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1. Introduction. In a series of papers entitled the above, we mainly
treat compact minimal surfaces with non-negative Gaussian curvature in
a space of constant curvature. If the Gaussian curvature is non-negative
and not identically zero, by the Gauss-Bonnet's theorem, the genus of
the surface is zero. Such minimal immersions have been studied by [7],
[8], [9], especially, Calabi [4] and [5]. Their main results are as follows:
Let SN(ΐ) be an iV-dimensional unit sphere in an (N + l)-dimensional
Euclidean space and let S2 —• SN(1) be a minimal immersion of the
differentiable two-sphere in S^(l) such that the image is not contained
in a great hypersphere. Then

(1) N is even;
(2) The total area is an integral multiple of 2π;
(3) If the Gaussian curvature K is constant, K = 2/m(m + 1),

where N = 2m. Such a immersion is uniquely determined up to motions
of SN(1), and the image is the generalized Veronese surface of Borύvka
[3] and Otsuki [15].

(4) There are minimal immersions of S2 —> SN(1) of which the induced
metric has non-constant Gaussian curvature.

This article is a first step for the classification of minimal tori in a
Euclidean sphere, i.e., minimal immersions of a torus into SN(1). Our
main results are as follows: If the Gaussian curvature is identically zero
and the image does not lie in any great hypersphere of SN(1), then N is
an odd integer, say N = 2m + 1, and under the additional assumption,
the immersion is rigid.

If N = 3, the above minimal surface is the Clifford minimal torus
in S3(l), and if N= 5, such a surface was studied by Borύvka [1]. For
each odd N, we can describe explicitly examples of the flat minimal
surfaces (cf. [15]).

The even dimensionality of SN(1) in the first case is an implication
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of the topological condition to the effect that the genus of M = 0.
Contrary to it the fact that N is an odd integer in our case is not an
topological implication: There is a minimal immersion of a torus into
S\l) which is not contained in the S3(l) c S4(l) (see, Lawson [12, p. 363]).

To study the problem, we adopt Bochner's method, i.e., we use
scalar fields / ( 6 ), K(b) and N{h)f b = 2, 3, •••, on the surface, which will
be defined later, and calculate their Laplacians. In § 2, we fix notations
used in this paper. In § 3, we describe the concept of the n-th funda-
mental form and using it, we define above mentioned scalar fields. The
Laplacians of f(b) and Kιh)f are calculated in § 4, and the Codazzi's equa-
tion of higher order is proved. We remark that these result in § 4 have
known under a certain global assumption of M, but our works show that
a part of the results in S. S. Chern's paper [7] is local. In §5, we
assume that M is oriented, compact and of zero Gaussian curvature.

Then an application of the results in § 4 gives a proof of one of
our main theorems. In §6, we consider Frenet-Borύvka formula of a
flat minimal surface and prove a rigidity theorem. In § 7, we consider
the case when the ambient space is the iV-sphere. We show that the
generalized Clifford torus on S2m+1 is algebraic. In § 8, we study compact
minimal surfaces with non-negative Gaussian curvature. § 8 is closely
related to the S. S. Chern's paper [7]. In the Appendix, using an
inequality proved in § 3, we show an extrinsic rigidity theorem. This
result generalizes the De Giorgi-Simons-Reilly's theorem partially. In
the part 1, we treat § 1 ~ § 4.

I want to express particular thanks to Professor S. Sasaki for his
advice and encouragement in the development of this work. I wish also
to thank Mr. T. Itoh for several informative letters. In completing the
present manuscript, the author received considerable help from Professor
T. Otsuki, through his careful reading of the first draft of this work.

2. Preliminaries. Let M be an ^-dimensional Riemannian manifold
of constant curvature c and eA, A, B, = 1, 2, , N, local orthonormal
frame fields on M. The Levi-Civita connection defines the covariant
differentials

(2.1) DeA = Σ
B

where wAB + wBA = 0. If wB is a coframe field dual to eA, the structure
equations of the space are

(2.2) dwA = X wB A wBA ,
B
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(2.3) dwAB = Σ wAC A wCB — cwA A wB .
c

Let M be a two dimensional oriented Riemannian manifold and

(2.4) x: M-+~M

be an isometric minimal immersion of M into M. In this paper we will
agree on the following ranges of indices: 1 ̂  i, j, ^ 2; 3 ̂  a, β, ^
iV. To study the geometry of the immersed surface M we restrict our-
selves to orthonormal frame fields over M such that β; are tangent
vectors of M at each point of its domain of definitions. Then we have

(2.5) wa = 0 .

By (2.2) and the Cartan's lemma, we can put

(2.6) wia = Σ haijWj , / ^ = fcαjί .

The condition that x is minimal is expressed by

(2.7) £ fc^rr 0 .

We define the covariant derivatives haijtk's of haij'a by

•DΛαίi = Σ haiitkwk

(2.8) λ

= rf^αίi + Σ ^αsi^i + Σ KisWsj +
8 S /S

Taking the exterior derivative of (2.6) and using (2.2) and (2.3), we get
Σ i DKij A Wj = 0, and so

(2.9) haijtk = /̂ αίfc,i

As the dimension of M is 2, we see by (2.7) that (2.9) is equivalent to

(2.10) Λflfii,2 — ^αi2,l > ^αi2,2 : = ^α i l , l

We put

(2.11) φ = wλ + iw2 ,

(2.12) ifi2) = Λβll + ihai3 and fl"^ = λβll>1 + ihaί2Λ .

By (2.8) and (2.10), we obtain

(2.13) eZfl™ + 2ifli«wlϊ + Σ H(

β

2)wβa = flr«^ .

From (2.13) we derive

(2.14) d Σ W ) 1 + 4ί Σ (H(

a

2))2w12 = 2 Σ -ffίf^iίi^

By the structure equations of ikf, we find

(2.15) dφ = — iw12 Λ Φ ,



472 K. KENMOTSU

(2.16) dw12= -(±^

where K denotes the Gaussian curvature of M.

REMARK 1. The formula (2.14) gives a local differential geometric
characterization of the formula (48) in [7].

3. Higher osculating spaces and n th fundamental forms. In the
study of minimal surfaces with higher codimension in a space of constant
curvature, the concept of osculating spaces plays an important role. In
[2] Borύvka studied such spaces extensively. At present there are good
descriptions of osculating spaces in [7], [10], and [15]. For the purpose of
our calculations, we shall adopt the notation developed in the paper [7] and
we define the covariant differentiation of n-th fundamental tensors: Let
x(s) be a smooth curve C through xeM parametrized by its arc length.
By the covariant differentiation along C we get the vector fields

Dx D2x Dnx
(3.1)

ds' ds2'

The first n vectors in (3.1) at s = 0 are said to span the osculating space
of order n of x(s) at x = x(0). The n-th osculating space Tι

x

n) of M at
xeM is defined to be the space spanned by all the osculating spaces of
order n at x of curves through x and lying on M. We then have
Tx

1}(= ^ c ^ c . . c ^ c . Put

( 3 # 2 ) Pa(x) = dim. Tx

a+1) - dim. Tx

a\ a = 1, 2, , n - 1 .

Then we have

(3.3) dim. 2™ = Σ Vofa) > (n^l) .

A point xeM is called a regular point of order 6, if #>α(α;) is constant
for each a = 1, 2, , δ — 1, in a neighborhood of #.

Suppose now that a; is a regular point of order w — 1 ̂  2. We shall
use the following ranges of indices:

1 + Σ Pa(x) ̂  λ6_2 S Σ Pa(x) , b = 2, 3, , n ,
(3.4)

1 + Σ Pa(x) ̂  K-i ^ N.
α = — 1

L e t eA b e local o r t h o n o r m a l f r a m e fields, s u c h t h a t eλo, eλι,
 m ,etb s p a n

Tx

b+1), b = 0 , 1 , , n - 2. W e t h e n h a v e
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w w . + 1 = 0, for a = b, b + 1, , n - 2 ,
( 3 - 5 V l 6 = 1 , 2 , . . . , * - 2 .

By the exterior differentiation of (3.5) and making use of (2.3), we get

Σ wh_ιh A whh+l = 0 , 6 = 1, 2, ., n - 2 ,

where the sum extends over the range of indices of λ6 not in the range
of 6. This allows us to introduce recurrently the quantities hχh+ιiιii...ib+2

defined by the equations

^δ+iή H+2 a r e symmetric in the set of indices il9 i2, • *,ib+2. Let Ωb be
the open set of all regular points of order 6. We set Ωl = M. Then

(3.7)

We find

Σ . V A Λ * * w^ if α = 6 -
(3.8) fe,Dα;) i *

7 α> ; ( 0, if α ̂  6, n > b ,

which are differential forms of degree 6 and are to be called the 6-th
fundamental forms of M into M.

From (2.7) and (3.6) it follows that

(3.9) Σ hhSJh...ih+ι = 0, 6 = 1, . , n - 1 .
3

Since hhh...ib+1 are symmetric in the il9 •• ,i 6 + 1, the same relation holds
when contracted with respect to any two Latin indices. The integer
pa(x) is equal to the number of linearly independent vectors among

(3.10) Σ hWr. ia+1eλa, i, ^ i2 ^ ^ iα + 1 .

Therefore, at each point of Ωa, we have

(3.11) p.(x) ̂ 2 , a = 1, , n - 1 .

Let

(3.12) flίf = K^ + iAβi;;.u, α ̂  μ^ ,

where μb_, = Σα=oί>β(ί») + l We define the covariant derivatives hah...ibtk's
of hail...h's, a ^ ^6_!, by
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Dhaiv..ih = Σ hai^-i^kWk = dhaiί...ib -f
(3 13) _L V J, /in J_ V

Then we have

where H{

a

b\ = hal...ltk + ihal...ί2fk.

LEMMA 1.

PROOF. From (3.6) we have

(̂  1 5 λ 2 J ^ ^ - 2 ^ 6 - 2 ^ 6 - 1 — M h - i Φ > o — Δ , ό, •••, n ,

where we have put H[ι) = 1 and-flj^ = i Since IRJi" = 0, by (3.8), we
get

(3.16) Σ H[\-_lkwk = HfcSw^^ and H^ = 0 for α ̂  δ .

From (3.15) and (3.16) we get (3.14). q.e.d.
Now we shall construct scalar invariants of the isometric minimal

immersion x. The vector E1 = eι + ie2 is defined up to the transforma-
tion JEΊ —• Eΐ = eiτEί9 where r is real. Under such a change,

In fact, by a direct calculation, we have (3.17)2. When & ̂  3, from (3.15),
we get (3.17)6 by an induction for 6.

The system of normal vectors {ea}, aeμb-lf is defined up to the
transformation

(3.18) eta = Σ Aaβeβ, a e μb^ ,

where (Aaβ) is an orthogonal matrix. Under such a change we have

fjΓ(δ) V A ΈT(b) sv ci ft
•LJ-CC — s i £~*-aβJ~Lβ , CΛ. c fJ-b—l >

and so

(3.19) ^ Σ (£ϊδ ))' = , β Σ Wδ ))2

It follows from (3.17) and (3.19) that the real valued scalar field,

/Q Ofi\ ^ I V fTT(b)
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is globally defined on the connected components of Ωb_17 being inde-
pendent of the choice of the frame field. / ( 2 ) is a globally defined smooth
function on M.

We have the following decomposition of f{b) on JQ6_1: Let

K(b) — Σ (^αi—i + h2

al...ι2) and

(3.21)
= Σ "'αl l Z-l ^Όrl -12 ( Σ hal...ί/lal...ί2 )

Then we have, by a direct calculation,

(3.22)6 / ( W = # (

2

6 ) - AN(b) ^ 0 , 6 = 2, 3, - -, n ,

where ϋΓ(δ) and N{h) are also invariants of the isometric minimal immer-
sion x of M defined on £?6_1# Especially we have

( 3 . 2 3 ) JBΓ(2) = — Σ h2aij 9 AΓ(2) = 777 Σ -Bα/Sij >

where Raβij = Σs {hai8hβh — hβishaj8) are components of the curvature
tensor of the normal connection waβ.

When the differentiable 2-sphere is minimally immersed into a space
of constant curvature, we have f{b) = 0, 6 = 2, 3, . This fact is essential
in the papers of S. S. Chern [7], [8]. Geometrically f{b) = 0 means that
the vectors Σ2

α=2&-î αi. ie« and Σ«=2δ-i Tw.^α in the osculating space of
6-th order are perpendicular to each other and are of the same length.
On the other hand, N{b) = 0 means that the above two vectors are linearly
dependent, by the Cauchy-Schwartz equality. Moreover, for the geometric
meaning of Kib) and Nw, we have the following lemma by T. Otsuki
([15, p. 96]).

LEMMA 2 (T. Otsuki). // M = Ωh and N{b) > 0 and Kib+1) = 0 on M,
then there is a 2b-dimensional totally geodesic submanifold of M such
that M is contained in the submanifold.

If M — β6_! and N{b) = 0 and K{b) > 0 on M, then there is a (26—1)-
dimensional totally geodesic submanifold of M such that M is contained
in the submanifold.

4. Laplacians of fb) and K{b). We use the operators 3, 3 relative
to a complex structure induced by an isothermal coordinate on M and

(4.1) dc = iφ - d) .

For any real valued smooth function / its Laplacian Δf is defined by
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(4.2) dd'f = (—)dfφ A Φ .

The following lemma is usefull to the study of fw.

LEMMA 3. Let M be a 2-dimensional oriented Rίemannian manifold.
Let H be a complex valued smooth function on M and f = HH. Suppose
that

(4.3) dH + niHw12 = Aφ

holds, where n is a real constant and A is a smooth function M. Then
we have

(4.4) Δf = 2{nfK + 2AA} ,

(4.5) Δ log/ = 2nK, if f Φ 0 .

PROOF. By (4.3), we have

(4.6) df - HdH + HdH = AHφ + AHφ ,

and so

(4.7) def = i(AHφ - AHφ) .

Taking the exterior derivative of (4.3) and making use of (2.15) and
(2.16), we get

(4.8) dλ A Φ = nidH A wι2 - iAw12 A Φ + ^HKφ A Φ

Δ

From (4.3), (4.6), and (4.8), we derive

(4.9) d(AH) Aφ- d(AH) A Φ = idf A wa + (nfK + 2AA)φ A φ .

Thus (4.4) follows from (2.15), (4.7) and (4.9). (4.5) follows from d° log/ =
i(Aφ/H - Aφ/H) and

(4.10) d(—) Aφ - d( 4Λ AΦ = id log/ Λ wι2 + nKφ A φ . q.e.d.

The Codazzi equation (2.10) implies (2.13). In general we have

Φ = 0, for a^μ^.

To prove (4.11)δ by an induction we assume, noting that (3.13)',

(4.12) Hίh,Γ1} = iH^ , for a ^ μb-2 .

Then we see
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(4.13)

where a ;> μ6_2 and δ ;> 3. We put

(4.14) dir<?ru + ibH£rι>wa + Σ flϊ!Γ1)wίβ = H^w, + ffift'w, .

Taking the exterior derivative of (4.13), we have

ΔH^w, A w2

(4.15) , ,
= (6 - VKH^Wt A w2 + i Σ H?-ι\ Σ w,BAwBa),

where λ6_3 = {A 11 ^ A ̂  Σi-S P.(*)} and

(4.16)

(4.15) implies J H i δ " υ = 0 for a ^ / 6̂_x, by (3.4)6_3 and (3.7). By Lemma 1
and (4.16), we get (4.11). The formula (4.11) is the Codazzi equation of
higher order. (4.11) implies

and thus we have

where

(4.18) Am = 2 Σ Hiδ)Hίίί

From (4.17) and Lemma 3, we have

(4.19) 4Λδ) - 4{6/(6)ir + A ( 6 )Z^} , b = 2, 3, . , n .

By the Lemma 2, we shall study the case of N{b) Φ 0, for 6 = 2, 3, •••,
n — 1. Then we have pb(x) — 2, for 6 = 1, , n — 2, 26 + 1 ̂  λ6 <Ξ
26 + 2, 2n — 1 ̂  λn_,. ^ iV and α: ̂  ^δ_! is equivalent to a ^ 26 — 1.

Next, we calculate the term Σ^2δ-4 w M Λ wAa in (4.15): From (3.15)6-!
with λδ_2 = 26 — 3 and its conjugate, we have

ί
τ> 0.) _ fj(b-2) rτ(δ-i) I __ r7(6-2) τf (6-D A

X>(6—2) t^2δ—5,26—3 — £ 1 (26—4)-^(26—3)ψ J^L{2b—4)JΓ-L(2b—3)ψ >

jD(6_2)Xt/2δ-4,2δ-3 — -^(26-5)-" (26-3)V9 •"(26-5)-" (26-3)9

where
/ Γ> _ fj(6-2) Γ7(6-2) Γ7(6-2) ZJ(b-2) _

£*{&-2) — i i (26-4)-" (26-5) •" (26-4)-" (26-5) —

,- 2*1 .

(6_2) = /Z'(26-B)l l^(2δ-4)1 12
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From (S. lδ)^ with λ6_2 = 2b - 2 we find

,. ^ v •*5(δ-2)«V(25-β)(2δ-2) — •n(2b-4)J^-{2b-2)(P •"(2δ-4)-"(2δ-2)9'

•D{b—2) W(2δ-4) (26-2) — •"(2δ-5)-"(2δ~2)9' *2(2δ—5)-" (2δ-2)9'

By (4.20) and (4.22), we have

(δ-2) ||2 || IT(6-2)
(2δ-5) I -"(26-4){ II 7T(δ-2)

Σ -Q(2δ-5)
=-

By (4.21) it follows that

{
^ ( 6 1 ) 9 /\ ζZ>

Σ W(2δ-3U Λ w i l M = - ^ ^ x / ^ f t . ! ) ^ Λ w29 for 6 ^ 3 ,

where we have put H[1] = 1, iϊ^υ = i and thus Na) = 1, ϋΓ(1) = 2. Thus
we find

(4.23) Σ H*-"ΔH*-» = (δ -

On the other hand, by virtue of (4.13) and (4.14), we have

(4.24) α^26-3 _ _

dd'Kw = i Σ {H^AH^ + 2H^ι)H{

a

h,v1)}φ Λ ^ .
^ 6 3

From these formulas, (4.23) and Lemma 1, we get

i-ΛBΓd-D = (5 - lJΉΓo-!, - 2^=ϋ2SΓ(W) + 2KW + 2 Σ (H^H^J .
Δ iV(6_2) ^δ-2

Summarizing these results, we get

THEOREM 1. Let M be a minimal surface in a space M of constant
curvature. Then on a neighborhood of a regular point of order n — 1 ^
2, we have

(4.25) Hi*l = iH{

a% for a ^ μb^ and b = 2, 3, , n

(4.26)δ 4fw = WWK + A(6)Z^}

ΔK = 2 fd

)»

+ 2 Σ (Wll^miU.d, if Nίb.1}
h-i

—
(4.27)» 2

REMARK 2. If M is a 2-sphere, then (4.27) is proved by S. S. Chern
[7, p. 38].
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Added in proof (May, 1973). Since the completion of this paper, the author obtained
^-dimensional generalizations of (4.25) and (4.27); the details are to appear in a sequel.






