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SOME QUASI-HAUSDORFF TRANSFORMATIONS
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1. Let {v.} be any given sequence of complex numbers. The quasi-
Hausdorff transformation (H*,y,) is defined by

o [k
(1) te = kg (n)(d"“”vn)sk

whenever this series converges. We will use (H*, v,) also to denote the
matrix of the transformation (1), and write s, ¢ for the sequences {s,}, {t.};
thus (1) may be written

t = (H*, v,)s .

We say that the (H*,v,) method is applicable to s if (1) converges for all
n, so that ¢ is defined; we say that s is summable (H*, v,) to l if, further
t.— 1 as m— . We use a similar terminology for other transformations.
The matrix (H*, v,) is the transpose of the matrix of the Hausdorff
transformation' (H, v,). It is familiar that, given two sequences {v,}, {®,}
(say), we have
(H, v)(H, @,) = (H, v,0,) .

Taking the transpose of this result (with v, ® interchanged) we have, as
is familiar
(2) (H*, v)(H*, 0,) = (H*, v,0,) .

But the matrices considered are not, in general, row finite, so that their
multiplication is not necessarily associative; thus we cannot assert that

(3) (H*, v)[(H*, 0,)s] = [(H*, v.)(H*, @,)]s .

Thus the situation differs from that which applies for the corresponding
Hausdorff transformations in that, notwithstanding (2), we cannot assert
that the result of applying first the (H*, ,) and then the (H*, v,) trans-
formation is the same as that of applying the (H*, v,w,) transformation.

It has been shown by Ramanujan [4] that there is a close connection
between Hausdorff summability (H, p,) and quasi-Hausdorff summability

t For those properties of Hausdorff transformations to which reference is made, see,
e.g. [1, Chapter XI].
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(H*, tt.,)); in particular, whenever (H, p,) is regular then so is (H*, f,,)-
When

1

4 n = ’
(4) Iz (n g

n
(H, p,) reduces to the Cesaro transformation (C, r); thus it is natural to
describe the quasi-Hausdorff transformation (H*, u,.,) with g, given by
(4) as the quasi-Cesaro transformation (C*, ). The properties of (C*,r)
have been investigated by me [2], [3]; a more general transformation was

investigated independently by A. J. White [5].
When

1
(8) P
(H, ,) reduces to the Holder transformation (H, r); we will therefore
describe the (H*, »,,,) transformation with w, given by (5) as the quasi-
Holder transformation (H*, 7).

It is known (e.g. [1]) that Cesaro and Holder summabilities (C, ), (H, 7)
are equivalent. Thus if for a given 7, 4, ®, are given by (4), (5) we
have p, = v,», where (H,v,) is regular. Hence, by what has already
been said

(H*’ #'a+1) = (H*) ”n+1)(H*, wn+1) ’

and (H*, v,,,) is regular. But, since we cannot assert (3), we cannot
deduce from this that summability (C*, r) is implied by summability (H*, 7).
Similar remarks apply with the roles of (C*, r), (H*, r) interchanged.

When r is an integer, the Holder transformation (H, r) is the same
as the transformation obtained by r iterations of the (C, 1) transforma-
tion; and we can deduce that

(6) (H*, ) = [(C*, D]".

But although (6) holds as a relation between matrices, we cannot deduce
that the result of r iterations of the (C*, 1) transformation is the same
as (H*, r).

We will restrict consideration to integer values of 7; accordingly, it
will be assumed throughout from now on that r is a positive integer. On
this understanding, we investigate the relations between (C*, r), (C*, 1),
(H*, r). Here (C*, 1) is used to denote the result of r iterations of the
(C*, 1) transformation.

The results to be proved are as follows.
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THEOREM 1. (C*, r) and (C*, 1)" are equivalent.

THEOREM 2. If s is summable (H*, r) to l, then it is summable
(C*,r) to l. If s is summable (C* r) to I, and if (H*,r) is applicable,
then s is summable (H* r) to l. However, except in the trivial case
r =1, the applicability of (H*, r) ts not implied by (C*, r) summability.

Let now 7, > r (where 7, is also an integer). It is known [3, Theorem
1; 5, Theorems 2,3] that, if s is summable (C*, r) to [ then it is summable
(C*, r) to l. It therefore follows at once from Theorem 2 that, if s is
summable (H*, r) to I and if (H*, r,) is applicable, then s is summable
(H*, r,) to . However, the hypothesis that (H*, r) is applicable cannot
in general be omitted.

THEOREM 3. Let r, > r (r, an tnteger). Let s be summable (H*, r)

tol. If r =1, then (H*, 1) is applicable. This result becomes false if
r> 1.

It follows at once from Theorem 3 and the remarks made above that
summability (H*, r) implies summability (H*, r,) without any supplementa-
ry “applicability condition” when r = 1, but not when r > 1.

2. We require some lemmas.

LEMMA 1. Let

r

F(k, 2) = X, (= 1)*Py(k)a" ;

p=0

r

Gk, 2) = 3, (= 1)°Py(k — )2’ ,

p=0

where, for each p, P.,(k) is a polynomial in k of degree not exceeding .
Suppose that F(k, x) has the property that, when expressed as a polynomial
in k, the coefficient of k? is divisible by 1 — x)? (g =1,2, «--, 7). Then
G(k, x) also has this property.

Write
(7) F(lk, ) = 3, ,(a)k”

It is enough to consider the contribution to G(k, ) of one term in the
sum (7), since the general result can then be obtained by addition. Taking,
then, q as fixed, let a, be the coefficient of k? in (—1)°P,(k); thus

¢q(x) = pz=:o o’ .
The contribution of this term to G(k, ) is



14 B. KUTTNER

(8) z=; a,(k — 0)° .
We can write (8) as L‘,(x), where the operator L is defined by

Lf(@) = kf(x) — af'(x) .

Since ¢,(x) is divisible by (1 — )%, it follows by induction on ¢ that Lg,(x)
is a polynomial in &k of degree t, the coefficient of %k° being divisible by
(1 — z)?*°~t, Applying this result with ¢ = ¢, the lemma follows.

LEMMA 2. Suppose that
V©) = 3% (~1ra

18 divisible by (1 — x)'. Let Q(x) be a polynomial in x of degree v. Then
(9) 3% (—17a,Qk — 0)

is a polynomial in k of degree at most v — q. In the case q = v, the
conclusion is to be interpreted as meaning that (9) is constant; in the
case ¢ > v, it s to be interpreted as meaning that (9) is identically zero.

It is slightly more convenient to prove a similar result, but with (9)
replaced by

(10) 2 (—1)°a,Q(k + 0) ;

this will give the conclusion, for we can apply this result with Q(x)
replaced by Q(—«) and with k replaced by —k.
Write

P@) = 1 — 2)'y. @) ,

and write E for the “shift operator” defined by EQ(k) = Q(k + 1). Then
we can write (10) as

(£ (~1ram)e® = (@ ~ BwEIRM = £6EQMH) -

The operator «+,(F) operating on a polynomial cannot increase its degree;
the operator 4° decreases its degree by ¢ (with the same conventions as
in the statement of the lemma). Hence the conclusion.

LEMMA 3. Let F(k, x), P,(k) satisfy the conditions of Lemma 1. Let
Q(k, n) be a polynomial in k, n of degree v. Then

an 3 (=1°Q(k — 0, WP,(k — 0)
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18 a polynomial in k, n of degree at most v.
Write

Qk, m) = z nQu(k) ;

thus, for each g, Q.(k) is a polynomial of degree at most vy — p.

Lemma 1, we can write

P,k — 0) = % g, k"
where, for each g,
> (—1)°a,,0
=0
is divisible by (1 — z)?. Hence, by Lemma 2

3 (= 1rag,,Qulk — 0)

15

is a polynomial in % of degree at most v — ¢t — q. Multiplying by k'n*

and summing with respect to g, ¢, we obtain the conclusion.

LEMMA 4. Suppose that the (C*, 1)" transformation is applicable to

s; let the (C*, 1) transform be denoted by {t\’}. Then

(12) 8 = z (=1)e P (k)

where, for each p, P\ (k) is a polynomial in k of degree r, and where

(i) For p=1,2, ««or, P\"(k) is divisible by
k+1FE+2) - (k+ 0 ;
(ii) The coefficient of k* in

£k, 2) = 3 (=1 P ()
p=0
1s divisible by (1 — x)%.

Since the (C*, 1) transformation is defined by

W — S Sk
13) N TS F

it is clear that, whenever (13) converges,
(14) s = (k+ 2t — (B + 1tils;

thus the conclusion of the lemma holds when » = 1. Assume now that

the result is true for » — 1 (where » = 2). Since
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t = (k+ 0+ 2)'”39 (kB + 0+ Dtilow s
it follows that

8 = 2 (—1)rPy2()(k + 0 + 2t — (6 + 0 + D)t pes

=3 (— 1P R, ,
0=0
where
(15) Po(k) = (k + p + 2P (k) + (k + OPIiv(E) .

Here we adopt the convention that P/~ (k), P!,""(k) are taken to mean
0. It follows at once from (15) and the induction hypothesis that P (k)
is a polynomial of degree r, and that (i) holds. To prove (ii), we deduce
from (15) that

Jok, @) = 2l — @) f"“"(k x) + k(L — o)f "k, ©) + (2 — o)f " E, @) ,

and (ii) now follows from the induction hypothesis.

It may be remarked that the transformation (14), giving s in terms
of {t{}, is the (H*, » + 2) transformation. The transformation (12) is
obtained by » iterations of this and thus (since we are now considering
row finite matrices) it is the (H*, (»n + 2)7) transformation. Hence

k
P = 1" ) )t + 2
But this result does not appear to be of any help in proving (ii).

We now define S’ inductively by

Sgl) = 8,; S,(,,” — S(()r—l) + Sli'r-l) 4 eee 4 S;’r—-l) (’l‘ g 1) .
As is familiar, this is equivalent to the definition

Si,”=ﬁ‘,(n_k+r_l)sk.

k=0 n—k

LEMMA 5. If A >0, and if

converges, then

converges.
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We take the hypothesis and conclusion in the equivalent forms that

S ket S
;(n—l-x)’ zo;<fn+7»+1)
n n

converge respectively. Write

oo

T, =3 _ 8%
v;»(v-i-)»)
Y

so that T, — 0 as n — . Then

N S;l)
n=o(n + N+ 1)
n

v=0 Yy "V(n+)\t+1>
n
N+ 1 (& 1 yo(v+ A
A+l _ 1 —r)l.
2L - 1) (NHH);O( ez - 70}
N+1

Applying a straightforward partial summation to the second sum inside
the curly brackets, we can now easily prove that this expression tends
to a limit as N — .

COROLLARY. If p is a positive integer, and if

(16) P

i3
n2
converges, then

i anp)
nEte

converges.

3. We can now prove Theorem 1. Suppose first that s is summable
(C*, 1)7; there is no loss of generality in supposing that it is summable
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to 0, so that, with the notation of Lemma 4, t{’ = o(1). It will be
enough to prove that s is summable (C, ) to 0; in other words, that

17 S = o(n") .

For the applicability of (C*, 1)", and thus, a fortiori, the (C*, 1)" sum-
mability of s requires, in particular, that ¢ should be defined; and this is
equivalent to the convergence of (16). But it follows from [3, Theorem 3]
or [5, Theorem 4] that, if s is summable (C,r), and if (16) converges,
then s is summable (C*, r).

Now, by Lemma 4, and with the notation used there,

as) S — i (n —v+7r— 1)3,

=0 n — Y
n (n—y+r—1\ -~
=3 " (—LyPr (),
v=0 n-—y p=0
r N — -1
= 3 (=1 (” v )P,S”(»)til’p
Pp=0 =0 n —y
r o fm—kE+p0+7r—1
— —1)e (" (I (r) |
S0 (T T e - o

We may replace the lower limit of summation in the inner sum in (18)
by k = 0, since, by Lemma 4(i) P,”(k — p) vanishes for the extra terms.
Similarly, since the polynomial

(n—k+p+r—l)
n—k+p
vanishes for k=n+p0+1, -+, n + r — 1, we may, except in the case

© = r, replace the upper limit of summation in the inner sum by » + » — 1.
If we then invert the order of summation, we obtain '

n+r—1 r ’n—-k-i—p—i-?’—l
(r) — (r) —1)° "l —
Sr =5t 3 ( 1)( o )P,,( 0)
+ (=1 PO, = S apty
k=0

say. But since <n - ?l: i Z - 1) is a polynomial in =, k of degree r — 1,

it follows from Lemmas 3, 4(ii) that, for 0 <k<n+r—1, a) is a
polynomial in 7, k of degree not exceeding r — 1. Further, ai),,, is a
polynomial in n of degree r; and, since t{” = o(1), (17) now follows, as
required.
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We now consider the converse implication. Suppose, then, that s is
summable (C*, r); we may again suppose that it is summable to 0. It
follows that (16) converges; also, by [3, Theorem 4] or [5, Theorem 5], s
is summable (C, ), so that (17) holds. Now let R*(n) denote a rational
function of » (possibly different at each occurrence), the degree of the
denominator exceeding that of the numerator by vy, and the denominator
being a product of factors of the form (n + p), with p a positive integer
(repetitions being allowed). With this notation, we will prove that, for
0=12 «..r t¥ exists, and that

(19) 1o = 3 89, RV(n) + ol) .
v=p

When o = r, the sum in (19) is empty, so that (19) reduces to ¢t = o(1).
Thus, once (19) has been proved, the proof of the theorem will be com-
pleted. We prove (19) by an induction argument. Consider first the case
o =1. It follows by partial summation from the convergence of (16) that

S = o(n?) .
Hence, for vy > 1,
(20) Sy = o(n+) .
Using (20), we deduce from (13), by repeated partial summations, that
S(l_)_ S(l)
tw = 1 — n—1 +2 k
(n + 1) wiDm Y ARG TDG OGS 3)}
r 1 S
— + 1 . V. n—1
(n ){ ?s“l(n+1)(n+2)---(n+v+1)
oo S(r)
1)! k
O T T D)
r—1 ! V)
_ v! S, +o(1)

—»Z=1(n+2)~--('n+v+1)

since, when v = r, we can replace (20) by the stronger result (17). Hence
(19) holds when p = 1.

We now assume that (19) holds for p, where 1 < p < 7, and prove
that it holds for p + 1. By definition, {¢t¢*"} is the (C*, 1) transform of
{t’}. The (C*, 1) transform of the term o(1) in (19) exists and is o(1),
by the regularity of (C*, 1). It is therefore enough to consider the (Cx, 1)
transform of a typical term in the sum (19); that is to say, to consider

o1 o SpLEV(E
(1) P NI
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where p < v < r. This series converges, by Lemma 5, Corollary. Also,
by repeated partial summation, again using (20), the expression (21) is
equal to

s - R (n) S Qi g R™(k)
1) — S®, 47N ——— S 47— —
(n+ ){ RIS <(n + D(n + 2)> 25 ((k + 1)k + 2)>}
- #_i‘i S® _ R¥(n) + o(l) .
Here, again, we use (17) to deal with the second sum, and the term

¢ = r of the first sum, inside the curly brackets. Thus (19), if true for
0, is true for o + 1, and the proof of the theorem is completed.

4, In order to prove the remaining theorems, we require some further
lemmas.

LEMMA 6. Let r be a positive integer. Then
(i) For k= n,

. 1 _(k=n)!(n + 1)!
22 4 = K.(n, k) ,
22) <(n+2)’> & + 2)! (n, )
where K, (n, k) is defined by induction (on r) by
Kin, k) =1;
LK, (v, k)
2 K.(n, k) = 3, B %) >2).
(23) (n, by = 3} =i (rz2)
Alternatively, (23) may be replaced by
L K,._(n,v)
K’_ , k) = Ptk st A St Ml Z 2).
(24) (n, B) = 3 Fe=ilte (rz2)
(ii) For fized n,
(25) K (n, k) = LB 1 o((log k)
(r— 1!

as k— oco. Further,
(log k)="""K,(n, k)
18 of bounded variation in k= n.

The result that (22) holds is familiar, and easily verified, when » = 1.
Assume the result true for » — 1, where r = 2. Applying the familiar
formula

(26) 4(a.b,) = 3 ( q)ma,,m-vz;w
y=0 Y
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with
1 1
n— —— bn:‘—'—, :k— ,
“ w9 (n + 2 ¢ "
we obtain
—n [k — n !
@n g1 ) _* p!
) <(n+2)’) ; y J(n+2)(n+8)--(n+v+2)
k=n—9! g (u+vk

(m+v+2) - (k+2)
Gk—n)lm+ 1) *K,_(n+vy,k)
(& + 2)! = onty+2

On changing the notation by replacing (n + v) by vy in the sum in
(27), we see that (22) holds for », with K.(n, k) given by (23).
If we had applied (26) with
_ 1 b - 1
(n+ 2"’ n+2°
a similar argument would have yielded (24). We remark that it may be

verified directly that the two induction definitions are equivalent; for
either gives, for r = 2,

An

1
K,. n, k) = ’
e R PR Sy )
the sum being taken over all v, v, -+, v,_, for which
NEY SV - éur—-lék'

Once (i) has been proved, (25) follows at once by induction on
(using (24)). Further, again using (24), we have, for r > 2

4{(log k)~"""K,(n, k)}
= (log (k + 1))""4,K(n, k) + K,(n, k)4((log k)~"=)

=—®ﬂk+anKﬁgf;l)+@;1&Km@ng%L+%%»

1
=0(——),
(klog 2k>
by (25). The result follows.
LEMMA 7. For fized n > 0,

K,(n, k)
K, (0, %)
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s a mon-decreasing function of k for k = n.
The proof is by induction. The result is trivial when » = 1. Assume
the result true for » — 1, where r = 2. Then, by (24),

K/(n k)  K(nk+1) _ L,(n, k)
K0,k K,(0,k+1) K0, kK0, k+1)’

where

L,(n, k)

K, 0,0 & Ko(ny) & K,0,9) KK, (n, )
vgo v+2 = oy+2 Zﬁ Y+ 2 Zﬁn y+ 2

1 { bR, (n, v) kKquw
= K 0 k+1)> B g o k+1)> LB )L
k+3 Ok +1) 2= (n DY e

But, by the induction hypothesis, we have
K, 0,k + DK, \(n,v) = K,_.(n, k + 1)K,_,(0, v)

for n <y < k. Hence

kK, (0, v)
»Z;» v+ 2

£ K, (0, v)
K. (nk+1 LV, V)
<Ke(n b+ 1) 3=

K0 k+1)3 K=Y o g 4 k4 1)
=S

Thus L,(n, k) < 0, which gives the conclusion.
We now note that, if the (H*, r) transform of s is denoted by {2},
then it follows from (22) that 4{” is defined by

& K,.(n, k)
28 R =(Mm+1 — > ® s
(28) ( )gﬂk+nm+2ﬂ
whenever this series converges. Further, it follows from Lemma 6 (ii) that,
if (28) converges for one value of =, then it converges for all », and
that a necessary and sufficient condition for this to happen is that

(29) IRCL
should converge.

LEmMMA 8. If the (H*, r) transformation is applicable to s, then the
(C*, )" transformation is also applicable to s, and the (C*, 1) transform
18 equal to the (H*, r) transform.

We again prove the result by induction. The result is trivial when
r = 1, since, in this case, the definitions of (H*, r), (C*, 1)" are the same.
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Suppose, then, the result true for » — 1, where » = 2. Suppose the (H*, r)
transformation is applicable. Then (29) converges; and hence the cor-
responding series with r replaced by » —1 also converges, so that (H*, r—1)
is also applicable. By (23) and (28),

(r—1) — < Kf—l(ny k) Q
() M=+ 1) 5 T,

— S [Kr(n9 k) - Kr(n + 1’ k)]
(n + 1)(n + 2) kg‘; TESUES) s
— (n + LY — (n + DAY, .

But, in view of Lemma 7, it follows easily from the convergence of (28)
with » = 0 that

h? = o(n) .
We therefore deduce from (80) that
oo h(’r—l)
31 h:.') =(n + 1 Tk .
1) ( )lﬁzi»(k+1)(k+2)

By the induction hypothesis, and with the notation used in the proof of
Theorem 1, t{ exists and equals h{~". Hence, by (31) and the defini-
tion of t{”, t” exists and equals hJ.

5. The positive part of Theorem 2 follows at once from Theorem 1
and Lemma 8. In order to prove the negative part of Theorem 2, and
also of Theorem 3, we consider the example

7322 (h=2,1=12 +-°);
S, = — 2% (k=2‘ -+ 1,t= 1,2, ...);
0 (otherwise) .
where A > 0. Then
o — 2 (k=2t=12 --2);
0 (otherwise) .

Since
é t—222t — O(T—-122T) ,
t=1

we see that S = o(k?), so that s is summable (C, 2) to 0. The series (29)
diverges if » = A + 1, since the general term does not tend to 0; and it
is easily proved that it converges if » <A + 1. In particular, (29) con-
verges when r =1; in other words, (16) converges, so that (C*, r) is
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applicable (for any r). Thus, by [3, Theorem 3] or [56, Theorem 4], s is
summable (C*, r) for r = 2. But, if » > 2 and we choose A <r —1, (H*,r) is
not applicable. Further, if 2 <» < r,, we may choose A so that r —1 <A<
r, — 1. Then (H*, r) is applicable, so that, since s is summable (C*, r),
it is summable also (H*, r); but (H*, r,) is not applicable.

It remains only to consider the case r = 1 of Theorem 3. Summability
(H*, 1) is the same as (C*, 1), and this is known to be equivalent to (C, 1).
It follows, a fortiori that if s is summable (H*, 1) then the (C, 1) means
are bounded; that is to say

(32) Sy = O(k) .

The convergence of (29) (with » replaced by r,) follows at once by partial
summation; indeed, a weaker result that (32) would suffice for this.
This gives the conclusion.
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