)

kx converges to z as n—> °o. Now we have

\\Un(t)- U(t)x\\

^ || Un{t)Rn{ξ)k*n - Un{t)Rn{ξ)kz\\ + II Un(t)Rn(ξ)kz - U{t)R{ξ)kz\\

rg C\\zn - z\\ + || Un{t)Rn{ξ)k* ~ U{t)R{ξ)kz\\

for te(O, τ), where C is a positive number, independent of n. Applying
Theorem 2.2, we see that l im,^ Un{t)x = U(t)x holds uniformly in (0, τ)
for each xeD. q.e.d.

3. Convergence of Semigroups. In this section we restrict ourselves
to the semigroups of class (C{k)) and discuss the convergence of the semi-
groups. The results obtained can be applied to the convergence problem
of solution operators of ACP2 on (0, oo).

We first mention the characterization ([7; Th. 6.12]) of (C(fc))-semigroup
in terms of the complete infinitesimal generator:

An operator A in a Banach space X is the complete infinitesimal
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generator of a (C^semigroup if and only if A is a densely defined closed
operator satisfying

(I ω) {ξ;ξ>ω}<zp(A),
(Πexp; k) there are a real number ω^ ;> ω and a positive number M

such that

11 R(ξ A)mx 11 ^ M(ξ - ω^W x\\k for xe D(Ak), ξ > ω, and m ^ 1 ,

(F; k) for any e > 0 and xeD(Ak), there are a positive number Mε

and a real number η0 = ηo(ε, x) such that

\\ξmR(ξ; A)mx\\ ^ Mε\\x\\ for ξ > η, and m ^ 1 with m/ξ e [ε, 1/ε] .

Using the same notation as in [7], we denote by G2(co, k) the set of
all closed operators in X satisfying (I; ω) and (Πθxp; fc) If AeG2(ω, k),
then A e d(7, k, τ) for every τ > 0, where 7 > max {0, ωj . Hence, for
an operator A e G2((o, k) we have the same assertions as stated at the
beginning of Section 2.

Let {T(t); t > 0} be a semigroup of class (C(fc)) and A be its complete
infinitesimal generator. Then the characterization mentioned above states
that for each x e D(Ak+1), T(t)x is a unique solution of ACPi for A on (0, oo)
with the initial value a?. Also, it is proved in [7; Cor. 6.9] that for any
xeD(Ak), T(t)x is a unique solution of ACP2 for A on (0, oo) with the
initial value x. This means that for a (C^-semigroup {T(t);t>0}, the
restriction T(t)\D(Ak) of T(t) on D(Ak) is the solution operator of ACP2

for its complete infinitesimal generator A. In this sense, T(t) itself might
be called the solution operator of ACP2 for A.

REMARK 3.1. (1) It can be proved that an operator A in X is the
infinitesimal generator of a regular distribution semigroup if and only if A
is densely defined and for every τ > 0, there exists a nonnegative integer
k(τ) such that A e G^ω, k(τ), τ). Also, it is proved that an operator A
in X is the infinitesimal generator of an exponential distribution semigroup
if and only if A is densely defined and A e G2(ω, k) for some nonnegative
integer k. For the proofs of these propositions, see [7; Ths. 5.4, 5.5] and [8].

(2) In our case, the operators A have non-empty resolvent sets.
The arguments on the operator belonging to Gγ{ω, k, τ) or G2(ω, k) can be
extended to the case of the operator whose resolvent set is empty. The
detailed study on this matter will be seen in the forthcoming paper [6].

The main result of this section is the following:

THEOREM 3.2. Let {Tn{ty, t > 0} be a sequence of (C'^-semigroups and
{An} be a sequence of the corresponding complete infinitesimal generators
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satisfying the following conditions;
( I ) there is a real number ω such that for each ξ > ω, sup% ||2?n(f) || <

+ oo, where Rn{ξ) denotes the resolvent of An at ξ > ω,
(Πexp) there are a real number ω1 ^ o) and a positive number M,

independent of n, such that || Tn{t)x\\ ^ Me^4 \\x\\k,n for xeD{Ak

n) and t > 0,
(III) for some ξQ > ω, there exists an invertible operator R(ξ0) e &(X)

such that R(ςQ) = s - l i m ^ Rn(ξ0) and R(ξo)[X] is dense in X,
(IV) for each xeX and t > 0, sup w || Tn(t)x\\ < + cx>.
Then we have
(a) there exists a closed operator A such that A generates a (C(jb))-

semigroup {T(t); t > 0} and R(ξ0) = R(ξQ; A),
(b) s-lim^^ Tn{t) = T(t) for t > 0 and the convergence is uniform for

t on each compact subinterval of (0, oo).

We prove this theorem by the following successive lemmas. We first
mention a result which was obtained in [9; Lem. 2]:

LEMMA 3.3. Assume condition (IV). Then there exist a positive number
7 and a nonnegative nonincreasing function ψ{t) of negative type such
that

s u p . 11 e - ^ T Λ t ) || ^ψ(t) for t > 0 .

Here the function ψ(t) is said to be of negative type, if

lim sup t~ι log ψ{t) < 0 .

On the basis of this lemma, we can reduce Theorem 3.2 to the case
of semigroups of negative type (i.e., the type ω0 < 0) by considering the
equivalent semigroups {e~r^Tn{t)\ t > 0}, where τ0 = max [ωu 7} (cf. [9]).
Hence, we assume that ω = ω1 = 7 = 0 in the following.

LEMMA 3.4. Assume condition (IIexp). Then

(3.1) \ \ ξ m R n ( ξ ) m x \ \ ^ M \ \ x \ \ k , n for x e D ( A k

n ) , ξ > 0 a n d m ^ l .

Consequently, a l l A n belong to G2(0, k).

PROOF. Differentiating

R n ( ξ ) x = [ ~ e - * * T n ( t ) x d t , x e D(Ak

n), ξ > 0 ,
Jo

with respect to ξ, we have

(3.2) Rn(ξ)mx = -—^—-Xt~-ιe-«T%(t)xdt, m ^ 1 .
(m — 1)! Jo

We obtain (3.1) by applying condition (IIexp) to (3.2). q.e.d.
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From this lemma, it is seen that for every fixed τ > 0, the sequence
{An}((z G2(0, k)) satisfies the assumptions of Theorem 2.2. Hence, it is
proved that there exists a densely defined closed operator A e G2(0, k) such
that R(ξQ) — JR(?0; A). Thus, if the following lemma is proved, then we
see from the characterization theorem that A generates a (C(A:))-semigroup
{T(t); t > 0}; hence Theorem 3.2 (a) is proved.

LEMMA 3.5. A satisfies condition (Fm, k).

PROOF. Let x e D(Ak), XΦO, and let x = R(ξo)
ky for some yeX. Then

(3.2) implies that

Rn(ξΓRn(ξ0)
ky = * Xt^e-^Tn{t)Rn{Qkydt , ξ > 0, m ^ 1.

(m — 1)1 Jo

Employing Lemma 3.3, we have

(3.3) X Γ f"ί^β-^H Tn(t)RΛξo)kV \\dt
(m — 1)1 Jε/2

(m — 1)!

On the other hand, by condition (IIeXp), we have

(TO — 1)! Jo

< M

(TO - 1)!

< M ( " " ;
=
 (TO - 1)! Jo

ίs 2 || Bn(£θ) t/|U,»
TO

for TO 2; εf. The last step of (3.4) is derived from the inequality ([2; p.
374])

- — L — - I s '-'e-'ds ^ 9/w(l - g)2 , m^δξ ,
(TO — 1)! Jo

with δ = 6,δ' = e/2 and g = δ'/δ = 1/2. Combining (3.3) and (3.4), and
then passing to the limit as n —»• ^ , we obtain

(3.5) ||fm-R(?)mi2(fo)^ll ^ ir(~) \x\\ + 2^ | |a? | | f c for m^
\ 2 / w
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Set % = 2Λf||a;||Λ/e||aj||. Then the second term of the right hand side of
(3.5) is majorized by \\x\\ for ξ > η0 and m ^ εξ. Thus, we obtain

\\ξmR(ξ)mx\\ ^ [ t (—) + l]lMI for ξ>η, and m ^ εξ . q.e.d.

Theorem 3.2 (b) is proved by the following:

LEMMA 3.6. s - l i m ^ Tn(t) = T{t) holds uniformly for t on each com-
pact subinterval of (0, <*>).

PROOF. We note that Un(t) = Tn(t)\D(Ak

n) and U(t) = T(t)\D(Ak) are
the solution operators of ACP's for An and A, respectively, and that UJJb)
converges to U(t) uniformly in every finite interval (0, τ) in the sense of
Lemma 2.11. Now, let xeX. Since D(Ak) is dense in X, for any ε > 0,
there is an element y = R(ξo)

kze D(Ak), zeX, such that \\x — y\\ < ε.
Therefore,

\\Tn(t)x- T(t)x\\

^ | | Tn(t)x - Tn(t)y\\ + || Tn(t)R(ξQ)kz - Tn(t)Rn(ξo)
kz\\

+ || Tn(t)Rn(ξ0)
kz - T(t)R(ξo)

kz\\ + || T(t)y - T(t)x\\

^ ψ(t)(\\x - y\\ + \\R(ξo)
kz - Rn(Qkz\\) + TO)II \\y - χ\\

+ \\Tn{t)Rn{ξ,)kz - T(t)R(ξo)
kz\\ .

Thus, we obtain

lim sup || Tn{t)x - T(t)x\\ ^ (ψ(t) + \\ T(t)\\)ε .

This means that lim%__ Tn(t)x = T(t)x for t > 0. Since both ψ(t) and || T(t) ||
are uniformly bounded on each compact subinterval of (0, oo), this con-
vergence is uniform for t in such subintervals. q.e.d.

Finally, let us consider the following condition, instead of (I) and (ΠeχP):
(Γ) there are a real number ω and a polinomial p of degree I ^ 0 with
nonnegative coefficients such that supj |B n (\) || ^p(\X\) for λ with Re(λ)>ω.

It is proved in [7; Th. 4.7] that under condition (Γ), all An belong to
G2(7, 1 + 2), where y > max {0, o)}. By virtue of this fact, we can obtain
a variation of Theorem 3.2. The conclusion obtained, however, is some-
what weaker than Theorem 3.2, as mentioned below.

THEOREM 3.7. Let {Tn(t); t > 0} be a sequence of semigroups satisfying
conditions (I'), (III) and (IV). Then the conclusion of Theorem 3.2 holds
with k replaced by I + 2.

This theorem gives an extension of the theorem on convergence of
(A)-semigroups which is obtained in [9; Th. (A)].
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As an analogous result to Corollary 2.12, we give a result which is
a variation of Theorem 3.2 and is convenient in applications.

COROLLARY 3.8. Let {Tn(t); t > 0} be a sequence of {C ̂ -semigroups
satisfying conditions (I), (Πexp), (III') and (IV). Then the conclusion of
Theorem 3.2 holds.

4. Well-Posedness. Let us consider an ACP

(4.1) (d/dt)u(t) = Au(t) , ^(0) = x ,

for an operator A in a Banach space X. In this section we propose some
kinds of well-posedness of ACP (4.1) and discuss the relationships between
them and various notions of semigroups. Throughout this section we
assume that A is a densely defined closed operator and soppose that there
is a family {U(t); t > 0} of operators, defined on a core D of A, such that
for any xeD, u(t) = U(t)x is a unique solution of ACPi for A with the
initial value x such that u{t) e D for t > 0.

When each U{t) is bounded on D, U(t) can be extended to T(t) e &(X)
because of the denseness of D. In our setting, U(t) may be called a
solution operator of ACP (4.1). But, we again call this extended operator
T(t) a solution operator of ACP (4.1). Obviously, {T(t);t>0} forms a
semigroup of bounded operators on X. We call this semigroup a semi-
group of solution operators of ACP (4.1).

Now we say that ACP (4.1) is well-posed in the sense of semigroup
of bounded operators (simply, S.G.-well-posed) if there is a semigroup
{T(t); t > 0} of bounded operators such t h a t T{t)x = U(t)x for xeD and

t > 0. If the semigroup is a (C( fc))-semigroup for some nonnegative integer

kj then we say t h a t ACP (4.1) is (C{k))-well-posed.

For the (Cu ))-well-posedness, we have the following:

THEOREM 4.1. ACP (4.1) is (C\k))-well-posed if and only if A is the
complete infinitesimal generator of a (C\k))-semigroup. In this case, A e
G2(ω, k) for some ω.

PROOF. One direction is evident from the characterization theorem of
(C(/fc))-semigroup (see Section 3). To prove the converse, let {T(t);t > 0}
be the (C(A;))-semigroup of solution operators of ACP (4.1) and let xeD.
Since T(t)x is a solution of ACPX (4.1),

lim(r(^)a; - x)/h = Ax ,
h-++0

which implies that Ax = Aox for xeD, where Ao is the infinitesimal
generator of {T(t); t > 0}. This implies that D(A) aD(AQ) and Ax = Aox
for xeD(A), because D is a core of A and Ao is closable.
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On the other hand, for some ωγ > ωo(ωo being the type of {T(t); t > 0}),
we have

R ( ξ ; A0)x = \ ° ° e - ζ t T { t ) x d t f o r x e Σ a n d ξ > ω , .
Jo

Now, let xeD and ξ > ω l β Then

- (d/dt)[e-ξtT(t)x] = e-ξt(ξ - A)T(t)x for t > 0 .

Integrating this equality with respect to t from 0 to ^ and using the
closedness of A, we get

(ξ - A)R(ξ; A0)x = lim [-e~ζτT(τ)x] + x = x .
r-»oo

Obviously, this implies that (ξ — A)R(ξ A0)x = x for all x e X and in turn
that D{AQ)(zD{A). Therefore, D(A) = D(A0) and A = Ao. q.e.d.

When U(t) is not bounded on D, {U(t); t > 0} can not be extended to
a semigroup of bounded operators; hence, in general, we can not treat the
solution operators in terms of the semigroup of bounded operators. In
certain cases, however, we can formulate some kinds of well-posedness of
ACP (4.1), using the notion of distribution semigroup which was introduced
by J. Lions [4] (also see [7] and [13]).

Let D(R+) be the Schwartz space corresponding to R+ = (0, oo) and
let us consider a family {U(φ); φ eD(R+)} of operators, defined on D, by

U(φ)x= [°φ(t)U(t)xdt,
Jo

xeD

We then say that ACP (4.1) is R.D.S.G.-well-posed if there is a regular
distribution semigroup (R.D.S.G.) Tsuch that T(φ)x = U(φ)x for xeD and
φ e D(R+). If in particular, the R.D.S.G. is an exponential distribution
semigroup (E.D.S.G.), then we say that ACP (4.1) is E.D.S.G.-well-posed.

A semigroup {T(t);t > 0} of bounded operators is called a strongly
continuous distribution semigroup (C.D.S.G.) if there is an R.D.S.G. T
such that

T(φ) = [°φ(t)T(t)xdt f o r x e X a n d φ e D ( R + ) .
Jo

See [14]. We then say that ACP (4.1) is C.D.S.G.-well-posed if it is S.G.-
well-posed and if the semigroup of solution operators of ACP (4.1) is a
C.D.S.G.. By definition, if ACP (4.1) is S.G.-well-posed and at the same
time R.D.S.G.-well-posed, then it is C.D.S.G.-well-posed.

Remark 4.2. It is proved in [7; Th. 5.15] that a semigroup of bounded
operators is a C.D.S.G. if and only if it is a (C(A;))-semigroup for some k.
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This means that if ACP (4.1) is C.D.S.G.-well-posed, then it is (C(fc))-well-
posed for some k, and conversely.

For these kinds of well-posedness, we have the following:

THEOREM 4.3. (a) ACP (4.1) is R.D.S.G.-well-posed if and only if A
is the infinitesimal generator of an R.D.S.G.. In this case, there is a
real number ω such that Ae GJfi), k(τ)y τ) for every τ > 0 and for some
nonnegative integer k(τ).

(b) ACP (4.1) is E.D.S.G.-well-posed if and only if A is the infinites-
imal generator of an E.D.S.G.. In this case, Ae G2(ω, k) for some ω and
nonnegative integer k.

(c) ACP (4.1) is C.D.S.G.-well-posed if and only if A is the complete
infinitesimal generator of a C.D.S.G.. In this case, A is the complete
infinitesimal generator of a (C\k))-semigroup for some nonnegative integer k.

PROOF OF (a). Assume that ACP (4.1) is R.D.S.G.-well-posed. Let T
be the R.D.S.G., xeD and let φ e D(R+). Then by integration by parts,

(4.2) T(-δ')T{φ)x = T(-δ'*φ)x = -[°φ'(t)U(t)xdt = AT(φ)x ,
Jo

where δ is the Dirac function. Now, let 2f = {T(φ)x; xe D, ψ e D(R+)}.
Then from the definition of T(-δ') (e.g., see [10]) and the denseness of

D, it follows that sp \3ϊ\ is a core of T(—S') (note that T(-δ') is the
infinitesimal generator of the R.D.S.G. Γ). Therefore, (4.2) implies that
D{T{-δr))aD{A) and T(-δ')x = Ax for xeD{T(-δ')).

Next we demonstrate that &f is also a core of A. To see this, we
first take a family {aε(t); ε > 0} c !>(#+) such that for each ε > 0, α,(ί) ^ 0

aε(t)dt = 1 and such that Supp [αe] c [ε/2, ε]. Let #eZ)(A).
0

Then by assumption, we can find a sequence {#„} c D such that α?n —> α?
and Aα;% —»Ax as ^ -^ oo. Therefore, for any η > 0, there are an integer
ΛΓ and ε0 > 0 such that \\xN — x\\ < η, \\AxN — Ax\\ < η and such that

^ sup || ^ ( ί ) ^ -xN\\<η ,T{aε)xN - a^ll = I aεo(t)[U(t)xN - xN]dt
I IJo

|| AT{aε)xN - AxN\\ = \\\\0(t)[AU(t)xN - AxN]dt

^ sup \\AU{t)xN - AxN\\ < Ύ].
ί

These estimates show that 3f is a core of A. Therefore, D(A) c D(T(—δ'))
and hence A = T(-δ').

Conversely, suppose that A is the infinitesimal generator of an R.D.S.G
T. Then, as was stated in Remark 3.1, it is proved in [7; Th. 5.4] and
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[8] that there is a real number ω such that A e G^ω, k{τ), τ) for every
τ > 0 and for some integer k{τ) >̂ 0. Also, a family {U(t); t > 0} of solu-
tion operators of ACPt for A is constructed on n^ i D(An) (see Section 2)
and the R.D.S.G. T satiίies the relation

(4.3) T(φ)x = [φ(t) U(t)xdt , ^ n D(An), φ e D(R+) .
JO n^l

Since n»*i D{An) is a core of A ([7; Lem. 3.6]), this means that the ACP
for A is R.D.S.G.-well-posed.

PROOF OF (b). Assume that ACP (5.1) is E.D.S.G.-well-posed. Then
by (a), A is the infinitesimal generator of the E.D.S.G.. Conversely, if
A is the infinitesimal generator of an E.D.S.G., then by [7; Th. 5.5], Ae
G2(ω, k) for some ω and integer k ^ 0; hence a family {U{t)\ t > 0} of
solution operators of ACPX for A exists and satisfies (4.3), which means
that the ACP for A is E.D.S.G.-well-posed.

PROOF OF (C) is evident from Theorem 4.1 and Remark 4.2. q.e.d.

5. Semi-Discrete Difference Approximation. In [12] and [11] the
problem of approximation of an abstract Cauchy problem is proposed and
the theorems on convergence of (Co) and (A)-semigroups are applied to
the prablem, respectively. In this section we apply our results to this
problem. The results are straightforward extensions of [11]. Let us
consider in L2 = J\?=ιL2(Rd) a Cauchy problem with constant coefficients

(5.1) (d/dt)u(t) = Au(t) , u(0) = uo(x) ,

where A = P(D) is an N x N matrix whose elements are formal polinomials
of Dk = i(d/dxk), k = 1, 2, , d, with complex coefficients and u(t) = u{x, t)
is an JV-dimensional vector. The operator A is supposed to be closed in L2.

Let us also consider in L2 the approximating equations

(5.2) (d/dt)uh(t) = Π{A, h)uh(t) , uh(0) = uo(x) ,

where A denotes a semi-discrete finite difference scheme (i.e., a set of
divided difference approximations to Dι = D[ι Dι

d

d), h = (&,-), h5 > 0,
specifies the mesh spacings and Π(J, h) is a linear combinations of transla-
tion operators depending on A and h. For this formulation, we refer to
[11].

We then require that the following consistency condition holds:

( d \ 1/2

Σ M ) —* 0 for sufficiently smooth u .
i=i /

The equation (5.2) is called a semi-discrete difference scheme.
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The problem of semi-discrete approximation of our interest is to find
conditions under which the approximate solution uh(t) of (5.2) converges
to the solution u{t) of (5.1) as the mesh size \h\ tends to 0.

We consider this problem by applying Fourier transform: Let us
denote by u the Fourier transform of u e L2. Then (5.1) and (5.2) are
reduced to the following Cauchy problem, respectively,

(5.3) (d/dt)u(ξ, ί) = P(ξ)u(ξ, t) , u(ξ, 0) = uo(ξ) ,

(5.4) (d/dt)uh(ξ, t) = A(ξ, Πh)uh(ξ, t) , uh(ξ, 0) = uo(ξ) .

We note that (λ - A)~ι corresponds to (λ - P(f))"1 and ||(λ - A)"1!! =
sup f |(λ — P(f))-1!, when either side is bounded, and that exp (tP(ξ)) cor-
responds to the solution operator of (5.1).

In the following, we use the centered difference quotient

(5.5) δUi/dXj = (2hj)~1[ui(x + hjβj) — u{(x — h5e3)\

as an approximation of dujdxj, where e0- denotes the j-th unit vector, and
A is understood as a semi-discrete finite difference scheme in the sense of
(5.5); we write JQ for this scheme. Then A(ξ, Πh) is exactly same as the
given matrix P(ξ) with ξs replaced by ξό{h) = hj1 sin (hjξj).

For this semi-discrete approximation, we obtain the following:

THEOREM 5.1. (a) Assume that ACP (5.1) is R.D.S.G.-well-posed in
L2, and let D = {ue C°°; it has a compact support}. Then for each ue D
and h, there exists a solution uh(t) of the equation (5.2) for Π(Λ0, h) with
the initial value u and uh(t) converges to the exact solution of ACPi (5.1)
with the same initial value u, where the convergence is uniform with
respect to t on each compact subinterval of [0, oo).

(b) Assume that ACP (5.1) is E.D.S.G.-well-posed in L2. Then there
is a positive integer k and the conclusion of (a) holds with D replaced by

PROOF OF (a). Let τ > 0. Then by Theorem 4.3, A e G^ω, k{τ), τ)
for some ω and for some nonnegative integer k(τ). Therefore, it suffices
to show that A(ξ, Πh) = P(ξ(h)) satisfies the assumptions of Corollary 2.12.
Noting that | ξ(h) \ ̂  (ΣtUi hjΎ/2> we have the estimates

(5.6) sup I (λ - P(ξ(h)))-11 ^ sup I (λ - P ( ? ) Γ | = ||(λ - A)"11| ,

(5.7) sup I λ-(λ - P(ξ(h)))-m(\ - P(ξ(h))Γk{T

ξ

^ sup I λ w (λ - P(ξ))~m(λ0 - P(ξ))~k{τ)

ξ

= | | λ « ( λ - A)—(λ, -
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for any real numbers λ, λ0 and integer m ^ 1 such that the right hand
sides are bounded. Since A e G^ω, k(τ), τ) the right hand sides of (5 6)
and (5.7) are meaningful and independent of h, for λ, λ0 > ω and m ^ 1
with m/λe (0, r); hence A(ζ, Πh) satisfies conditions (I) and (II) of Corollary
2.12. On the other hand, by the consistency condition and the fact that
D is a core of A, it is obvious that A(ξ, Πh) satisfies condition (III') and
the additional assumption of Corollary 2.12. Therefore, Corollary 2.12 is
applicable and the conclusion holds.

PROOF OF (b). By Theorem 4.3, there are a real number ω and a
nonnegative integer I such that A e G2(ω, I). It is then evident that the
conclusion of (a) holds. We see that the space D of initial functions can
be extended to D(Aι+1), by observing that

(5.8) sup I exp (tP(ξ(h))(\ - P(ξ(h)Γι I ̂  sup | exp (tP(ξ))(\ - P(ξ))~ι I

for a fixed λ0 > ω. We have the assertion by setting k = I + 1. q.e.d.

THEOREM 5.2. Assume that ACP (5.1) is (C{k))-well-posed in L2. Then
for each u e D(Ak+1) (resp. u £ D(Ak)) and h, there exists a solution uh(t)
of the equation (5.2) for Π(Λ0, h) with the initial value u and uh(t) con-
verges to the exact solution of A.C?1 (5.1) {resp. ACP2 (5.1)) with the same
initial value u, where the convergence is uniform with respect to t on
each compact subinterval of [0, oo) (resp. (0, ©o)).

PROOF. The first assertion is evident from Theorem 5.1 (b). In order
to prove the second assertion, it is sufficient to show that A(ξ, Πh) = P(ξ(h))
satisfies the assumption of Corollary 3.8. It is proved in the same way
as in the proof of Theorem 5.1 (a) that conditions (I) and (ΠΓ) are satisfied.
Condition (IIeχP) is proved by (5.8) and condition (IV) is evident from the
estimate

sup I exp (tP(ξ(h))) | ^ sup | exp (tP(ξ)) \ for t > 0 . q.e.d.

We conclude this section by exhibiting some simple examples of well-
posed Cauchy problems.

EXAMPLE 5.3. Let us consider a Cauchy problem (5.1)

(d/dt)u(t) = Au(t) , u{ϋ) = u0

in L2 = L2(R) x L2(R) such that
f-ξ2 ξ3
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If Re (λ) > 0, then

1 / ( λ + ξη ξ3/

0

and 11 R(X; A) \ | = supe | (λ - P(ξ))~x | < + oo. Therefore, {λ; Re (λ) > 0} c p(A).
Now this Cauchy problem is not S.G.-well-posed. In fact, we have

exp (tP(ξ)) = Λ

\ 0
hence |exp(ίP(f))| is not bounded with respect to ξ for any t > 0. How-
ever, exp (ίP(?)) is decomposed as

exp (tP(ξ)) = Cl(f, ί)JE? + c2(ξ, ί)P(f) ,

where £7 is a 2 x 2 unit matrix and

cx(ξ, t) - [f exp ( ί ( - l + if)) + (-1 + iξ) exp (-ί f)]/(f_l + if) ,

c2(f, ί) - [exp ( ί (- l + iξ)) - exp (-ίfa)]/(fa - 1 + if) .

It is easy to see that sup^ |cy(f, t)\ <L M,j = 1, 2, for some constant M > 0.
Therefore,

(5.9) ||exp(ίP(.))β( )ll ^Λf(||«( )ll + ||P( )β( )ll) = Λfdl̂ ll + \\Au\\)

for 6̂ G D(A) and ί > 0. On the other hand, for each f,

Λ(λΓ5tt(f) = (λ - PίfJΓ^ίf) = (V"exp(ίP(f))«(f)dί
Jo

and so,

(5.10) i rco
= , 1

 1 X ? ί - ^ 1 exp (tP(ξ))u(ξ)dt ,
(m — 1)! Jo

for ueL29X> o and m ^ 1. Combining (5.9) and (5.10), we obtain

; A)*u\\ = | | ^ Γ S ( x Γ 2 F ^ l i = i i ^ w ( ^ - ^ ( ))-wt^( )il ̂  Λfdl^ll + \\Au\\)

for u G D(A), X > 0 and m ^ 1. This means that A e G2(0,1) and hence
this Cauchy problem is E.D.S.G.-well-posed.

EXAMPLE 5.4. Let us consider a Cauchy problem (5.1) in L2 = L2(R) x
L2(R) such that

r + i?4 f \
0 -f£ + ifV
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This Cauchy problem is the one treated in [11], and it is shown that the
Cauchy problem is S.G.-well-posed for any integer q ^ 0. More precisely,
it is shown that it is (CΌ)-well-posed if 0 ^ q ^ 2, (1, A)-well-posed if q = 3,
(0, A)-well-posed if q = 4 and is not even (A)-well-posed if q ^ 5. We
then show that this Cauchy problem is (C(1))-well-posed if 3 ^ q ^ 8.
(Note that if q > 8, then p(A) is empty). Let {T(t); t > 0} be a semigroup
of the solution operators of the Cauchy problem. Then it is proved in
[11] that {T(t); t > 0} satisfies conditions (SJ and (S2) (which are stated
in Section 1) and also that D(A) is contained in the continuity set of
{T(ty, t > 0}. Therefore, {T(t); t > 0} is a (C(1))-semigroup; hence this Cauchy
problem is (C(1))-well-posed if 3 ^ q ^ 8.

EXAMPLE 5.5. Finally, let us consider a Cauchy problem (5.1) in L2 =
L2(R) x L2(R) x L2(R) such that

P(f) = pE + qF, p = -ξ2 + iξ\ q = ξ8 + 1 ,

where E denotes a 3 x 3 unit matrix and F denotes a 3 x 3 nilpotent
matrix such that only upper off-diagonal elements are 1.

By simple calculations,

(5.11) (λ - P{ξ)Γ = Σ (λ - p)- '-W 4 ,Σ
<=0

(5.12) exp (tP(ξ)) = epί Σ (i!)"1 W ,
<=0

where F° = E. It is easy to see that {λ; Re (λ) > 0}cp(A) and || j?(λ; A)\\^M
for λ with Re (λ) > 0 and for some constant M > 0. Also, it is seen from
(5.12) that supί |exp (tP(ξ)) \ < + oo for t > 0, so that this Cauchy problem
is S.G.-well-posed.

Next we shall show that this Cauchy problem is neither (0, A)- nor
(1, A)-well-posed, but (A)-well-posed. In order to show (A)-well-posedness,
it is sufficient to show that ||λi2(λ; A)\\ <Z M a.a λ—• + °°, for some con-
stant M > 0; other conditions for (A)-well-posedness can be shown by the
same argument as in [11]. But this is evident from (5.11) and this Cauchy
problem is (A)-well-posed. By the way, let us consider an element u0 £ Lz

such that

u0 = (p - lJ-V-^s , r - ξ' + 1 ,

where es(j = 1, 2, 3) denotes a unit vector whose j-ih element is 1. Then

[P(ξ) - E]u0 = (p - lJ-V-1?^ + r-^s ,

This means that uoe D(A)\D(A2), where D{Ak) = {ue L2; P(-)kύ(-) e L2}
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Noting that for some constant C > 0,

\q

we obtain

τ ( V + i)^ 4 + i)"2^2 + χ)2 + H" 1 e χ P (

^ const. ί4ί+°Vexp (-2tξ')dξ .
J—oo

Setting 2tξ2 = σ2, we see that the above right hand side is equal to

const. A+O°(2t)-4~m)σ8 exp (-σ2)dσ = const. r (1/2) .
J —oo

This means that ||exp (ίJP( )β( ) || blows up at t = 0. Therefore, the semi-
group {T(t); t > 0} of the solution operators of this Cauchy problem is not
a (C(1))-semigroup, a fortiori, is neither (0, A)- nor (1, A)-semigroup. Hence,
this Cauchy problem is (C(2))-well-posed (in fact, (A)-well-posed), though it
is not (C(1))-well-posed. (Recall that (1, A) c (0, A) c (C(1)) and (A) c (C(2)).)
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