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Abstract. By means of Laplace transform and their inverses we have
obtained three inversion formulae for some hypergeometric transforms whose
kernels are Whittaker's function Wk,m, confluent hypergeometric function
ijPi and Gauss hypergeometric function %Fι respectively. Corresponding in-
version formulae derived from Erdelyi's work are also mentioned.

1. Introduction. The Laplace transform of φ(x) is denoted by
} and defined by

with φ(x) and ^(ί) related as in (1) the inverse Laplace transform of
is written

&>-*{γ(t)} = φ(x) .

The Mellin transform of /(t&) is denoted either by Λf {/(%)} or by F(s).
Usually u is real and positive while s is a complex variable of the form
8 = σ + iτ, σ and τ are both real.

We denote the Mellin transform [9, p. 46] of a function /(%),
F(s) as:

( 2 ) M{/(u)} = F(s) =

where f(u)us~l£ L2(0, °°).
If f(u) and F(s) are related as in (2) then the inverse Mellin trans-

form of F(s) can be denoted by M"1{F(s)} = f(u) or by equation [9, p. 60],

(3) f(u)= - F(β)u-d8,

where F(s) e L2(σ — iτ, σ + ίτ), — oo < τ < oo, and C is a suitable contour
in the complex s-plane.

If M{h(u)} = H(s), and M{f(u)} = F(s), then the Mellin-Parseval theo-
rem [9, p. 94] states that
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( 4 ) \~h(u}f(u)du = JL f H(β)F(l - s)ds ,
Jo 2πι Jc

where C is a suitable contour in the s-plane.
An attempt has been made in the present paper to obtain three in-

version formulae by a systematic use of <Sf and eί̂ "1 operators. As the
tables of Laplace transform [3, 4] are available this methods seems to be
more simple and convenient. Some particular cases are mentioned and
the solutions obtained are illustrated by simple examples.

The operators of fractional integration play an important role in the
inversion of hypergeometric transforms, in this connection the work of
Erdelyi [2] is worth mentioning here, who developed a general theory.
Here we have mentioned corresponding inversion formulae deduced from
Erdelyi's results [2].

We shall make use of following results [3, p. 337, (14), (9), (19)] in
our investigations

( 5 ) M{(tu)λ-l"e-w Wk m(tu)} = Γ* Γ(λ + m + 8)Γ(λ ~ m + g) ,
jΓ(λ — k + 1/2 -f s)

R(\ ± m + s) > 0, t > 0,

where we considered that M acts upon a function of u.

- a; T, ux)} = ̂  ~ s)

Γ(a)Γ(Ύ - s)

R(u) > 0, #(0:) > E(s) > 0, 7 Φ 0, -1, -2,

. .<o.i);u-r.ι>
Γ(7 - 8)

R{s + 1 + min (0, 1 - 7)} > 0

#{max (-α, -/3) + s + 1} < 0 .

Our analysis of the present paper is based on the following interest-
ing theorem due to C. Fox [5, p. 300], which describes annihilating power
of &~\

If: (i) a > 0, (l/2)<* + β > 0, ί > 0;
(ii) s = σ + iμ, σ and μ both real

F(8)eL(±-- ioo,-I + ίoo
\ & £

then

(8) £?-A-±—\ Γ(as + β)F(s)Γas-tds\ = —
(2πι Jα ) 2πί
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where, for both integrals, the contour C may be the line σ = 1/2 a line
parallel to the imaginary axis in the complex s-plane. And

(9) ,
2πi )cΓ(as + β) ) 2ττi

2. Inversion formula for the transform whose kernel is the
Whittaker's function. Mainra [7] gives a generalization of the Laplace
transform (1) as

(10) g(t) =

where Wk,m(tu) is Whittaker's confluent hypergeometric function [11, p.
334].

In this section we shall obtain an inversion formula for the transform
(10).

THEOREM 1. If
( i ) (λ ± ra) > 0, (λ - k + 1) > 0,
(ii) f(x)eL2(Q, °o), then g(t) is defined and also belongs to L2(0, oo),
(iii) β'+^jFXl - β) e L2(l/2 - ioo, 1/2 + i<χ>),

β M *-̂ ! _ 8) 6 L2(l/2 - ioo, 1/2 + ioo),
(iv) F(l - s) e L2(l/2 - ioo, 1/2 + ioo),

(v) iT' /ωeZΛO, ~),
where f(y) is of bounded variation near the point y = x, then the inversion
formula for the transform (10) is

(11) f(x) = α?-(;+w)

c^-^rm-fc+1/2^?[^-fc+1/2-u-w)

c^-Hr(;-w)^)}]} .
PROOF. We first apply (4) to the right hand of (10). For large

positive u and t > 0 the kernel of our integral equation behaves as [11,
p. 336],

(12) (tuγ-ll2e-(ll^tuWk>m(tu) = (tu)M-We-**{l + 0(uΓ1)} .

For small positive u we express the Wk,m(u) in terms of the Mk,m(u) and
Mkt-m(u) series [11, p. 340], where the two M series are defined in [10,
p. 332]. We then have for t > 0, u positive and small

(13) (tuy-ll2e-^tuWk,m(tu) = (tu)λ±m{l + 0(u)\ ,

since condition (λ ± m) > 0 it follows from (12) and (13), that the ex-
pression inside the square braces in (10) belongs to I/2(0, oo) when con-
sidered as a function of u. Further we have that f(u)eL2(Q, oo) and
hence we can apply (4) to the righthand side of (10) by virtue of the
result [9, p. 95, Theorem 72]. Using (5) we have
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(14) g(t) = -1- - ^ _ g)d tv ' V ' Jι/2-ico Γ(λ - Λ + 1/2 + β)

where the contour in the s-plane is the straight line s = 1/2 + iτ and τ
varies from — oo to oo.

Following the work of Fox [5], we shall now try to eliminate the
three gamma function occur ing in the integrand.

From the asymptotic expansion of the gamma function [11, p. 273]
along the line s = 1/2 + iτ, for large | τ |, we have

(15) Γ(λ + mJ-^)Γ(λ^-m + β

and

Γ v i xΓ(λ — & + 1/2 + s)

Multiplying both sides of (14) be t~λ+m and then operating & ~\ we
have

(17) 5e-l{t-λ+mg(t)}

Λm + λ + 8) a-.)-

Jι/2-ίoo Γ(λ - fc + 1/2 + «)

Now to eliminate Γ(λ - k + 1/2 + s), we multiply (17) by x*
then by means of the £f operator we have

(18) ^[xλ-k^-(λ-^^^{r(λ-^g(t)}\

= Γ β- y-fe+1/2-(.-.)M f ̂ ^ Γ(λ + m + s) χ8+a-m)-ίF(1 _
Jo ( 2πί Jι/2-tco Γ(λ - fc + 1/2 + s)

The integral involved in (18) are absolutely convergent, as s — 1/2 + ir,
the real part of the power of x in (18) is (λ — k + 1) > 0 and also by (16)

8»+*-ι/ |Γ(l _ s) e L2(l/2 - ioo, 1/2 + ioo).
Now we integrate the α-integral, which results to the elimination of

the factor Γ(λ — k + 1/2 + s) from the denominator, to give

(19)
rι/2+io

- s)Γ(m + λ

Applying inverse Laplace operator (8) to (19), we obtain

(20)
f l / 2 + ΐ o

2m
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on replacing s by 1 — s in (20) we have

1 f 1/2+ toe

= x*+»— L_ I F(s)x~8ds = xλ+mf(x)
2m Jι/2-too

by an appeal to the theorem [9, p. 46, Theorem 28], the application of
which is justified by the condition (v) stated above.

If we simplify the triple integrals in (11), we are lead to

=

'
Γ(2m + 1) 2πί J^-

x Jί^ra -k + 3/2; 2m + 1, tu)g(t)dt, (c > 0)

a result obtained by Erdelyi [2],
Particular Cases: If we set λ = m in (10) then the Whittaker func-

tion transform reduces to the Varma transform [10] and consecuently our
theorem reduces to the one, considered recently by Fox [6, p. 195].

EXAMPLE. Now we consider a simple example to illustrate (11) as
a solution of the integral equation (10).

Let

f(u) = tt*-*-1-1'^-1"1 .

Evaluating the integral equation (10) by [3, p. 217], we obtain g(t) =
2t*K2m(2t112), with this value of g(t) we apply (11). From [3, p. 283; (40)],
we obtained f(x).

3. Inversion formula for the transform whose kernel is the Gauss
hypergeometric function. Rajendra Swaroop [8] utilized Gauss hypergeo-
metric function ^ [1] to define the transform

(21) g(u) = Γ(a^(β} ( Vι(«f # T, - ± x)f(x)dx ,Γ(i) Jo \ u /

which is a generalization of Laplace and Stieltjes transform. He calls it
as Gauss-hypergeometric transform.

In this section we shall obtain an inversion formula for the transform
(21).

THEOREM 2. //
( 1 ) α, β > 1, (Ύ - 1/2) > 0,
(2) f(x)e L2(0, oo ), then g(u) is defined and also belongs to L2(0, oo),
( 3 ) sα+'->-1/2F(l - s) e L2(l/2 - too, 1/2 + too),
( 4 ) F(l - s) e L2(l/2 - too, 1/2 + too),
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(5) 2/"
where f(y) is bounded variation near the point y = x then the inversion
formula for the transform (21) is

(22) -̂M -̂̂ l̂ -M Î̂ -H l̂̂ ί̂ -1 -̂1)}]̂ ,-}],̂ }],̂ -!} = a'-ΛaΓ1) .
PROOF. We first apply (4) to the right-hand side of (21) and from (7)

we have

(23) g(u) = -- (l - «)u ~ ~ ds .
2πi Jι/2-ίeo Γ(Ύ — s)

Now following the same procedure as we have done in previous case, we
eliminate the four gamma function factor from the integrand, then we have

(9&\ &?-i(f«-ι-β\ ς^-
lίί JT l <=-Z^ \\J \e^Z^

S
l/2+ioo

l/2-ίc»

on replacing s by 1 — s in (24)
f l/2+ioo

F(s)(x~1Γsds
l/2-iα.

which completes the proof of our theorem.

As we have [2]

Γ(β

r + 1} jΊ(a, β; τ; -ux) = ιu[(i + uχΓa; 1, 7 - β - 1, β] ,

therefore, if we use systematically the operators / and K of Erdelyi [2],
we may obtain an inversion formula for the transform (21) as

M _ /3Γ(7 - a + 1) 1 c+i~
~

x 2F,(2 - a, 7 - a + 1; β - a + 2; l/(xy))g(l/y)dy, (c> 0) .

EXAMPLE. To illustrate (22), we set

f(x) = 2F,(a9 b',c; -x) ,

then evaluating the integral (21) by [4, p. 422, (14)] we obtain

33Γ.. 10,1-0,1-6,7—11
ΓidU |α-l,j8-l,0,l-cj 9ΠflΛ r ί \/ (b)l (a)

replacing this value of g(u) in the left-hand side of (22) and using [3,
p. 222, (34)] we obtained ^/(or1).
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4. Inversion formula for the transform whose kernel is the confluent
hypergeometric function. By using the confluent hypergeometric func-
tion iF{ [1] as kernel, Erdelyi [2] gave a generalization of the Laplace
transform as

S co
iF^a T, -ux)f(x)dx .

0

In this section we shall obtain an inversion formula for the transform
(25).

THEOREM 3. //
(1) α > l , (7-l/2)>0,
(2) f(x)eL2(Q, oo), then g(u) is defined and also belongs to L2(0, oo),
( 3 ) β -'-ΛPXl -s)e L2(l/2 - i<χ>, 1/2 + ioo),
( 4 ) F(l - s) e L2(l/2 - ioo, 1/2 + ioo),
(5) yll2f(y)eL2(09 oo),

where f(y) is of bounded variation near the point y = x, then the inver-
sion formula for the transform (25) is

(26) ^-Hr

PROOF. From Rummer's relations [1] we have

i-FΊία; τ; -ux) = e'^.F^ - a; 7; ux) .

Then the equation (25) is

(27) g(u) = Γ [e-»\F,(Ί - α; 7; ux)]f(x)dx ,
Jo

we first apply (4) to the right-hand side of (27) and from (6) we have

Using the same procedure as we have done previously, on applying
and =5^~1 we obtain

(29) ^-HΓ
ΓWl 1 f l/2+*

= L W 1 .
Γ(a) 2πi Jι/z-ί

on replacing s by 1 — s in (29), we have

Γ(a) 2πί
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By an appeal to the Erdelyi's operators @ [2], we can obtain an an-
other inversion formula for the transform (25) as

f C + ίoo

(—xu) ( r 'Z }~ 1

x exul2W(rl»_a+1,(ΐ_ui2(-xu)g(u)du, (c > 0) .

As Erdelyi pointed out, given a hypergeometric transform, the inversion
formulae are not necessarily unique.

EXAMPLE. To illustrate (26) we set

F(x) = ίF^air, -ux),

then evaluating the integral (27) by [4, p. 422, (14)] we obtain

πhΛ - ΠT) Γ(C) i -ifflfl ιo,ι-α,-ι+r1
#W π, ^ π, N

 U ^33 _ι + α,o,l-cΓ(a) Γ(ά) Lu J

replacing this value of g(u) to the left-hand side of (26) and using [3,
p. 222, (34)], we obtained (Γ(i)IΓ(a))x^f(yrl).

The author is grateful to Dr. S. L. Kalla for his guidance and help
during the preparation of this paper. My sincere thanks are also to the
referee for his useful, suggestions and coments specially regarding the
work of Prof. Erdelyi cited in the text.
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