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1. Introduction. It has been known that every derivation of a
W*-algebra is inner (as a corollary, every derivation of a C*-algebra is
weakly inner), and every derivation of a simple C*-algebra with identity
is inner (cf. [6]). Moreover it has been shown that for a simple C*-
algebra U with or without identity, there exists a unique primitive C*-
algebra D) with identity (called the derived C*-algebra of ) such that
(1) A is an ideal of DA); (2) for every derivation o of A, there is a unique
(modulo scalar multiples of identity) element d in D) such that i(a) =
[d, a] (@aeN); (38) every derivation of D) is inner ([7]).

These results make the study of derivations in general C*-algebras,
more or less, possible to reduce to the study of derivations in simple
C*-algebras if the C*-algebras have only maximal ideals as primitive
ideals.

However there are many C*-algebras which do not have any maximal
ideal ([3]). For the study of derivations in these C*-algebras, it is de-
sirable to analyse derivations in primitive C*-algebras.

In the present paper, we shall generalize the notion of derived C*-
algebras to primitive C*-algebras to make possible to reduce the study
of derivations in general C*-algebras to the study of derivations in primi-
tive C*-algebas.

We shall explain briefly the main result in this paper. Let % be a
primitive C*-algebras (more generally, a factorial C*-algebra) and let D()
be the Lie algebra of all derivations on 2. For an arbitrary faithful
factorial *-representation {r, ¥} of % on a Hilbert space %, it is known
that a unique (modulo scalar multiples of identity) element d, in the weak
closure () of m(A) such that n(d(a)) = [ds, 7(a)] (@cW). Now we shall
identify 2 with 7(), and let D,(2) be the C*-subalgebra of B(X) generated
by {d;]60 € D)} and 1,. Then it is easily imagined that the C*-algebra
D.() is closely related to the structure of the Lie algebra D() and so
we may apply the C*-algebra theory to the study of D(2). However
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D.() apparently depends on the choice of the representation {z, X}. This
is troublesome, since a factorial C*-algebra has generally uncountably
many inequivalent faithful factorial *-representations.

The main result of this paper is that the C*-algebra ©.(%) does not
depend on the special choice of the {r, ¥}—namely, for an arbitrary faithful
factorial *-representation, we get always the same C*-algebra D);
therefore we can associate a unique C*-algebra D() (called the derived
C*-algebra of ) which is closely related to the structures of % and D(¥)
to each factorial C*-algebra .

2. Derived C*-algebras. We shall begin with a definition.

DErFINITION 1. A C*-algebra % is called factorial if 9 has a faithful
factorial *-representation {z, X} on a Hilbert space ¥—i.e. 7 is faithful and
n(A) is a factor, where () is the weak closure of 7(%).

REMARK 1. Every primitive C*-algebra is clearly factorial, and it is
known that every separable factorial C*-algebra is primitive (cf. [2]).

Let % be a factorial C*-algebra and let {r, X} be a faithful factorial
*.representation of 9, and let D) be the Lie algebra of all derivations
on %A. For each e D), there exists an element d, in #(A) such that
n(6(a)) = [ds, 7(a)] (@€ N). Suppose that d; is another element in 7(I)
such that 7(6(a)) = [d}, 7(a)] (@ € N); then [d; — d;, 7(A)] = 0; hence d; — d}; =
Al;, where )\ is a complex number and 1, is the identity operator on X%.
Now let D.(N) be the C*-subalgebra of B(X) generated by {d,|d € D(2)}
and 1,, then by the above consideration, ®.(¥) does not depend on the
choices of d,’s. However it apparently depends on the representation
{m, %}.

In the following considerations, we shall show that the C*-algebra
D.(A) does not depend on the representation {z, X} either.

Now let 6 be a skew-symmetric derivation on %—i.e. * = —4, where
0*(a) = 0(a*)* (aeM). Then there exists a positive element d, in the weak
closure 7() such that ||d;|| = ||d]|, where ||| is the norm of the deri-
vation ¢ ([56]). (More generally it is known that for each general derivation
6 on ¥, there exists an element d;, in ©(%A) such that 7(d(a)) = [d;, w(a)]
for a e and (1/2) [|9]| = [Id,]| ([4], [5], [8], [10])).

It is clear that such a positive element is unique, since ||d;+\1;|| =
||d;|| if N is not zero and d, + A1, = 0.

More strongly we have

LEMMA 1 (cf. [1]). If h is a positive element in w(X) such that
n(6(a)) = [k, w(@)] (@) and [|k]| < ||8]], then ||| = [|4]].
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ProOF. Suppose that ||k|] < [|d]| and put k= h — (]|k]|/2)1;; then
[lz(@(@) ]| = ||[k, m(@)]]| = |lk(a)|| + ||z(a)k||. Since z is faithful, ||9]| =<
eI+ 11kl =2|[k—(|R]l/2)1: ]| <2]|k]l/2 = ||h]|<][|d]], a contradiction.
This completes the proof.

Now we shall define

DEFINITION 2. A C*-algebra B with identity is called a quasi-derived
C*-algebra of a factorial C*-algebra 2 if it satisfies the following con-
ditions: (1) A is a C*-subalgebra of B; (2) for each skew-symmetric
derivation 6 of 2, there exists a positive element d, in B such that
oa) = [ds, a] (aeN) and ||d]| = ||d;|]; (B8) B is generated by A, {d,| skew-
symmetric 6 € D(2)} and the identity 1.

DEFINITION 3. A quasi-derived C*-algebra B of U is called a derived
C*-algebra of 2, if there is no non-zero closed ideal J of B such that
ANJ = (0).

Then we shall show

THEOREM 1. Let B be a quasi-derived C*-algebra of a factorial C*-
algebra A and let {m, X} be a faithful factorial *-representation of A on
a Hilbert space X. Then {7, X} can be uniquely extended to a factorial
*-representation {%, ¥} of B on the Hilbert space X such that #(B) = ).

Moreover if B is a derived C*-algebra of N, then the extended re-
presentation is again faithful.

PrRoOF. Since any factorial *-representation is a sum of cyclic fac-
torial *-representations, it suffices to assume that the {z, ¥} is cyeclic
and so {z, X} is equivalent to a *-representation {r,, X,} of % on a Hilbert
space X, constructed via a state @ on . Let & be an extended state of
B such that $ = @ on A. Let {73, X;} be the *-representation of B on
a Hilbert space X; constructed via $. Let E’ be the orthogonal projection
of X; onto the closed subspace [7;(2)1;]; then the *-representation a —
(@) E'(aecN) of A on E'X; is equivalent to {z,, X,}.

Let ¢(E’) be the central support of E’ in 7;(¥)’, where z3z()’ is the
commutant of 73() on X;.

Since ny(A)E’ is *-isomorphic to 7wz M)c(E'), m;M)c(E') is a factor.
Moreover the *-representation a— z3(a)c(E’) (ac W) is faithful, since
a—my(@)E’ (ae?) is faithful. For each skew-symmetric 6 ¢ D), there
exists a self-adjoint element k in 73(X) such that 73(8(a)) = [k, 73(a)] (a € ).
Hence [k, 73(a)] = [73(ds), m3(a)] for ae A and so k — 7y(d;) € 73(N)’.  Since
7;(B) is generated by 73(2), 73{d;| skew-symmetric e D)} and 1, the

central element ¢(E') of 7;() belongs to the center of 7;(B).
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On the other hand, 1;€ E'X; and so 7;(B)1; C c¢(E")¥X;; hence c¢(E') =
1z;. Therefore the mapping a — 73(e) (@€ N) on %, is a faithful factorial
*_representation of ¥, and so we can choose a positive element A in 7;(2)
such that 73(6(a)) = [k, m3(a)] (e ) and ||| = ||d]].

Let C be the commutative C*-subalgebra of B(¥X;) generated by
my(d;) — h and 1z, and let R be the C*-subalgebra of B(%;) generated
by 7;() and C. Since 73 is a factor, R can be canonically identified
with the tensor product 7;() ® C ([9]).

Now suppose that 7;(d,) — h has a positive spectrum g, and take a
character y, on C such that y(7;(d;) — h) = p,. Also take a pure state
®, on m;(A) such that @,(k) = [|k||. Then we have,

101l = ll73(ds) || = |9 Q@ Xk + 73(ds) — h)|
= @) + xu(ms(ds) — B) = |||l + 4 > [[R]| = [|0]],

a contradiction.

Next suppose that z;(d,) — h has a negative spectrum g, and take a
character 3, on C such that y,(73(d;) — h) = .. Now we shall show that
h is not invertible in 73;@). In fact, if & is invertible in 7;(2), then
there exists a positive number A such that » = \lz;; hence b — Alz; =0
and [|h — NMag;|| <[|k]| = [|3]]. Since [, m3(a)] = [h — Mgj, w3(a)] = 73(5(a))
for ae ¥, and since z; is faithful on %, by Lemma 1 [|h —\lz;|| = ||d]],
a contradiction. Hence % is not invertible in 73(). Take a pure state
@, on w;(A) such that @,(k) = 0. Then,

Py @ 1e(3(ds)) = Polh) + Ya(m3(ds) — ) = . <O

On the other hand, 73(d;) =0 and ®,Q Y, is a state on R, hence
P, ® %x(m3(d;)) = 0, a contradiction. Therefore, 73(d,) — h = 0, and so 7;(B) =
;). Hence [73(B)1;] = [7;@)1;] = E'%; = X;. This implies that the
*.representation {r;, X;} of B can be considered a *-representation {7,, X,}
of B on the Hilbert space ¥, such that %, = 7, on % and #,(B) & 7, ().

Next we shall show the unicity of the extension. Let {n’,%,} be
another *-representation of B on the Hilbert space ¥, such that #’ = x,
on % and 7'(B) S7,(). Then ||z'(dy)|| < ||d|| and 7’(d;) = 0. Moreover
[7'(ds), mo(a)] = 7'(9(a)) = 7,(0(a)) (acN). Hence by the unicity of such
an element, 7'(d,) = %,(d,) for all skew-symmetric 6 D). Therefore
we have 7' = T, on B—i.e. {7,, X,} is unique.

Next suppose that B is a derived C*-algebra of 2. Put J={b|7,(b) =0,
be®B}; then J is a closed ideal of B. Since 7, =7, on A, JN A = (0);
hence J = (0). This completes the proof.

REMARK 2. Let I be a closed ideal of a quasi-derived C*-algebra B
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of A such that AN I = (0); then the quotient C*-algebra B/I can be
considered again a quasi-derived C*-algebra of 9, since ¥ can be identified
with % + I/I. By the unicity of the extension in Theorem 1, #(I) = 0.
Now put I, = {z|7(x) = 0, xe B}; then I, N A = (0). Therefore I, is the
greatest closed ideal of B in all closed ideals I with I N A = (0). Clearly
B/1, is a derived C*-algebra of the C*-algebra .

Hence we have the following result: Let B be a quasi-derived C*-
algebra of a factorial C*-algebra U; then there exists the greatest closed
ideal I, of B in all closed ideals I with IN A = (0), and the quotient
C*-algebra B/I, is a derived C*-algebra of .

THEOREM 2. Let N be a factorial C*-algebra and let @ be a factorial
state on A such that the factorial *-representation {w,, X,} of A is faithful,
and let B be a quasi-derived C*-algebra of A. Then @ has a unique state
extension @ to B.

Moreover if B is a derived C*-algebra of U, then the extended state
P satisfies again the condition that the represemtation {3, X3} of B 1is
Saithful.

ProOF. By the considerations in the proof of Theorem 1, we showed
that for an arbitrary state ¢ of B with @ = @ on U, {73, %;} = {7,, X,}
with #, = 7, on % and #,(B)=X®), and moreover {7,, X,} is unique.
Hence ¢ must be unique. Moreover if B is a derived C*-algebra of
A, then {7,, X,} is faithful. This completes the proof.

REMARK 3. From Theorem 2, we can conclude the results of the
author concerning simple C*-algebras ([6], [7]). In fact, suppose that %
is a simple C*-algebra and let I be the least closed ideal of a quasi-derived
C*-algebra B of U containing A. Let S be the set of all bounded self-
adjoint linear functionals f on B such that f(A) =0 and ||f|| 1. If
A& I, there is an extreme point g in S such that g(I) # (0). Let
9 =9, — 9. be the orthogonal decomposition of g with g¢,,9.=0, ||g]|| =
9.1l + 1lg:1l, and let & = g, + ¢.. Let {m,, X.} be the *-representation of
B constructed by & Then the extremity of g implies that 7, () is a
factor if 7. () == (0) (cf. [6], [7]). Since A is simple, {7, X} is faithful,
factorial on ¥U; hence by Theorem 2, g, =g, on B and so g =0 on B, a
contradiction. Hence 7.(2) = 0 and so 7(I) = 0. This implies g(I) = 0,
a contradiction. Hence 2 = I. If ¥ has an identity, then 2 = B, and if
2% has no identity, then % is an ideal of B. Moreover if B is a derived
C*-algebra of the simple C*-algebra 2 in the sense of this paper, then
B is primitive and so it coincides with the derived C*-algebra in [7].

Now we shall show a general method to construct quasi-derived C*-
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algebras and derived C*-algebras of 9. Let % be a factorial C*-algebra,
and let {m, %} be an arbitrary faithful (not necessarily factorial) *-
representation of % on a Hilbert space %. We shall identify % with
7). Then for each skew-symmetric 6 € D(¥), there exists a positive ele-
ment ¢, in 7,(%) such that 7,(5(a)) = [e,, m.(a)] (ac ) and ||e,|| < ||6]([5].

Let B be a C*-subalgebra of B(%X,) generated by =, (%), {e;|skew-
symmetric de D)} and 1. Then clearly B is a quasi-derived C*-
algebra of . Moreover, by Remark 2, there exists the greatest closed
ideal I, of B in all closed ideals I such that I N Y = (0).

Put ©,%) = B/I,. Since AN I, = (0), we can identify 2 with the
image in ®,(A) under the canonical mapping. Then we can easily see
that ©,(¥) is a derived C*-algebra of 2.

Now we shall show

THEOREM 3 (The unicity of the derived C*-algebra). Let % be a
Sfactorial C*-algebra; then there exists a unique derived C*-algebras D)
of U in the following semse: Let D, (A), Dy(N) be two derived C*-algebras of
A; then there exists a *-isomorphism @ of D,(A) onto D,(N) such that (1)
?(a) = a for acW; (2) O(d;,) = d;, for 0 D) with d,; = 0,]|ds,;|| = |[0]]
(t =1, 2), where dé(a) = [d;,,, a] (¢ N) in D) and i) = [d;,, a] (ac)
in D).

Moreover, let {r, X} be a faithful factorial *-represemtation of U on
a Hilbert space %, and let B be the C*-subalgebra of B(X) gemerated by
{d;|6 € D(N)} and 1z; then B is the derived C*-algebra D) of A, when
A is identified with the image ().

ProoF. We have shown already that there exists a derived C*-
algebra ®,(N) of A. Now let {z, X} be a faithful factorial *-representation
of A on a Hilbert space X; then by Theorem 1, it can be uniquely ex-
tended to a faithful factorial *-representation {7, X} of ®,(2). The image
A®D,A)) is clearly the C*-algebra generated by {d;|0e D)} and 1z.
Moreover by Lemma 1, it is easily seen that #(d;,) =4d; if d;, =0, &; =0
and ||d;.|| = ||d;|] = ||d]| for all skew-symmetric ¢ € D(%).

This completes the proof.

Now let 2% be a factorial C*-algebra and let {7, 2} be a faithful
factorial *-representation of Y. We shall identify % with the image 7(2[).
If 2 is a simple C*-algebra with identity, then D) = 2. If A is a simple
C*-algebra without identity, then (D)) = D).

We shall denote D(DR0)) = D), DDDX))) = D¥A), and so on.

Then the following problem would be interesting.

Problem 1. Does there exist a primitive C*-algebra U such that
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D) & DV (A)?
Problem 2. Does there exist a primitive C*-algebra 2 such that
D) & D) for all positive integers n?

REMARK 4. By using the operation ©, we can obtain an increasing
family of C*-subalgebras {2} (0 < 0 < @) of 7(¥), indexed by the ordinals
0 between 0 and a certain ordinal a as follows: (1) 2%, = 2; (2) A,y = DA,)
if o is not a limit ordinal; (8) A, = the uniform closure of U, <, A, if
0 is a limit ordinal; (4) ®(,) = A,. This is clear, since D)) = 7).
However %, does not generally coincide with z(). For example, let M
be a non type I-factor on a separable Hilbert space ¥ and let % be a
uniformly separable C*-subalgebra of M which is weakly dense in M.
Let § = {€s}sc1 be a family of C*-subalgebras of M such that Y c ¢, for
Be II, and for each faithful factorial *-representation {m,, X,} of 2, there
exists a unique *-representation {7, X} of &, such that #, =, on U
and 7,(e;) C ,(A). We shall define an order in § by inclusion, and let
B = {€s,}s,e1r, be a linearly ordered subset of ¥ and let ¢ be the C*-sub-
algebra of M generated by g i, &,; then it is clear that ¢ belongs
to §. Hence by Zorn’s lemma, there exists a maximal element in .
Clearly %,e & for all p with 0 < o = «a.

Now let ¢, be a maximal element in & such that %,=e¢,. Since A
is separable, it is primitive. Now let {m, X} be a faithful irreducible
*.representation of ; then %, is separable. If ¢, = M, then M have an
irreducible *-representation on a separable Hilbert space. Since any *-
representation of M on a separable Hilbert space is o-continuous ([11]),
7w, (M) is weakly closed; hence 7, (M) = B(X,). This contradicts that M is
a non type I-factor. Hence A, & M.

The following problem would be intresting.

Problem 3. Let G be a countable, discrete group such that every
conjugate class is infinite except for the conjugate class of the identity,
and let U(G) be the W*-algebra generated by the left regular represen-
tation; then U(G) is a II-factor. Let U be the C*-subalgebra of U(G)
generated by the left regular representation. Then what is 2,?; what
is ¢,? Let = be the unique trace on U(G) and let ¢ be the restriction of
7 to %. Then by Theorem 2, 7 must be uniquely extended to 2[,. Can
we conclude %, = A?

Next we shall investigate a certain class of derivations. Let D,(20)
be the subset of all elements d in D) such that [d, A] < A—i.e. the d
will define a derivation 6 on ; then D,(N) is a self-adjoint closed linear
subspace of D(A) and moreover it is a Lie subalgebra of D) with the
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Lie product [z, y] = 2y — yz (, y € D).

Let J, be the least closed ideal of % such that [, %] J,. Then
the quotient C*-algebra 2/J, is commutative and so ¢|%/J, = 0 for all
0 € D), where 6|2/J, is the derivation on 2/J, induced by ¢. Now let
d be an element of PD(A); then it is easily seen that there exists the
least closed ideal J(d) of ¥ such that [d, A] = J(d). Clearly J(d) CJ, and
0|U/J(d) = 0, where d is the derivation on U defined by d.

Now we shall show

THEOREM 4. Let d be a self-adjoint element of D(A). Suppose that
d and d* belong to D,(N); then d-J(d) < J(d) and J(d)-d c J(d).

Proor. Let & be the C*-subalgebra of D) generated by J(d), d
and 1, and let & be the C*-subalgebra of & generated by J(d) and 1.
Let & be the least closed ideal of & containing J(d). Let S be the set
of all self-adjoint linear functionals f on ® such that f(® = 0. If JA)ES,
then there is an extreme point g in S such that g(J) = (0). Letg=g9, — g.
be the orthogonal decomposition of g and put & = g, + g.. Let {7, X} be
the *-representation of ®; then 7,(®) is a factor (cf. [6],[7]). If 7.(J(d)) = (0),
then 7,(J(d)) = 7.(R). Take self-adjoint elements k, k such that & e 7. (J(d)),
kern.(J(d) and 7(d) = h + k. Then 7. (d*) = 7.(d)* = h* + 2hk + k*. Since
&€ D), [k, m(J@)] < [F, 7 J@)] + [, 7(J@)] + [7(d), 7.(J(@))]c
w.(J(d)). Hence [rEk, 7. (J(d))] < w.(J(d)).

On the other hand,

[hE, 2] = [h, 2]k for wzem.(J(d)) .

If k =2\l for some complex number A, then =.(d)ec 7. (J(d)). Hence
7:(®) c 7.(J(d)). This implies that g(®) = 0, a contradiction. Let C be
the C*-subalgebra of B(¥X.) generated by k& and 1z; then dim (C) = 2.
Since 7.(J(d)) is a factor, the C*-subalgebra R of B(X.) generated by
7.(J(d)) and C is canonically identified with z.(J(d)) ® C. Since k and 1z,
are linearly independent, [k, z]k € 7. (J(d)) implies [k, ] = 0 for x e 7w (J(d))
and so h = Alz, for some complex number \. Hence [7.(d), 7.(J(d))] = 0.
Since J(d) is a closed ideal of U, the *-representation {7, X} of J(d) can
be uniquely extended to a *-repesentation {7., X.} of 2 such that 7.(¥) C
we(J(d)) (cf. [7]). Let J, be the kernel of 7, then [m.(d),7T.(N)] =
Z(d,¥q]) = 0 and so [d, Al <J,. Hence J, DJ(d) and so zw.(J(d)) =0, a
contradiction. Therefore x.(J(d)) = 0; hence 7 () = 0 and so ¢g(I) = 0,
a contradiction. This completes the proof.

COROLLARY 1. Let U be a general C*-algebra with identity on a
Hilbert space %, and let 6 be a skew-symmetric derivation on . Suppose
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that there exists a self-adjoint element h in B(X) such that d(a) = [h, a]
(@e?) and [R*, A1 CA. Then if J(h) = A, the 6 is an inner derivation.

This is clear, since we do not use the fact that ¥ is factorial in the
proof of Theorem 4.

THEOREM 5. Let & be a C*-subalgebra of D) such that AL D, (Y);
then RJ,CJ, and JRCJ,.

PrROOF. Let @ be the C*-subalgebra of D(A) generated by J,, £ and
1, and let & be the C*-subalgebra of & generated by J, and 1. Let S
be the set of all self-adjoint linear functionals f on & such that f(&) = 0.
Let & be the least closed ideal of & containing J,. If J,& S, then there
is an extreme point g in S such that ¢(J) # (0). Let g = g, — g, be the
orthogonal decomposition of g and put ¢ =g, + ¢.. Let {7, X} be the
*_representation of ®; then 7,(R) is a factor. If m.(J,) = (0), then 7.(J;) =
7(®). For each dec&, there exist two elements %k, and k, such that
hee Ty, koem(J) and m.(d) = hy + ks Since 2 is a C*-algebra con-
taining %, 7 (ad) = w(@)h; + w(a)k, for ac A. Since [7.(ad), 7.(J)] =7 (),
[me(a)ka, (o)) © 7e(J o).

On the other hand,

[7:(@)ky, 2] = [7:(a), 2]k; for wzem (/).

Suppose that d is self-adjoint, and let C be the C*-subalgebra of B(%.)
generated by k, and 1g,. Let R_be the C*-subalgebra of B(X,) generated
by 7n.(J,) and C; then R = 7 .(J) ® C. _I_f_l_cd = Alg, for some complex
number A, then z.(d)ew.(J,). If 7.(d)en.(J,) for all self-adjoint de g,
then 7.(®) c 7.(J)) and so g(®) = 0, a contradiction. Hence there exists
a self-adjoint element d in £ such that k, # 1z, for all complex number
N Then k; and 1z, are linearly independent, so that [z.(a), x]k. € 7. (J;)
for xem.(J,) implies [r.(a), 2] = 0 for all ac A and xe 7. (J,). Therefore
[7:(2), 7(J)] = 0. Since m(J;) contains 1z, and since w(Wm.(J) =
T (UJ) C (), 7w(A) = 7. (J). Hence [7.(N), 7.(A)] = 0 and so the kernel
J, of w, in A contains [, A]; hence J,CJ,. Therefore 7.(J,) = 0 and so
g(¥) = 0, a contradiction. Hence J, = J. This completes the proof.

COROLLARY 2. Suppose that U is a factorial C*-algebra with tdentity
such that the smallest closed ideal of U containing [N, A] is A. Then if
D) = D), then DA) = A—mnamely, every derivation of A is inner.
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