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1. Introduction. Let (M, g) be an m-dimensional Riemannian manifold
with (positive definite) metric tensor g. By K(X, Y) we denote the sectional
curvature for a 2-plane spanned by X and Y. Let x be a point of M
and let 7 be a g-plane at x. Let (¢;,2=1,---, m) be an orthonormal
basis at « such that e, ---, ¢, span 7w (such a basis is called an adapted
basis for ). 8. Tachibana [3] defined the mean curvature o(z) for = by

‘0(77,') = ——1_ Z 2 K(etx, ea.) ’

q(m — q) a=g¢+1 a=1

which is well-defined, i.e., independent of the choice of adapted basis for
w. He obtained the following

ProrosiTION A. (S. Tachibana [3].) In an m (> 2)-dimensional
Riemannian manifold (M, g), if mean curvature for g-plane is indepen-
dent of the choice of q-planes at each point, then

(i) for g=1o0r m—1, (M, g) is an Einstein space,

(ii) for 1<qg<m—1 and 29 #= m, (M, g) is of comnstant curvature,

(iii) for 29 = m, (M, g) is conformally flat.

The converse is true.

Taking holomorphic 2p-planes, instead of g-planes, an analogous result
in Kahlerian manifolds is also obtained.

ProposITION B. (8. Tachibana [4].) In a Kahlerian manifold (M, g,.J),
m = 2n = 8, if mean curvature for holomorphic 2p-plane is independent
of the choice of holomorphic 2p-planes at each point, then

(i) forl<p<mn—1and2p+n, (M, g,J)is of constant holomor-
phic sectional curvature,

(ii) for 2p = m, the Bochnmer curvature temsor vamnishes.
The converse is true.

Proposition A is the best possible. However, in Proposition B the
case m = 4, 6 and the case p =1 or » — 1 are excluded. We prove for
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p=1(r n—1) and m#4 in Lemma 1, and for p =1 and m =4 in
Lemma 3. Consequently we have a generalization of Proposition B:

THEOREM. In a Kahlerian manifold (M, g,J), m = 2n = 4, if mean
curvature for holomorphic 2p-plane is independent of the choice of holomor-

phic 2p-planes at a point x, then
(i) for1<p=n-—1and 2p = n, (M, g,J) is of constant holomor-

phic sectional curvature at x,
(ii) for 2p = n, the Bochner curvature temsor vanishes at 2.

The converse is true.

If mean curvature for holomorphic 2p-plane is independent of the
choice of holomorphic 2p-planes on M, then (i) (M, g,J) is of constant
holomorphic sectional curvature, or (ii) the Bochner curvature tensor
vanishes. For (i) the converse is true. For (ii) the converse is true, if

the scalar curvature S is constant.
Since the case m = 2 is trivial, the above theorem is the best possible.

2. The case p =1 and n # 2. Let (M, g,J) be a Kahlerian mani-
fold with an almost complex structure tensor J and the Kahlerian metric
tensor g. Then we have

@2.1) X, Y)=gUX,JY), JJX=—-X, PJ=0,

where X and Y denote vector fields on M (or tangent vectors at a point)
and / denotes the Riemannian connection with respect to g. By R =
(R';1), R, = (R;;, = R";,) and S = (R;,9°*) we denote the Riemannian curva-
ture tensor, the Ricci curvature tensor and the scalar curvature. Then

(2.2) R(X, Y)Z = RUJX,JY)Z,
2.3) R(X,Y) = R(JX,JY).

For a J-basis (e;, Je; = ex, A =1, -+, 1) we have
(2.4) Ri(e, e) = K(e, Je) + 3 [K(e, ) + K(e, )] .
g=2
Let (X, Y) be an orthonormal pair at x such that ¢(X,JY) = 0. Then,
we have (cf. for example, R. L. Bishop and S. I. Goldberg [1], p. 517)
KX, Y)+ K(X,JY)
25) _ %[H(X+JY)+H(X—JY)+H(X+ Y)+H(X—Y)— H(X)-H(Y)]

where H(X) = K(X, JX) denotes the holomorphic sectional curvature for
X. An adapted basis for a holomorphic 2p-plane 7 is of the form:
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(61, S0y €py Cuny 200y By €piyy 00y €y Cipryys, 000, en‘)

such that e, «++, ¢,, €5, +++, e,» span 7. The mean curvature p(z) for = is

(2.6) o(z) = —2;(771—_—15)— 3 3 [K(en, €) + Klewy 0] -

LEMMA 1. If n+ 2 and if mean curvature for holomorphic 2-plane
1s independent of the choice of holomorphic 2-planes at x, then (M, g,J)
is of constant holomorphic sectional curvature at x.

Proor. By (2.6) and p = 1 we have

@7 =T 2 K@ 0 + Ko )] = p(m) = .
By (2.4) and (2.7), we have
(2.8) 2(n — 1)p = Ry(e,, e,) — K(e,, Je,) .

Since K(e,, Je,) = H(e,) and since o(7) = p is independent of 7, we have
for any unit vector X at

(2.9) 2(n — 1)p = R(X, X) — H(X) .

Since R, satisfies (2.3), we have a J-basis (¢;, Je;) such that R, is diagonal
with respect to (e, Je;). Putting X = sin fe, + cos fe, in (2.9), we have

2(n — 1)p = sin*0R,(e,, e,) + cos *0R,(e,, e,) — H(sin fe, + cos fe,) .
Applying (2.9) again to ¢, and e,, we have
(2.10) H(sin fe, + cos fe,) = sin *0H(e,) + cos *0H(e,) «
More generally, for X = 3 (A,e; + BiJey), D.(4% + B} = 1, we have

@.11) H(X) = 3 (4 + BYH) ,

where we have used H(e;) = H(Je;). By (2.10) or (2.11), we have
H(e, + Je)) = %H(el) + —;—H(eq) . ete

Therefore, (2.5) gives

2.12) K(e, €) + Kle,, €) = 711_[1{(@1) + Hie,) -

Putting (2.12) into (2.4), we have

Ry, &) = Hie) + 31(n — DHE) + 31 He,)] -
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The last equation and (2.8) give
(2.13) 8(n — 1)p = (n — 2)He)) + ; Hie,) .

(2.13) holds for e,, ++-, e,. Thus, n = 2 implies
H(el) = H(ez) = e = H(e'n) .

Then (2.11) shows that (M, g,J) is of constant holomorphic sectional
curvature at w.

3. The case p =1 and n = 2. Most part of the proof of Lemma
1 is valid in this case too. Let (e, e, es, e..) be a J-basis at  which diago-
nalizes R,. By (2.3) if we change (e, ¢,.) — (&, &) by & = ae, + Be., &* +
B =1, R, is still diagonalized with respect to (e, e., &, €.). We choose
a so that K(e, @'e, + S'e,) takes the maximum for o' = a. We write
(e, e, 6, €,.) again by (e, eu,e, €,.). We need the following well known
lemma (cf. for example, R. L. Bishop and S. I. Goldberg [1], p. 512).

LEMMA 2. Let ¢, ¢;, ¢, be part of an orthonormal basis. If K(e;, e;)
is critical in K(e;, cos fe; + sinfe,), then Ry, =0 (where Rij, =
g(R(ek’ el)ej: ei))' ‘

By our choice of the J-basis and by Lemma 2, we have

(3.1) Ryw = 0.
By (2.2) and (3.1), we have
(3-2) 'R121*2 == R1*2*12" - R1*2*1*2 = O .

Next for an orthonormal pair (X, Y), we have

05 K Y) = %[3(1 + cos O H(X + JY) + 3(1 — cos Oy H(X — JY)
_HX+Y)- HX-Y)— HX) - HY)],

where cos § = g(X,JY)(cf. R. L. Bishop and S. I. Goldberg [1], p. 516).
Putting X = ¢, and Y = cos te, + sinte, in (8.3), we have

3.4) K(e,, cos te,. + sinte,) = —é—[(l + Tcos’t)H(e,) + sin®tH(e,)] ,

where we have used (cf. (2.11))
H(e, — cos te, + sin te,.)

1 .
= 1 - 2 2, 2 1 ’ .
50— cos 9 [( cos t)*H(e,) + sin® tH(e,)] ete
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By (3.4) we see that K(e, e.) is critical in K(e,, cos te,s + sin te,). Hence,
Lemma 2 gives
(3.5) Ryo = 0.
Similarly we have

Rzzm* = Rn*xz = Ru*m* =0 ’

Rzz*zq* = R22‘2*1 = Ruqtz* = .Ruqtg = O .
By (3.3) and (2.11) we have

(3.6)

3.7) —Em=%ﬂmo+ﬂ@»=—Rm”=—Rmm
Of course, H(e,) = — R,;y» and H(e,) = — Rywse. By (2.18), we have 8p =
H(e,) + H(e,). (2.9) gives
(3.8) H(e,) + H(e,) = 4R\(e,, €,) — 4H(e,) .
We write R,(e;, ¢;) = R;;. Then the scalar curvature S is given by
S =R, + Ry + Ry + Ry
= 3H(e,) + 3H(e,)
by (3.8) and (2.3). Hence, by (2.9) again, we have

(3.9)

m=Rw=m@+%&

(3.10) .
Rzz = Rz*gt = H '—S .
(e) + 12

On the other hand, ¢ and J have components:

(3.11) 9ii = 0ij »

szt = J,u: = —qu = —1 )
3.12
( ) J1i=0, ’l:?':)\,*o

The Bochner curvature tensor (Bi;,;) is given by (cf. S. Tachibana [2],
K. Yano and S. Bochner [6])

1
Biju = Rijyy — ———(Rug9u — Rugu + 9iRiy — 91 R
m+ 4

+ R JiJy — RjJiJy + JuRiJ; — JuRiJ5
(3-13) - 2R’"‘J;Ji.7' - 2RirJ;Jkl)
S
(m + 2)(m + 4)

(95195 — 908 + JuJu — T — 2J0di5) «



422 S. TANNO

LEMMA 8. Let m = 2n = 4. If mean curvature for holomorphic 2-
plane s independent of the choice of holomorphic 2-planes at x, then
Bi.’ikl = 0 at Lo

ProoF. Since B;;; is a K-curvature-like tensor in the sense of
S. Tachibana [4] and indeces 1 and 2 are reversible, it suffices to show
B;;i,; = 0 for the following six cases:

(i5kl) = (11*11%), (11*12%), (11*12), (1212), (1212%), (12*12%) ,

because, for example, (11*22*) is verified by (1212) and (12*12*) by the
Bianchi identity and (2.2). Verification is made applying (3.1), «--, (3.12)
to (38.13) with m = 4.

4. The converse. If a Kahlerian manifold (M, g,J) is of constant
holomorphic sectional curvature H (at x, or on M, resp.), for any J-basis
(e;, Je,), we have

K(ey, ex) = H,

(4.1 K(ey, ¢;) = -Z—H for i = \* .

Hence p(7) is constant (at x, or on M, resp.).
Next, assume that (M, g,J) has the vanishing Bochner curvature
tensor at x. Take any J-basis (e, Je;). Then (3.13) gives

Ripau = Rz

4.2) 1 ® )
= T gm T e

1
(m + 2)(m + 4)S’

where A = ¢, Let m be a holomorphic 2p-plane spanned by (e, -, e,
s, v++, e,). Since K(e, e,) = — Rya0 by (2.6) and (4.2) we have

om) = _210(4@_1_25,,;::#1 gz[m i— 4(R”  Ba) = (m + 2)1(m + 4) ol
- p(nl_ p)[m }r 4<(n ~ D3 Rt p 3 R
(m f—(?;)(_mpi 4) S ] )
Therefore, if n — p = p, i.e., 2p = n, we have
(4.3) or) = —m+2-2p g I 3.

2(m + 2)(m + 4p_ dn(n + 1)

Thus, o(7) is constant at . po(z) is independent of the choice of points
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2 and the choice of holomorphic 2p-planes 7w at z, if and only if S is
constant.

REMARK. Typical examples of Kihlerian manifolds with vanishing
Bochner curvature tensor are

(1) (M,g,J) of constant holomorphic sectional curvature,

(2) product manifold (M, g,,J,) X (M, 9., J,) of two Kahlerian mani-
folds of constant holomorphic sectional curvature H, = H and H,= —H
(cf. S. Tachibana and R. C. Liu [5]).
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