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Introduction. By an analytic space, we mean a reduced, Hausdorff,
complex analytic space. By a complex fiber space, we mean a triple (X,
7, S) of analytic spaces X and S and a holomorphic map 7 of X onto S.
By a family of complex manifolds, we mean a complex fiber space (X,
7, S) such that there are an open covering {X,}.., of X, open sets {2.}ac4
of C", an open covering {S,}.c. of S and holomorphic isomorphisms

Dot Xo— 20 X S,
such that the diagram

X, Ta Q. % S,
~~ —
n\ / proj
Se

is commutative for each ae A. By the definition, each fiber 77'(s), se S,
is a complex manifold. S is called the parameter space of the family. If,
moreover, 7 is a proper map, we say that (X, «, S) is a family of compact
complex manifolds. In this case, each fiber is a compact complex manifold.

Let V be a compact complex manifold. We denote by Aut (V) the
group of automorphisms (holomorphic isomorphisms onto itself) of V. It
is well known that Aut (V) is a complex Lie group (Bochner-Montgomery
[1]).

The purpose of this paper is to prove the following theorem.

MAIN THEOREM. Let (X, w, S) be a family of compact complex mani-
folds. We assume that S satisfies the second axiom of countability. Then
the disjoint unmion

A =TI Aut (z7'(s))
8esS
admits an analytic space structure such that (1) (4, \, S) is a complex
Jfiber space where N: A— S is the canonical projection, (2) the map

XXA—-X
s
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defined by
(P, f)— f(P)

18 holomorphic, where

XX A={P fle X x Alx(P) = M)},

the fiber product of X and A over S, (3) the map
S—A
defined by
s— I,
18 holomorphic, where I, is the identity map of w'(s), and (4) the map
AXA— A
defined by ’
(f,9)—9'f

1s holomorphic, where

AXA={(f,9)edxAMS) =M},

the fiber product of A and A over S.

The method of the proof of Main Theorem is based on those of [8]
and [9], ideas of which are essentially due to Kuranishi’s [6].

If we put S = one point, our proof of Main Theorem gives a new
proof of the above theorem of Bochner-Montgomery. In this case, A =
Aut (V) has no singular point, for it is homogeneous. In general cases,
A may admit singular points, even if S has no singular point. This is
naturally expected, because dimensions of automorphism groups vary upper
semicontinuously on parameters [5]. In the case of the family of Hopf
surfaces, we have shown Main Theorem by direct calculations [10]. In
this case, A admits singular points.

Main Theorem was conjectured by Professor Heisuke Hironaka. I
express my thanks to him for his proposal of the problem, his comments
and his encouragement.

1. Maximal families of holomorphic maps—Theorem 1. Let (X, , S)
be a family of complex manifolds. Let T be an analytic space. Let b
be a holomorphic map of 7T into S. We put

PX = XX T={(Pt)e X x T|z(P) = b))

and b*m = the restriction of the projection
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XxT—T to bX.

Then it is easy to see that (b*X, b*m, T) is a family of complex manifolds.
Each fiber (b*7)~'(t) is written as 77'(b(t)) x t. We sometimes identify
(b*m)~(t) with 7'(b(z)).

DErINITION 1.1. Let (X, 7, S) be a family of compact complex mani-
folds. Let (Y, ¢, S) be a family of complex manifolds with the same
parameter space S. Let T be an analytic space. A triple (&, T, b) is
called a family of holomorphic maps of (X, w, S) into (Y, #, S) if and
only if (1) b is a holomorphic map of T into S and (2) E is a holomorphic
map of b*X into b*Y such that the diagram

b X £ b»Y

\ /
A~ b
T

is commutative.
T is called the parameter space of (E, T, g).

REMARK. For each te T, (b*7)7'(t) and (b*)'(t) are identified with
w'(b(t)) and p'(b(t)) respectively. Thus we may consider (E, T, b) to be
a collection {E.},., of holomorphic maps

E,: 77(b(t)) — £7(b()) .

DEerFINITION 1.2. Let (X, 7, S) and (Y, &, S) be as above. A family
(E, T, b) of holomorphic maps of (X, w, S) into (Y, ¢, S) is said to be
maximal at ¢ point te T if and only if, for any family (G, R, h) of holo-
morphic maps of (X, 7, S) into (Y, g, S) with a point r€ R such that
b(t) = h(r) and

E, = G.:77(b(t)) — (b)) ,
there are an open neighborhood U of 7 in R and a holomorphic map
kU—-T
such that

(1) k(r)=t,

(2) bk =h and

(3) G, = Eyy: 7(h(g) — 17'(1(g)) for all ge U.

A maximal family is a family which is maximal at every point of its
parameter space.

THEOREM 1. Let (X, 7, S) be a family of compact complex manifolds.
Let (Y, o, S) be a family of complex manifolds with the same parameter
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space S. Let o be a point of S. Let f be a holomorphic map of 7 (o)
into p(0). Then there exists a maximal family (E, T, b) of holomorphic
maps of (X, w, S) into (Y, 1, S) with a point t,€ T such that

(1) b)) =0 and

(2) E, = f:77'(0)— 17(0).

REMARK. Theorem 1 corresponds to Theorem of [9]. In fact, Theorem
1 is essentially reduced to Theorem of [9], if we consider the graph I';
of f. However, in order to prove Main Theorem, we need the concrete
construction of the analytic space 7. So we prove Theorem 1 in the
sequel. The method is thus similar to that of [9].

2. Banach spaces C?(F, | |). In this section, we refer some results
of §2 of [8], which will be used in the sequel. Let V be a compact
complex manifold. Let F be a holomorphic vector bundle on V. Let
{U)ier be a finite open covering of V such that (1) the closure U; is con-
tained in an open set U, having a local coordinate system

(zi):(z‘h“"z?)!
(2) U ={zecU]l|z <1}, where
|2;| = max {|z], ---, |2{|} and

(38) F is trivial on U..

Let ¢,0 < e <1, be a small positive number such that the open sets
U: of V defined by

U; = {zie Ul |2:]| <1 — ¢}

again cover V.

We define additive groups C?(F'), p =0, 1, - - -, as follows. An element
& = {§i...;, € C*(F) is a function which associates to each (p + 1)-ple (%, ***,
1,) of indices in I a holomorphic section Eigerviy of Fon U; N ---NU;_ N U,-p.
In particular, an element & = {§;} € C°(F) is a function which associates to
each index 7¢I a holomorphic section & of F on U, We define the
coboundary map

8: C*(F') — C**'(F)
by

(55)%...1?“(2) = ; (“ 1)v§’.d“‘i»—-1’:v+1'"’:p+1(z)

for ze U;,N -+~ NU;,NU,,,,. Then it is easy to see that ¢* = 0.

We introduce a norm | | in C”(F). For each & = {§;..;}e C*(F), we
define |¢| by
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6] = sup (| &)@ IN=1, 40,7, 2€ U0+ o NTE_ N Try Gy -+, 5,) € P4,

igeeeip
where Eéo...,-p is the representation of the component &y, of & with respect

to the local trivialization of F' on U;. In particular, we define |&| for
e C°(F) by

1§l =sup (8@ N =1, -+, 7, ie ] ze U},
where &} is the representation of &; with respect to the local trivialization

of F on U;,. We note that we denoted | |, in [8] instead of | |.
We put

C'(F, | ) = {§e CP(F)| €] < + oo}

It is easy to see that C?(F, | |) is a Banach space and the coboundary
map & maps C?(F, | |) continuously into C**'(F',| |). We put
Z*F, | ) = (e C(F, | )]o& =0},
B*(F, | ) = (@C*(F) N C*(F, | |) and
HF, | ) = Z*(F, | )/B"(F, | ),
for p=0,1, ---. It is clear that H°(F, | |) is canonically isomorphic to
the 0-th cohomology group H°(V, F') of F.
By Lemmas 2.3 and 2.4 of [8], there are continuous linear maps
E:B(F,| |)—C(F,||) and
E:B'(F, | [)—CF,| |)
such that
0FE, = the identity map on B*F,| |) and
0FE, = the identity map on B'(F, | |).
We put
A=1—FEqd.
Then 4 is a projection map of C'(F, | |) onto Z'(F, | |).

By Lemma 2.5 of [8], B'(F, | |) = o0C°(F, | |) and is closed in Z'(F', | |).
Again, by Lemma 2.5 of [8], H'(F, | |) is canonically isomorphic to H'(V,
F), the first cohomology group of F. Thus there is a subspace H'(F | |),
(we use the same notation for the convenience), of Z'(F, | |) isomorphic
to H'(V, F) such that Z'(F, | |) splits into a direct sum of B'(F, | |) and
H'(F, | )):

Z\(F,| ) =B\(F,| N H'EF,|]).
Let
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B:Z\(F,| )— B'(F, | |) and
H:Z\(F, | )— H'(F, | |)
be the projection maps corresponding to the splitting.

3. Some lemmas. Let (X, 7, S) be a family of compact complex
manifolds. Let (Y, g, S) be a family of complex manifolds with the same
parameter space S. Let o be a point of S. We put

V = 77Y(0)
and
W = ¢ (o) .

Let f be a holomorphic map of V into W. We show that there are
families of open sets {X.};.; and {X};.; of X and {Y};.; and {¥.};c; of Y,
with the same finite set I of indices, satisfying following conditions:

(1) X,c X, and Y;c ¥, for each ie I where A c B means that the
closure A is compact and is contained in B,

(2) {X}ier and {Y};c; cover V and f(V) respectively,

(8) there are an open neighborhood S of o and holomorphic iso-
morphisms
0, x
W, x

such that the diagrams

and

I

\
B~ _ . proj
S

are commutative where U; and W, are open sets in C¢ and C" respectively
(d=dimV, r = dim W), _

(4) there are an open neighborhood S’ of o with S’ S and open
subsets U; and W; of U, and W; respectively with U, c U, and W; € W, such
that

X, =77(U; x §') and
Y, =&(W; x 8)
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for each 7¢I,
(5) there are coordinate systems

() = (75, -++, 20,
(w;) = (wi, ---, w) and
() =@, -8, 0=0),
in U, W, and 9 respectively, where £ is an ambient space of S, such that
U; = {z:¢ Uzl <1},
W, = {w;e Wil lw;| < 1}
for each 7¢I and
S = {se8||s| <1}
(12:] = max {|2i], ---, |2{]} ete.),
(6) f:'(U; x o)) € &7(W; X 0) and
F@(U; x 0)) € &7 (W x o)
for each 7¢ I.
Let I'; be the grach of the map f. Then 7', is a compact subset
of VX W. On the other hand, V x W is naturally regarded as a subset
of XX;Y. Hence we regard I'; as a compact subset of X X,Y. Then,

for each (P, f(P))eI;, there is a neighborhood X, X3, ¥, of (P, f(P))
in X X;Y such that there are holomorphic isomorphisms

Np: Xp— Up x 8, and
EP: YP'_’ Wp X gp
such that the diagrams .
X, Ze »Up x S,
rr\~ /pro_]
Sp

and
Y, i Wr x S,

L, _ 7 proj
Sp

are commutative, where U, and W, are open sets in C? and C" respec-
tively. S, is an open neighborhood of o in S. Let S, be an open
neighborhood of o in S such that S, S,. Let U, and W, be open sub-
sets of U, and W, respectively such that U, c U, and W, < W,. We put
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Xp =75 (Up X Sp) and
Y, = &(Wp x Sp) .
Taking U, and U, sufficiently small, we may assume that
S (Up X 0)) € &54(W5s x 0) and
F05(U5 x 0) € 51 (W5 x 0) .
We may assume that there are coordinate systems
(22) = (2%, +++, 23) and
(wp) = (W, + -+, w})
in U, and W, respectively such that
Uy = {zo€ Us| |25| <1} and
Wp = {wpe Wa||ws| < 1}.

Now we cover I'; by {X, X5, Yr}pev. We choose a finite subcovering

{XP,- éiYP;}ieI .
We put

N = Tp;»

& =&,

U = Us,,

0, = Us,,

W, =W, and

W, = W,
We put

S=nNS§5;,

Let 2 be an ambient space of S with a coordinate system
) =(, -+, 8.
Let 2 be an open subset of 2 such that 2c 2. We may assume that
R={sel||s| <1}.
We assume that o is the origin of 2. We put
S=8ne.

We may assume that
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S'cA Sy, .

iel
We put

X; =n(U; x §'),
X, =770, x 8S),
Y. =&Y(W;x S) and
Y, =&, x S).
Then it is clear that {X}ics, {Xi}ies, {Yilier and {¥;}ic; satisfy above con-
ditions (1)-(6).
Hence;forth, we idgntify 77 U; % 0), 77T ; % 0), &7 (W x 0) and &7(W; < 0)
with U;, U;,, W; and W, respectively.
Now, we consider maps
N = 0 (X N X)) - (XN Xy,
'Sik = Ei5;1: Ek(?; n f’k) — E,;(Yi N f’k) .

7, and &;, can be written as

Nie(Z, 8) = (9ir(24, 8), 8) and
Eu(wy, 8) = (hu(wy, 8), 5) ,
where
g u(X;N X)) — U, and
ha: &Y N TY) — W, .

We want to extend %, and &, to ambient spaces of 7,(X;N X,) and
£.(Y; N Y,) respectively.

Let P be a point of U, N T,. Thgn it~is clear that there is an open
neighborhood U, x S; of 7,(P) in 7,(X; N X,) such that

(1) Sp=2,N8 where 2, is a polydisc in C* contained in 2 with
the center o and

(2) U, is an open neighborhood of P in V contained in U;n U,.

We cover 7,(U. N U,) by open sets {U, x Sy}, in 7,(X; N X,) having
above conditions (1) and (2). We choose a finite subcovering

{U: X Sihactyeera

from {Up X Sp}p, where U, = Up,, S; = Sp; = 2;NS" and 2; = 2p,. Then
{U}ies,....; covers U; N U,. Let 2, be a polydisc in C* with the center o, the
origin, contained in ;2;. We put S, =2,NS’. We may assume that
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2, ={se 2| |s] <&}

for a positive number ¢, 0 < ¢, < 1.
The proofs of Lemmas 3.1 and 3.2 below are similar to those of
Lemma 3.1 and 3.2 of [9] respectively, so we omit them.

LEMMA 3.1. There is a Stein open set U, of U, such that
U:n0,cUcUUclUnT,.

LEMMA 3.2. Let U, be the open set of U, in Lemma 3.1. Let S, be
sufficiently small. Then

72X NX)N {0, x S)cU, xS, .
Now, it is clear that
U, x S,cn(X:n X,) .
U, x S, is a closed subvariety of U, x 2,, which is Stein. Thus the map
N U, x S,— U, x S,
is extended to a holomorphic map
N U, x 2,— U, x 2, .
The extended map 7, is written as follows:
NieZhy 8) = (9ai(2s, 8), 8)
where
G U, x 2,— U;
is an extension of the map g, above.
In a similar way, we can find a Stein open set W, of W, such that
W.NW.,cW,cW.nW,,
W, x S,cé(Y;NY,) and
E(Y:NY)N (W, x S)cW, x8S,.

W, x S, is a closed subvariety of W, x 2,, which is Stein. Hence the
map

L Wy x S,—»W: xS,
is extended to a holomorphic map
E W, x 2, -W,x 2,.

The extended map &;, is written as follows:
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&i(wy, 8) = (hi(wy, ), s)
where
h,;k: Wo X Qo b W,

is an extension of the map #; above.
Let ¢, 0 < e < 1, be a positive number. We put

U: = {z;e U] |2:] <1 — ¢} and
Wi = {w;e Wil |lw;| <1 —e}.

LEMMA 3.3. If e is sufficiently small, then {U;.; and {W2;.; cover
V and f(V) respectively.

Proor. We prove the first half. The second half is shown in a
similar way. We assume the converse. Let

1>e¢>e,>:--2>0
be a sequence of positive numbers converging to 0. We put
A, =V-UU» n=12 ---.

iel
Then A4,,n =1, 2, -+, are non-empty, compact and satisfy
A DA, D,
Hence
NA,+ o .
On the other hand,
N4, =n(v-yu)=n(Nw-um)
n n 4el n 4
=N(QV-tm)=N-u=0,
a contradiction. g.e.d.
LeEmMMA 3.4. If e is sufficiently small, then
fO)cw:
for each t¢e I.

Proor. We assume the converse. Let
1>e¢>e¢>:-->0

be a sequence of positive numbers converging to 0. We put
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A, = (W, — Wiy n £(T), n=1 2.
Then A,,n =1, 2, ---, are non-empty compact subsets of W,. Since
A DAD-- -,
we have
NA.=a.

On the other hand,
N4, =(N-WI)NfO) =2,
a contradiction. q.e.d.

Let ¢ and ¢,0 <e < ¢ <1, be small positive numbers satisfying
Lemmas 3.3 and 3.4.
For any positive number ¢ with 0 < ¢ < ¢, we put
Q. ={sef||s| <e} and
S.=02.n8.
The proofs of Lemmas 3.5, 3.6, and 3.7 below are similar to those of Lemma
3.3, 3.4, and 3.5 of [9] respectively, so we omit them.

LEMMA 8.5. Thereis a small positive number € (independent of indices
in I) with 0 <& <e¢, such that if se ., then 9.(2, s) (resp. hy(w,, s)) is
defined and is a point of Ufresp. W,) for all z,€ U:N U, (resp. for all
w, € WiN Wy).

LEMMA 8.6. There is a small positive number ¢ (independent of
indices in I) with 0 < e < ¢, such that if se€S., then

N2, 8) € X, N X,
(resp. &' (wy, 8)e Y, NY,) for all z,€ U: N U, (resp. for all w,e€ Wi;N W,).

LEMMA 3.7. There is a small positive number ¢ (independent of
indices in I) with 0 < e <&, such that if se€ S, and if
7'z, 8) € X¥' N X,
then z.€ U:N U,.
The set U, in Lemma 3.1 and the set W, above depend on the indices
¢ and k. On the other hand, we may assume that ¢, is independent of

indices, for the set I of indices is a finite set. Hence we may assume
that 2, and S, are independent of indices. We write
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U, = Uun and

Wo = Wou'k) ’
whenever we want to distinguish them. %7} (U,.; X 2,) and & W,uj X
%,) are open sets gf Usiin X £, and W,.., X 2, respectively, and contain
U.nNnU;NU, and W,N W; N W, respectively. The proof of the following
Lemma is similar to that of Lemma 3.7 of [9], so we omit it.

LEMMA 3.8. There is a small positive number ¢ (independent of
indices in I) with 0 <e <e, such that if sc 2., then

(1) (21, 8 €0 (Usjy X 2o)
for all z,e U,NU,NU,

(1) (wi, 8) € & (Wous X 2,)
for all w,e W.NW;N W,

(2) gulz, 8)e U N U
for all z,e UsNU:N U, where

Ui = {z,e Ul |2] <1—¢/2},

(2) hu(w, s)e Wi* N W*

for all w,e WenN Wen W, where
W2 = {w, e W,||w;| <1—e/2}.

Let A be a compact subset of W,. Let ¢ be a small positive number.

We regard W, as a polydisc
Wi = {w, e C"| |w,| <1}
in C'. We consider a subset
A, ={w, + x,|w,e A and |x,] = ¢}

of C', where the summation is taken in C*. A, is compact, for the summa-
tion is a continuous operation. Since the proof of the following lemma
is straightforward, we omit it.

LEMMA 8.9. There is a small positive number ¢ such that A, C W,.

Since f(U;) is a compact subset of W f(U) N f(U,) is a compact
subset of Wé¢N W,, which is open in W,. By Lemma 3.9, there is a small
positive number ¢ such that

(f(U) N fF(U)).C W, .
Since the proof of the following lemma is straightforward, we omit it.

LEMMA 3.10. There is a small positive number ¢ (independent of
indices in I) such that




250 M. NAMBA

FO) N FUO).CcWiNW,CW,.

4. The linear map ¢. We use the same notations as §3. Henceforth,
we assume that Sc £ is a neat imbedding of S at o, [3]. Thus k is equal
to the dimension of the Zariski tangent space T,S at 0. We assume that
S is defined in @ as common zeros of holomorphic functions

e(s), -+, en(s) -
It is easy to see that
(1) ef0)=0,x=1, ---, m,
(2) Qefos)o) =0,a=1, -+, m B=1, -,k
In §3, we extended the maps
N = N U, x S,— U, x S, and
Eik = Ei’s-l;l: Wa X So—_)Wi X So
to
DUy X Q,— U, x 2, and
Ei W, X 2,— W, x 2, .
The extended maps 7, and &, were written as
nik(zky S) = (gik(zk; S), 8) a‘nd
Sik(wk’ S) = (hik(wk’ S)y S) .
LEMMA 4.1. Let z, and w, be points of U, N U, and W, N W, respec-
tively. Then the matrices
(agik/azk)(zky 0) ’
(agzk/as)(zky 0) ’
(Ohy/ow,)(wy, 0)  and
(0h1/08)(wy, 0)
are independent how to extend maps 7, and &;.

Proor. We show that (0k,,/0s)(w,, 0) is independent how to extend
the map &;,. Others can be shown in similar ways. In a neighborhood
of (w;, 0) in W, x 2,, another extension of &, is written as follows:

w; = hi(w,, 8) = hy(w,, s) + 2‘1 ad(w;, s)e.s)

where af, «a =1, ..., m, are vector valued holomorphic functions in the
neighborhood. Hence

(Oh%/08)(Wy, 0) = (Oh1/08)(Wy, 0)
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+ 3 (9a3,/35)(ws, 0)eu(o)

+ aZ:,la'gk(wky 0)(9e./0s)(0)
= (0h:4/0s)(wy, 0)
by (1) and (2) above. q.e.d.

Now, f maps U; into W,. Using the local coordinates, it is expressed
by the equations

1,()¢ = f,,,(z,b), 1:€ I,

where f; is a vector valued holomorphic function on U..

Let 2; be a point of U; N U; N U,. Then there are neighborhoods A
of (23, 0) in U, X 2, and B of (f(25), 0) in Wy;iy X 2, and vector valued
holomorphic functions

bz, 8),a=1, .-, m and
ca(wky S), a = 1, e, M

on A and B respectively such that 7,;7; and &,&;, are defined on A and
B respectively and such that

(3) gz ) = 9lgnlzn 9), 8) + 3 b(2s, 9euls)
for all (z,, s)e A and

(4) has(wi, 8) = hoslhsn(ws, ), 8) + 3 0wy, 8)eas)
for all (w,, s)e B.

LEMMA 4.2. Let 2, be a point of U, NU; N U,. Then

(Ohasfow ) (f4(25), 0)
= Ohes/ow)(f (&), 0)Ohsefows)(f4(z5), 0)

where 25 = g;(23, 0).

Proor. We differentiate (4) with respect to w, at (f.(z}), o). Since
hi(fu(3), 0) = fi(23), we obtain the above equality by (1). g.e.d.

The holomorphic vector bundle on V defined by the transition matrices
{@Ohy/ow)(fr(2:), 0)} is nothing but the induced bundle f*TW of the
holomorphic tangent bundle TW over f.

LEMMA 4.3. Let 2 be a point of U, NU; N U,. Then

(Ohn/03)(f (22), 0) = (9h4;/95)(f 1(25), 0)
+ (Ohi;[0w;)(f (25), 0)(Oh;t/08)(fi(20), 0) 5
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where z; = g;(%3, 0).

ProorF. We differentiate (4) with respect to s at (f.(z%), 0) and obtain
the above equality by (1) and (2). q.e.d.

LEMMA 4.4. Let 2 be a point of UNU; N U,. Then
(09:4/05)(2%, 0) = (39.5/03)(25, 0)
+ (09:1/02;)(25, 0)(99::/95)(23, 0)
where 27 = g;(2;, 0).
ProoF. We differentiate (3) with respect to s at (2}, 0) and obtain
the above equality by (1) and (2). g.e.d.
LEMMA 4.5. Let 2 be a point of U;NU; N U,. Then
(0.f :/02,)(22)(09:4/08)(24, 0)
= (0.£:/02:)(22)(09:3/08)(23, 0)
+ (Ohy;/0w)(f (25), 0)(0f 1/02;)(25)(0g;1/08) (25, 0)
where 23 = g,(2%, 0) and 22 = g;(23, 0).
PrOOF. f,, ie I, must satisfy the following compatibility conditions:
hii(fi(25), 0) = fu9:(2s 0))

for all z;e U, N U;. Differentiating the equation with respect to z; at 23,
we obtain

(Oh;/0w;)(f #(25), 0)(0.f i/02,)(25)
= (0.f:/02:)(22)(09:;/0%;)(%3, 0) .
Hence
(0.f :/02,)(23)(09.5/98)(%;, 0)
+ (0hy;/0w;)(f #(25), 0)(0.f i/02;)(25)(99 ;4/05) (23, 0)
= (0f:/0%:)(2:)(9.;/0s)(2;, 0)
+ (0:/02:)(2:)(09./02,)(25, 0)(09::/05)(2%, 0)
= (0.4/02:)(2)(09./08) (%3, 0)
by Lemma 4.4. q.e.d.
We put F = f*TW. Then Lemma 4.3 and Lemma 4.5 show that

{(Oh:/08)(f(22), 0) — (0.f:/02:)(2:)(09:4/0s)(24, 0)}

is an element of Z'(F,| |), (the space of l-cocycles defined in §2), where
z,e UsN U, and z; = ¢,,(2, 0). This follows from the fact that
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|(0f:/0z:)(z:))|, #:€ Ui,
is estimated by sup {| fi(:)] |2.€ U}, (<1). Hence we can define a con-
tinuous linear map
o:T,S— Z'(F,| )
by
k
0(@)u(2:) = 3, a[(Ohu/0)(fil(24), 0)
— (0£:/02:)(2:)(09:1/05) (24, 0)]

for z,e U:N U, where z, = 9,2, 0) and a = > k_, a*(0/0s%),.

REMARK. We write o(a),(z;) instead of writing o(a).(z,) following
the definition of | | in §2.

5. Proof of Theorem 1. We use the same notations as in §3 and §4.
f maps U, into W2 Using the local coordinates, it is expressed by the

equations
w; = fiz), tel.

Then the vector valued holomorphic functions f;, 7€ I, must satisfy the
following compatibility conditions:

b fi(20), 0) = fi(9:u(zs, 0))

for all z,e U;,NU,. As in §4, we put F = f*TW, the induced bundle
over f of the holomorphic tangent bundle TW. Let T.,S be the Zariski
tangent space to S at o. We consider the product

CF, | ) x T,S,

where C°(F, | |) is the Banach space introduced in §2. We introduce a
norm | | in C(F, | |) x T,S as follows:

[(¢, 5)| = max {|g], [s]}

for (¢, 5) e C(F, | |) x T,S, where |s| = max, |a“|, s = k., a%(0/0s%),. Then
C(F,| |) x T,S is a Banach space. We identify 2 with an open set of
T.S by

@, -+, a¥) e T— 3, a*3)os?), e T.S .
a=1
Let f’ be a holomorphic map of 77'(s) into g¢'(s) for a point se S’
such that
f@ENX)ecps)NnY;
for all 1e I. We express the map f’ by the equations



254 M. NAMBA

w;, = fi(z), t1el,

using the isomorphisms

7:X;,— U, xS and
S‘L:Y‘L—)W'L X S’.

Then the vector valued holomorphic functions f; satisfy fiy(U;)c W.. We
write

fngi+¢i

where ¢, is a vector valued holomorphic function on U,. We regard ¢ =
{#:};er as an element of C°(F, | |). We associate to f’ an element (g, s) €
C(F,| |) x T,S where se S'c 2c T,S. Then it is clear that (¢, s) must
satisfy the following compatibility conditions: :

(1) seS and

(2) hzk(fk(zk) + 6u(21), 8) = fi(gik(zk, s)) + #:(9:(2s, 8)) for
(7, 8)en( XN X) Nw7i(s) and  (fu(z) + du(zi), 8) € (Y. N Y) N p7(s) «

Conversely, if an element (¢, s)e C°(F, | |) x T,S satisfies |(g, s)| <&,
(where ¢ satisfies Lemma 3.9 for A = f,(U,) for each ke I), and satisfies
the conditions (1) and (2) above, then the equations

w; = fi(z) = fi(z) + 6:(z),
for z,€ U, and i ¢ I, define a holomorphic map f’ of 77'(s) into £#7'(s). By
Lemma 3.9, f’ satisfies
flzs)N X)cp'S)NY,tel.

Henceforth, let ¢, 0 <e <1, be a small positive number satisfying
Lemma 3.5—Lemma 3.8, Lemma 3.9 for A = f,(U,) for each keI, and
Lemma 3.10. Let B, be the open &-ball of C°(F, | [) with the center 0.
Let 2. be the open e-ball of T,S with the center 0. We put S, = SN L.
We assume that S’ is defined in 2 as common zeros of holomorphic
functions

e(s), * -+, enls) .
We define a holomorphic map
e:2—C"
by

e(s) = (eu(s), + -+, en(s)) -
Then
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S. = {se 2.|e(s) =0} .
Now we define a map

K:B, x 2. —C(F,| )

by
K(¢, 8)il(2:) = hu(fi(z1) + 6(21), 8)

— f9u(2s, 8)) — 6:(9u(2s, 8))
for z,e U:N U, where 2z, = ¢,(z;,0). Then K(0,0)=0. If z,¢ U:N U,
and se 2, then g,,(z;, s) is defined and is a point of U, by Lemma 3.5.
Hence f.(g.:x(z:, 8)) and ¢,(9:.(2x, s)) are defined. On the other hand, f,(z.) +
du(z)e Wen W, for z,e U:N U, by Lemma 3.10. Hence h,(f(z:) + ¢.(z0),

s) is defined and is a point of W, by Lemma 3.5. Moreover, it is clear
that

|K(g,8)| <2+ ¢
if [(¢, s)| <e. Thus K maps B, x 2. into C(F, | |).
Let
B:C(F,|)x T,S—T,S
be the canonical projection. We put
M, = {(3, s) e B. x 2.|K(g, s) = 0}
and
M = {(¢, s)e B, X 2.|K(g, s) = 0, eS(¢, s) = e(s) = 0}
= {(¢, s)e B, x S.|K(g, s) = 0} .
Now we take an element (¢, s)e B, x 2, which satisfies the compati-
bility conditions (1) and (2) above. Let z; be any fixed point of U;N U,.

Let 2z, = 9,7, 0). By Lemma 3.6, (2, s)e7/(X;N X;). By Lemma 3.10
and Lemma 8.6, (f.(z.) + 64(20), s) € &(Y: N Y,). Hence, by (2),

K(g, 8)i(2) =0 .
Since z;e U: N U, is arbitrary,
K(¢,8) =0.
Hence (¢, s) e M. Conversely, let (¢, s)e M. (1) of the compatibility condi-
tions is automatically satisfied. Let z, be a point of U,. We assume that

(21> 8) € M(X¥ N X}) and (fi(=) + 8u(21), 8) € £(Y? N YY). Then, by Lemma
3.7, z,€ U:N U,. Since K(g,s) =0,
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il fi(z:) + 6(20), 8) = filgin(2s, 8)) + $i(Gu(2s, 8)) -
Hence the equations
w; = fuz:) + 4z ,
for z2,€ Uy and te I, define a holomorphic map f’ of #7'(s) into £7'(s).
Thus, by the principle of analytic continuation, equations
w; = fiz:) + ¢:(2) ,

for z,€ U; and ¢ € I, define f’. Hence (g, s) satisfies (2) of the compatibility
conditions. Thus the problem is reduced to analyze the set M.

PROPOSITION 5.1. Let ¢ be sufficiently small. Then
K:B, x 2.—CY(F,] )
is an analytic map and
K'(0,0)=06+0:C(F,| ) x T.S—C'(F, | |

where 0 and o are the continuous limear maps deﬁned' n §2 and §4
respectively and 0 + o is defined by

(0 + 0)(g, s) = 0¢ + s
for (¢,s)e CF, | ) x T.S.

Proor. The proof of the first half is similar to that of Lemma 3.4
of [8], so we we omit it. We prove the second half. Let o(g, s) be some
function of ¢ and s (and z;) such that

lo(g, 9)|/I(¢, )| — 0
as |[(¢, )| — 0. Let z,e U:N U, We put 2, = g,(z;, 0). Then
K(g, s)u(z:) = K(g, 8)u(z:) — K(0, 0):(2:)
= (0h/ow)(f1(2h), 0)8(21) + (Ohyi/0S)(fi(24), 0)s
— {fl9u(zs, 8)) — fi(gu(2s, 0))}
— {8.(9:(2s, 8)) — :(9ir(2s, 0))} — 8:(2)) + 0(9, 5)
= (Ohu/ow,)(f(21), 0)pr(2:) + (Ohir/08)(fi(2:), 0)s
— (0f:/02:)(2:)(09::/05)(24, 0)s
— (09,/02,)(2.)(09:4/05) (24, 0)s — $:(2:) + 0(, 8).

Since

| (04:/02:)(2:)| , 2:€ Us,
is estimated by |¢|, we may put
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— (09:/02:)(2:)(09.:4/0s) (21, 0)s = 0(g, s) .

Hence
K(g, s)u(z:) = (09)u(2:) + (Ohi/0s)(f1(24), 0)3
— (0:/02,)(2:)(09:4/0s) (24, 0)s + o(g, s)
= (09)u(2:) + (08)(2:) + (g, 8) .
Hence

K(g, s) = 0¢ + as + o(g, s) .
q.e.d.
Now we define a map
L:B, x 2,—C(F,| ) x T,S
by
L(g, 8) = (¢ + E,BAK(g, s) — E,09, s)

where E,, B, 4, and ¢ are the continuous linear maps defined in §2. Then
L is analytic by Proposition 5.1. We have L(0, o) = (0, 0) and

1+ E,B46 — E E,BA
L'(O, 0) — ( + 0 0 0 01 0-)
B (1 E,Bo
—\o 1 )

(We note that B4é = 6 and 4o = 0.) Thus L’(0, 0) is a continuous linear
isomorphism. Hence, by the inverse mapping theorem, there are a small
positive number ¢/, an open neighborhood U of (0,0) in B, x 2, and an
analytic isomorphism @ of B, x 2., onto U such that L|U = &—'. We put

T,= LM, NU) and
T=LMNU).
Then M, N U = &(T)) and M N U = &(T).
LEMMA 5.1. T,c (H'F,| )N B.) x 2..
PrROOF. Let (¢,8)e M, N U. Then
L(g, s) = (¢ + E,BAK(p, s) — E,0¢, s)
= (¢ — Ey09, s) .
We have
o(p — E,09) = 0¢p — 0 =0 . q.e.d.
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COROLLARY 1. T, = {(§ s)e(H(F,| |) N B.) x 2..|K®(§, s) = 0}.

COROLLARY 2. T = {( s)e(H'(F,| |)N B.) x S..|K®(, s) = 0}.
Corollary 1 follows from the definition of M, and Lemma 5.1. Corollary 2
follows from Corollary 1.

Now let (§, s)e (H'(F, | )N B.) x 2... We put (¢, s) = @(§,s). Then

0 = 0§ = 0(p + E,BAK(g, s) — E\09)
= BAK(¢, s) = BAK®(¢, s) .
Hence
Ko(&, s) = HAKO®(E, s) + BAK®(¢, s) + E,0KO(§, s)
= HAK®(, s) + E0KO(E, s)
where H and E, are the continuous linear maps defined in §2.
PROPOSITION 5.2. Let €' be sufficiently small. Then
T ={& s)e(H(F,| )N B.,) x S.,.| HAK®(¢, s) = 0}.

ProOF. The proof is almost similar to that of Lemma 3.6 of [8].
Only what we have to note are the following two points.
(A) By (2) of Lemma 3.8, if (¢, s)e B, x 2,, then

& = 952, 8) € U N U;®
if 2z, = g,.(2,, 00 s N U N U,.
(B) For (¢, s)e B, x 2., we put
R'(K(4, ), ¢, s) = {R'(K(9, ), ¢, 8)isn} € C*(F,, | ),
RY(K(g, 8), ¢, 8)iir(2:) = hii(f#(E5) + 6i(L)), 8)
— hii(hi(Fi(2) + $u(24), 8), 8)
+ Fii(2:)K(9, 8)ii(%5)
where z; = ;2 0), 2 = g2, 0) and Fyy(z;) = (Ohu;/0w;)(fi(2;), 0). Then,
for se S,
R(K(9, s), 8, 8)uin(2:) = hii(f4(C5) + 64(C5), 9)
— fi9:1(&, 8)) — hulfi(2e) + 8u(21), 8)
+ flgulZs, 8)) + Fii(2:)K(9, 8)i(25) -
The rest goes pararell to the proof of Lemma 3.6 of [8]. q.e.d.

COROLLARY. If H(V, F) =0, then
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T=(H(F,|)NB)xS..
Now, for each ¢ = (¢, s)e T, We put
(t) = (4(8), b(?)) .

Then
¢: T— C(F,| |) and
b:T— S
are analytic maps. The map b is actually the projection map
t=1(s8)—s.

If we write
$(t) = {$(2;, D}ier
then it is easy to see that
.U x T—Cr
is a holomorphic map. We define a holomorphic map
E:0*X—bY
be the equations
w; = fi2) + 62, t), for z,eU, and t=t.

Then (Z, T, b) is a family of holomorphic maps of (X, «, S) into (Y, 2, S)
and satisfies

E(o.o) = f .

We show that (¥, T, b) is a maximal family. Let ¢, = (&, s,) be a
point of 7. Let (G, R, h) be a family of holomorphic maps of (X, z, S)
into (Y, #, S) with a point », such that A(r,) = s, and

G, = E,:77(s,) — £7'(s,) -
The map G,, = E,, is defined by the equations
w; = fi(z) + (2, 2)

for z,¢ U,. Then it is easy to see that, there are a neighborhood R’
of r, an ambient space R’ of R’ and a vector valued holomorphic function
4; on U, x R’ such that, for each fixed re R, G, is defined by equations

w; = f2) + ¢2;, t) + P2, 1),
for z,¢ U,. We put
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$i(2i, ) = ¢:(2;, t,) + (2, 7) and
¢'(r) = {8i(2s, T)}ier
for re B'. We extend the map % to B’. Then
(¢'(r), h(r)) e C(F, | |) x 2.
We note that
(¢'(r,), h(r,)) = O(t,) .

It is easy to see that ¢’ is an analytic map of R’ into C'(F, | |).
We may assume that

(#'(r), Mr)) e U= &(B. x 2..)

for all re B’. Let re R’. Since the equations

w; = ¢:'(z¢, r),
for #z,€ U, define a holomorphic map of 7*(k(r)) into g *(k(r)), (¢'(r), h(r)) e
UN M for each re R’. Hence L(¢'(r), k(r))e T for each re¢ R’. We put
k(r) = L(¢'(r), k(1))
for re R’. Then k is a holomorphic map of R’ into T. We note that
k(r)) = LO(t,) = t,, We have
O(e(r)) = (#'(r), h(r)) -

Hence h = bk and ¢’ = ¢k. From these identities, we have

G, = Eup: n(h(r)) — g (h(r))
for all re R’. Thus (E, T, b) is a maximal family.

This completes the proof of Theorem 1.

REMARK. Among maximal families, our maximal family (&, T, b) is a
special one. It is so called effectively parametrized. In other words, the
map k with properties

h = bk and
G, = Ey: 7' (h(r)) — ' (h(7)) ,
for all re R/, is uniquely determined.
Appendix of §5. Extensions of holomorphic maps.

DEFINITION. Let V be a compact complex manifold. Let W be a
complex manifold. Let f be a holomorphic map of V into W. f is
said to be extendable if and only if, for any families (X, #, S) and (7,
2, S) of compact complex manifolds and of complex manifolds respectively
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with a point oe S such that 77'(0) = V and £ '(0) = W, there are a neigh-
borhood U of o in S and a holomorphic map H of #7'(U) into g (U)
such that

(1) the diagram

(U) L=(0)
_—
71'\ //,:
U

is commutative and

(2) H|IV=/.

The following theorem is essentially due to Kodaira (Theorem 1, [4]).
See also §6 of [9].

THEOREM. Let V be a compact complex manifold. Let W be a complex
manifold. Let f be a holomorphic map of V into W. Let f*TW be the
induced bondle over f of the holomorphic tangent bundle TW of W. If
HY(V, f*TW) = 0, then f is extendable.

Proor. Let (X, w, S) and (Y, &, S) be families of compact complex
manifolds and of complex manifolds with a point o€ S such that 77'(0) =
V and p (o) = W. Let (&, T, b) be the maximal family of holomorphic
maps of (X, w, S) into (Y, &, S) constructed in §5 with respect to f. If
HY(V, F) =0, where F'= f*TW, then

T = (H'(F,| )N B.) x S.
by the corollary of Proposition 5.2. We define a map
j: S;I - T
by
7)) = (0, s) .
Then j is a holomorphic injection. Using the notations in §5, we define a
holomorphic map

H: 17(S.) — 17(S.)
by the equations
w; = fulz:) + ¢:(2, 5(5))
for (z;, 8)e U, x S... Then H satisfies the requirement. q.e.d.

6. Theorem 2, Theorem 3 and their proofs. Let V be a compact
complex manifold. Let W be a complex manifold. We denote by H(V,
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W) the set of all holomorphic maps of V into W.

THEOREM 2. Let (X, S) and (Y, 1, S) be families of compact com-
plex manifolds and of complex mamnifolds respectively. We assume that
X and Y satisfy the second axiom of countability. Then the disjoint
UNLON

H =TI Hx(s), #7()

admits an analytic space structure such that
(1) (H \, S) is a complex fiber space where

M H—S
18 the camonical projection and
(2) the map
X )S< H-Y
defined by
(P, f)— f(P)

18 holomorphic, where
XX H={(P, f)e X x H|x(P) = M)},

the fiber product of X and H over S.

The proof of Theorem 2 below is essentially due to that of Theorem
2 of [8]. Let (X, m, S) and (Y, &, S) be as above. Let o be a point of
S. Let f be a holomorphic map of 7 '(0) into g (o). Let (X, T, b) be
the maximal family of holomorphic maps of (X, z, S) into (Y, g, S) con-
structed in §5 with respect to f. By the construction of (E, T, b) in §5,
for any two different point ¢, and ¢, of T, the corresponding maps
E,: 77(b(t,) — £7(b(2)

and
E.: 77(b(t,)) — p7(b(2,))
are different, (even if b(t,) = b(t,)). Thus there is a unique injective map
T—H
defined by
t— K, .
We take this map as a local chart around fe H. Using the maximality
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of (E, T, b) and Remark at the end of §5, these local charts patch up to
give a (locally finite dimensional) analytic space structure in H. We have
to show that the underlying topological space of H is a Hausdorff space.

Since X and Y are locally compact and satisfy the second axiom of
countability by the assumption, they are metrizable. We denote by d
and d’ metrics in X and Y respectively. Let f and g be two elements
of H. We define a distance

(£, 9)
by
d(f,9) = sup inf {d(P, Q) + d'(f(P), 9Q))}

Pex—1(A(f)) Qex—1((g))

+ sup inf {d(P, Q) + d'(f(P), 9(Q))} .

Qex—1l(A(g)) Pex—lA(f))
LEMMA 6.1. d is a metric in H.

PrOOF. It is easy to check that d satisfies the three axioms for
metric. q.e.d.

LEMMA 6.2. Let (E, T, b) be a family of holomorphic maps of (X, =,
S) into (Y, p, S). Let t, be a point of T. Then d(E, E,) is a continuous
function of te T.

ProoF. It suffices to prove that

d(E, E,)—0 as t—t,.

It is known [7] that there are an open neighborhood 7" of ¢, in T and
a continuous retraction

R: (b*m)™(T") — (b*7)7(t,)

such that R,= R|(b*m)7'(t) is a C~-diffeomorphism of (b*7)'(¢) onto (b*7)~'(t,)

for each te 7. We fix a point ¢ T”. We identify (b*7)~'(¢) and (b*7)~(t,)

with 77'(b(t)) and 7~'(b(t,)) respectively in a canonical way (§1). Then

R, is regarded as a diffeomorphism of 77'(b(¢)) onto 7~'(b(¢,)). We have
inf {d(P, Q) + d'(E\(P), E,,(Q))}

Qex—1(b(t,))

= d(P, R(P)) + d'(E(P), E, (R.(P)))
for any point Pe 7' (b(t)). Hence
sup inf  {d(P, Q) + d'(E(P), E, (@)}

PerT1(b(t)) Qex—1(b(t,))

= sup ({d(P, R(P)) + d'(E(P), E, (R.(P)))} .

Pen~L(b(t))
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In a similar way, we get
sup inf {d(P, Q) + d'(E(P), E, (@)}

Qen—l(b(ty)) Pex—l(b(t)

= .sup  {d(@, B(@Q) + d(E(EQ)), E,@Q) -

Qern—l(b(t,

Thus
d(E, E,)<2 sup [(d(P, R(P)) + d'(E(P), E,(R(P)))} .

Pern—1(b(t))
Now it suffices to show that
sup {d(P, R(P)) + d'(E.(P), E, (R(P)))}— 0

Pen—1(b(t))

as t —¢,. We assume the converse. Then there are a positive number
¢, a sequence {t,},_.... of points of T’ converging to ¢, and a sequence
{P,}n=1s... of points of X such that P,en'(b(t,)),n =1, 2, ---, and

d(Pm Rtn(Pn)) + d,(Etn(Pn)’ Eto(Rt%(Pn))) Z €

for n =1,2, --.. Since each fiber 77'(s), s€ S, is compact, we may assume
that {P,},_.... converges to a point Pem'(b(t,)). Then

e = d(P, R, (P)) + d'(E, (P), E, (R, (P)))
= d(P, P) + d'(E, (P), E, (P))
=0,
a contradiction. q.e.d.

Let (H, d) be the metric space H with the metric d introduced above.
Lemma 6.2 asserts that the identity map

I: H— (H, d)
is a continuous map. Since (H, d) is a Hausdorff space, H is also a Haus-

dorff space.
Next we prove (1) of Theorem 2. The map

M H—S

is surjective, for H(m™'(s), #~'(s)) contains constant maps for any seS.
In order to prove that )\ is holomorphic, it is enough to prove it locally.
Let o be a point of S. Let f be a holomorphic map of 77*(0) into (o).
Let (E, T, b) be the maximal family of holomorphic maps of (X, x, S)
into (Y, &, S) constructed in §5 with respect to f. Then it is clear that
A is locally given by the map b which is holomorphie.

Finally we prove (2) of Theorem 2. It is enough to prove it locally.
Let o, f and (E, T, b) be as above. E is a holomorphic map of »*X =
XXsT into b*Y =Y X, T. It is written as
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for (P, t) with m(P) = b(t), where E, is the holomorphic map of 7 '(b(t))
into p~*(b(t)) corresponding to t. E,(P) is holomorphic in (P, t), (see §5).
It is clear that E,(P) is the local expression of the map in (2) of Theorem
2. This completes the proof of Theorem 2.

THEOREM 3. Let (X, 7, S) and (Y, ¢, S) be as in Theorem 2. Then
there is a maximal family (G, H, N) of holomorphic maps of (X, «, S) into
(Y, 1, S) with the following universal property: for any family (M, R, h)
of holomorphic maps of (X, «, S) into (Y, tt, S), there is a unmique holo-
morphic map k of R into H such that

(1) Me=h and '

(2) M, = Gy,: 7' (h(r)) — ¢ (h(r)) for all reR.

Proor. Let H and A be as in Theorem 2. Let f be an element of
H. Let (E, T, b) be the maximal family of holomorphic maps of (X, x, S)
into (Y, #, S) constructed in §5 with respect to f. E is a holomorphic
map of b*X into b*Y. We took the map

teT— E,c H

as a local chart around f. The canonical projection N was locally given
by b. We define a holomorphic map

G AV X —\*Y
by G = E on b*X = (W*X)|T. It is clear that G is well defined and has
the universal property above. q.e.d.
7. Theorem 4 and its proof.

THEOREM 4. Let (X, «, S) and (Y, p, S) be families of compact complex
mamnifolds. Let (Z, 7, S) be a family of complex manifolds. We assume
that X, Y, and Z satisfy the second awxiom of countability. Let

H(X, Y;8) = I H@™(s), #7(s))
H(Y, Z;8) = T H(r™(s), 77(s)) and
H(X, Z;8) = I H(z™(s), 77%(s))
be the analytic spaces whose analytic structures are introduced by Theorem

2. Let Nyy, Ny z, and \g; be the canonical projections of H(X, Y; S), H(Y, Z; S),
and H(X, Z; S) respectively onto S. Then the map

H(X, Y;8) X H(Y, Z; S) — H(X, Z; S)
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defined by
(f; g) - gf ’
for (f, 9) with Nzy(f) = Mrz(9), ts holomorphic.

Let o be a point of S. We put V = n7%0), W = ¢ (o) and N = 77%(0).
Then V and W are compact. Let

f:V—W and
g W—N

be holomorphic maps. Then similar arguments to those in §3 show ~that
there are finite sets I and A and families of open sets {X};c; and {X.}:es
of X, {Y.}ies, {Yi}ieb {Y.}aes and {?a}aeA of Y and {Zi}ics, {Zi}ieb {Z:}2c 4 and
{ZJaes of Z satisfying the following conditions (1)-(7).

(1) X.cX,Y.c Y, and Z,c Z, for eachie Iand Y,c ¥, and Z,c
Z, for each ae A,

(2) {Xilier, (Yihien, {Zidier, {Yikier U {Yalaes and {Z}ier U {Za}aes cover
V, f(V), gf(V), W and g(W) respectively,

(3) Y.Nf(V)= @ for each ae A4,

(4) there are an open neighborhood S of o and holomorphic iso-
morphisms :

77,;: Xz - [7,; X S,
61}: ?1; —_ Wi X § y
E: Y. -W,x S,
¢:Z,—N,x 8 and
(i Z,— N, x 8
such that diagrams
X, i U, x 8
7:\ /prOJ
S
~ 55 ~ ~
Y, > Wi X S
B, 7 proj
S
Y, S s W, x S
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Z & N, xS

TN B o Proj
S

and
Z, b >N, x 8
r\ / proj
S

are commutative for each 7¢I and for each ae A, where U, ic I, are
open sets in Cid = dim V), W,, ie I, and W,, ac A, are open sets in C"(r =
dim W), and N, ie I and N,, ac 4, are open sets in C(g = dimN),
(5) there are an open neighborhood S’ gf 0 Wi!’:h S’ S and open
subsets U, W, W, N, and N, of U, W;, W., N,, and N, respectively such
that U,c U, W.,cW, W,cW,, N.c N,, and N,c N, and such that
X, =n(U; x 8,
Y. =&MW, x 8),
Y, ='W, x 8,
Z; =CYN; x S and
Zy =GN, x S,

for each 7€ I and for each ac A4,

(6) there are coordinate systems
(=) = (&, -+, 20),
(w:) = (wi, «-+, wi),
(wa) = (wih ) w;) ’
(yZ) = (yiy ) yg) y
¥ = W +++, ¥Y) and
(s) = (s, -+-, 8"
in U, W, W., N, N,, and 2 respectively, where S @ is a neat imbedding,

such that 5
U, = {zcUlz| <1},

W, = {wie th Iwzl <1},
W, = {w.€ Wo||w.] <1},
N; = {y; e Nt] ly:| <1},

N, = {ya€ No| || <1} and
S ={sefS||s| <1},
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(7) S@7(U: x 0)) € &(W, x o),
F(U: x 0)) € &74(W: % 0)
9T (W x 0)) € GH(N: X 0),
9 (W, x o)) € G'(N; x o),
9(& (W, x 0)) € T'(N, X 0) and
g€ (W, x 0)) € Z\(N, % 0)
for each 7¢I and for each ac A.
Henceforth, we identify 7:*(U. x o), (¥, x o), &(W. x 0), &(W, X 0),
£ (W X 0), £M(W, X 0), G(N; % 0), G(N; X 0), &Z'(N. x 0) and (N, X 0)
with U, U,, W,, W., W., W., N;, N, N, and N, respectively.
We put
Q={sel||s] <1}.
Then S’ = Sn Q.
Let ¢, 0 <e <1, be a positive number. We put
[Ji = {zie U;l |zzl <1l- e} ete. .

Then, by Lemmas 3.3 and 3.4, taking e sufficiently small, we may assume
that

(8) {Uthicr, {(Wikicr, {Nthier, {(Wikier U{Welae s and {N2}ic; U{Ni}ae 4 cCOVer
V, £(V), gf(V), W, and g(W) respectively and

(9) f(U)cWs, g(W)e N, and g(W,)c N, for each te I and for
each ae A.

We put FF= f*TW and G = g*TN. Let C*(F,||) and C*(G, | |) be
the Banach spaces defined in §2 with respect to coverings {U.},c; of V and
{Witier U{Walaes of W respectively.

Now we express thg map f by the equations

w; = fu2)
for z,e U, and 7¢ I. We also express the map g by the equations
Y, = g.(w;) and
Yo = Ju(Wo)
for w;e W, ie I, and w,e W,,ac A. Let s be a point of S’. Let
flir(s)— p'(s) and
9" 1 (s) = T7(s)
be holomorphic maps such that
F@EnX)cpi®nY,,
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g NY)ct(s) N Z; and
g NY,)ct(s) N Z,
for each 7€ I and for each e A. We express the map f’ by the equations

w; = fi(2:)

for z,e U, 1€ I, using the isomorphisms
N: X, —U;, xS and

6,': Y;—’W‘; X S, .

We express the map ¢’ by the equations
¥ = giw;) and
Yo = JulWe)
for w,e W, ve I, and w,e W,, ac A, using the isomorphisms
Y, W, x S8,
Y, W, x S,
(2 Z,— N; x S and
2 Z,— N, x S
Then the vector valued holomorphic functions f7, ¢i, and g, satisfy
FfU)cw,,
g(W)c N; and

9o(W)C N, .

We write
f;:fi+¢i;
gi=g:+ ¢, and

Oe = G + Va

for each 7¢I and for each wc A. We consider elements
¢ = {p}ier€ C(F, | |) and
¥ = {Ptier U {¥aaes € CUG, | ]) .
In §5, we have associated to f’ and ¢,
(¢,8)eC(F,| ) x T,S and
(v, 8)eC@@G, | |) x TS
Now the holomorphic map

respectively.
g fm(s) — T7X(s)
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satisfies
gf (@ (s)NX)et(s) N Z;
for each te€ I. The map ¢'f’ is expressed by the equations
¥ = 9{(fi(z) = gifi(z)
for z,€ U, 1€ I, using the isomorphisms
vi: Xz—) U,; X S’ and
Cz: Z,i——)N,; X S' .
The vector valued holomorphic function g}f} satisfies
g:if(U)C N; .
We put
gifi=9.f: + kK
for each 1€ I. Then
k(z;) = 9(f (=) + ¢:2) — 9:(f(2:)
+ Pi(fi(z) + 84(z))
for z,e U, ie I. We consider the element
K= {Ei}iele Co(-H, l |)

where H = (¢gf)*TN = f*G and C°(H, | |) is the Banach space defined in
§2 with respect to the covering {U},.; of V. In §5, we have associated
to the map ¢'f’

(k,s)e C(H, | ) x T.S .

Let ¢, 0 <e <1, be a small positive number satisfying Lemmas 3.5-
3.10 with respect to all pairs

({Xi}ieh {Yi}iel) ’
({ Y}ier U {Ya}aeA, {Zi}iel U {Za}aeA) and
(Xtien, {Zi}icr)
(Lemma 8.9 for A = f,(U,) for all ke I, ete.). Let B,(F)(resp. B.(G)) be
the open e-ball in C°(F, | |)(resp. C°(G, | |)) with the center the origin.
We define a norm | | in CU(F, | |) x C(G, | |) by
[(8, ¥)| = max (|4], [v])

for (¢, v)e C(F, | |) x C(G, | |). Then C(F,| |) x C(G, | |) is a Banach
space and B.(F') x B.(G) is the open ¢-ball in C(F, | |) x C(G, | |) with



DEFORMATIONS OF AUTOMORPHISM GROUPS 271

the center (0, 0).
We define a map

k: B(F) x B(G)— C'(H, | |)
by ‘
K($, ¥)i(2:) = 9:(fi(2) + 6:(2))) — 9.(f(2.))
+ P(fi(z) + $:(2.))
for z,€ U, 1€ I. Then (0, 0) = 0.
LEMMA 7.1. Let € <e/2. Then
£: B(F) X B(G)— C(H, | |)

18 an analytic map.
ProOF. We show that for any affine line L in C(F,| |) x C@G, | |),
k is an analytic map of L N (B.(F) x B.G)) into C°(H, | |). This implies
that the map
£: B,(F) X B(G)— C(H, | |)
is analytic, (see e.g., Proposition 2 of [2]). We take a point (¢°, ¥°) €
LN (B(F) x B.(G@)). Then L is written as
L(t) = (¢, ¥°) + (g", ¥*)
for te C where (¢, v)e CU(F, | |) x C(G, | |). We may assume that (¢,
v e B,(F') x B.(G) and L(t)e B.(F') x B.(G) for all te 4, where
4=1{teC||t]| <1}.
Now
(£L()i(2:) = 9:(f(2:) + 8%(2:) + t9i(2.))
— 9(fi(2)) + VUfi(z:) + 842 + ti(2)))
+ ti(fi(z:) + Uz + toi(z))
for 2,€ U, ie I, and te 4. We put
A(t)(z:) = 9:(f(2:) + 9%2:) + t6i(2:)) — 9:(f:(2)) ,
B(t)(z) = ¥¥(f«z:) + 6i(z:) + t9i(z)) and
C(t)i(z:) = tyi(filz) + ¢i(2:) + t4i(2)))
We put
A(®) = {A@®)dier »
B(t) = {B(t)i};er and
C(t) = {C(t)i}ieI .
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We show that B(f) is an analytic map of 4 into C°(H, | [). Similar argu-
ments show that A(t) and C(¢) are analytic.
We put

w; = fi(2z:) + ¢%(z)
and
x = x(t) = toi(z;) .
By (9) above,
[fiz)| <1 —e

for all z,€ U;,. Hence

[w;] < et 3 2

by the assumption that ¢ < ¢/2. By Cauchy’s estimate,
PHw; + x) — Piw;)
L R i .2 M
e Sen v () Do
if |w;] <1 —e/2 and |2]| < ¢/2, where >, is extended over all non-negative
integers with v, + --- + v, =1 and < means that the absolute values
of the coefficients of ¥)(w; + %) — ¥¥(w;) in the formal power series in

@, -+, &, are less than those of the corresponding coefficients of D(x).
Hence

B(t)i(zi) — B(O)i(zt) <3S e(ts)"l . (te)"r <_;_)v1+-..+vr _ E(t)

for z,e U, 1€ I. Thus
B(t) — B(0) € E(t) .

E(t) converges absolutely for te 4. This shows that B(t) is an analytic
map of 4 into C'(H, | |). q.e.d.

Let € < ¢/2. Let 2. be the open e-ball of T,S with the center o.
We put S, =8 NL2,.. By Lemma 7.1, the map

E:B(F) X B(G) x 2, —C'(H, | |) x 2.
defined by
(g, v, 8) = (k(g, ¥), 8)
is an analytic map, where B,(F) x B,(G) x 2. is the open ¢-ball in the
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Banach space C(F, | |) x C(@G, | |) x T,S with the center the origin. Let
Ky B(F) x 2. —C(F, | ),
K,:B.(G) x 2, —C(G, | ]) and
K, B(H) x 2.—C'(H, ] |)

be the maps defined in §5 with respect to f, g, and ¢gf respectively. Let

¢ be sufficiently small. Then K, K,, and K,; are analytic by Proposition
5.1. We put

M; = {(3, s) € B(F') X S.|K((9, s) = 0},
M, = {(¥, 8)€ B.(G) x S.|K,(y, s) = 0} and
M,; = {(x, s)e B.(H) x S.|K,[k,s) =0} .
Now the set
C = (CF, | |) x T,S) 3<S(C°(G, [ ) x T,S)

= {((¢, 8), (¥, ) e (C'(F, | |) X T,S)
X (CG, | ) x T.S)|s = s}
is a closed subspace of the Banach space (C°(F,| |) x T,S) x (C°@G, | |) x
T.S) and is isomorphic to the Banach space
C'(F, | ) x CUG, | |) x T.8
by the map
i (¢, ), (¥, 8)) — (8, ¥, 8) .
The open &-ball
C.= (B.(F) x 2,) X (B.(G) x 2.)

in C with the center the origin contains M, X5, M,. By the definition
of £, £ maps j(M; Xs, M,) into M,;.
Let
O, B.(F)x 2,—-U;,CB(F) x 2.,
9,:B.(G) X 2, —U,c B(G) x 2, and
9, B.(H) x 2,— U,;C B,(H) x 2,

be the analytic isomorphisms defined in §5 with respect to f, ¢ and ¢f

respectively. We may assume that £ maps j(C N (U; x U,)) into U,,.
Let Ty, T,, and T,; be the analytic spaces defined in §5 with respect

to f, 9, and gf respectively. Then, by the definitions of T, T,, and T,
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PTy) = M;N Uy,
o,(T,) =M,NU, and
O,(T,7) = M,; N U,;.
Now we define a holomorphic map
c: T 3( T,— T,
by s
c((§, ), (&, 9)) = O7HEF(D4(E, s), P,(&, 5))) -
Then the map
H(X, Y;8) X H(Y, Z; S) — H(X, Z; 9) ,
defined by
(f, 9)—af

for (f, g) with NXY( ) = Ap2(9), is locally given by the map ¢. This com-
pletes the proof of Theorem 4.
In order to prove Main Theorem, we will need the following lemma.

LEMMA 7.2. The derivative £'(0,0) at (0, 0) of the analytic map &
wn Lemma 7.1 is given by

£'(0, 0)(8, ¥) = (f*T)p + f*vr
for (¢, ¥) e C'(F, | |) x C°@G, | |) where
(f*T)#)z:) = (0g:/ow)(f(2:))$:(2:)
((0g;/ow.)(f:(z) 18 @ matric operating on the vector ¢,z;)), and
(F*)i(z) = ¥o(fuz:)) , for 2,eU,iel.
Proor. We note that £(0, 0) = 0. Now, for z,¢ U,
£(g, ¥)i(2:) = 9:(fi(2:) + 642:)) — 9:(fi(2:))
+ Yl fi(z) + 942:) — Vi(fi(2:) + ¥i(fi(20)
= (09:/0w)(f(2:))(2:) + (09:/0w:)(f «(2:))p:(2:)
+ Y(ful2) + o(g, V)
where o(¢, ¥) is some function of (¢, v) (and of z;€ U;) such that
o, ¥)1/1(8, 4)] — 0
as |(¢, ¥)| — 0. Since f.(2;)e W: for z,€ U, by (9) above,
| @y fow)(fuz)], zeU.,
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is estimated by |v|. Hence we may put

(Oyi/ow:)(f1(2:))g:(2:) = o(g, V) .
Thus
£(3, ¥)i(2:) = (09:/0w)(f(2:))p:(2:) + ¥i(f(2)) + o(g, ¥) .
q.e.d.
8. Proof of Main Theorem. Let (X, 7, S) and (7Y, %, S) be families
of compact complex manifolds. We assume that S satisfies the second
axiom of countability. Since (X, w, S) and (Y, %, S) are topological fiber

bundles (see e.g., [7]), X and Y satisfy the second axiom of countability.
By Theorem 2,

H = I H@(s), #7'(5))

admits an analytic space structure such that (H, \,S) is a complex fiber
space where

M H—S

is the canonical projection. Let se€S. We denote by I(z~'(s), t£~'(s)) the
set of all holomorphic isomorphisms of 77'(s) onto ££7'(s). (It may be empty.)

LeEMMA 8.1. The disjoint union
I= 11 I(s), 1(9))

1s an open subset of H.

Proor. Let o be a point of S. We put as before V = z77'(0) and
W = p7(0). Let f be a holomorphic isomorphism of V onto W. Let (Z,
T, b) be the maximal family of holomorphic maps of (X, x, S) into (Y, g, S)
constructed in §5 with respect to f. We use the notations in §5. For te
T, E, is a holomorphic map of 7#7'(b(t)) into £7'(b(t)). In particular, E,, =
f. We write 0 instead of (0, 0) to simplify the notation. We show that
there is an open neighborhood 7" of 0 in 7 such that, for each te T,
E, is a holomorphic isomorphism of 7~'(b(t)) onto £~*(b(t)). Since T gives
a local chart in H, this proves the lemma.

The map

E:0*X— b*Y
is given by the equations

w; = fiz) + 625, 1),
t=t¢,
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for (z;, t)e U, x T. Its Jacobian matrix at (z;, 0) is
((afi/azi)(zi) (09,/0t)(2,, 0)')
0 1

It is non-singular. Noting that V is compact, this implies that there is
an open neighborhood 7" of 0 in T such that

E: (0*m) (1) — (0*1)~(T")
is a local isomorphism. In particular, E, is a local isomorphism of 7~'(b(%))
into ¢7'(b(t)) for each te 1.
Next we show that FE, is surjective for each te T" provided 7T’ is

sufficiently small. Since V is compact, the number of connected com-
ponents of V is finite. We arrange them as follows:

Vi oty Vi -

Since f is a holomorphic isomorphism of V onto W, connected components
of W are

W1:f(V1)y"'r Wm:f(Vm)'

On the other hand, it is known [7] that there are an open neighborhood
T of 0 in T and a continuous retraction

R:(b*n)™ (T —V

such that R, = R,|(b*7)7'(¢) is a C~-diffeomorphism of (b*7)~'(t) = 7~'(b(t))
onto V for each te T". Hence 77'(b(t)) has m connected components

Vi(t) = RZ(V), -+, Va(t) = B3(V,) .
In a similar way, there is a continuous retraction
R: (0*)™(T)— W

such that R,, = R,|(b*1)™'(t) is a C=-diffeomorphism of £'(b(t)) onto W
for each te 7. Hence p7'(b(t)) has m connected components

Wi(t) = Ri (W), -+, Wa(t) = Rz(Wa) .

We may assume that 7" is connected. Then we show that connected
components of (b*7)™(T") and (b*)~*(T") are

Xa= UVa(t)fa = 1’ e, M
teT’
and
Y, =tL4,Wa(t), a=1 .-, m
respectively. We note that the map
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B:(0*n) (T -V x T
defined by
R(P) = (R(P), b*n(P)),

for Pe (b*m)'(T"), is a homeomorphism, as is easily seen. In order to
show that X, is connected, it is enough to show that any point Pe V,(t)
is connected to R, (P)e V, by a curve in X,. Let ¢(z) be a continuous
curve in 7" such that ¢(0) = ¢ and ¢(1) = 0. Then the curve

A7) = B(R.(P), (7))

belongs in X, and d(0) = P and d(1) = R,,(P). Hence X, is connected.
We show that any points Pe X, and Q€ X;, a = B, can not be connected
by a curve in (b*7)™'(T"). If it is so, then the above argument shows
that some points Pe V, and Q¢ V;, a ++ B, is connected by a curve d(7)
in (b*7)™*(T"). Then P and @ are connected by the curve R,(d(7)) in V,
a contradiction. Hence X,, & =1, ---, m are connected components of
(b*7)~(T"). In a similar way, we see that Y,, &« =1, .-+, m are connected
components of (b*)™(7T"). Now we take 7" sufficiently small so that E,
is a local isomorphism of z=7'(b(¢)) into ¢~ '(b(t)) for each te T'. Then
E,(V.(t)) coincides with a connected component of (~'(b(t)) for each te T”
and for each a. Since E,(z) = E(z, t) is holomorphic (and hence continuous)
in both variables, E,(V.(t)) and f(V.,) = W, belong to the same connected
component Y, of (b*)"(T"). Thus E(V.(t)) = W.(t). This shows that E,
is surjective for each te T".

Finally we show that E, is injective for each fe 7" provided 7' is
sufficiently small. We assume the converse. Then there are a sequence
{t.} in T" converging to 0 and a sequence of pairs of different points
{(P., @u)}nzre,... of T7'(b(¢,)) such that E, (P,) = E, (Q.), » =1,2, ---. Since
7 is a proper map, we may assume that

P,— PeV and
Q—QeV
as n— + «. Then f(P)= f(Q) so that P = Q. Since
E: (b*m)~(T") — (b*1)™(T")
is a local isomorphism, there is an open neighborhood X’ of P in (b*z)~'(1")
such that E is an isomorphism on X’. If » is sufficiently large, P, and

@, belong to X'.
Thus

E(Pn) = Et,,,(Pn) = Et,,,(Qn) = E(Qn)
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implies that P, = @,, a contradiction. q.e.d.

Let (X, &, S) be a family of compact complex manifolds. We assume
that S satisfies the second axiom of countability. Then, by Lemma 8.1,

A= ]_IgAut (™(s))

is an open subset of the analytic space

H = s];IS H(z™'(s), 77(s)) .

Hence A is an analytic space. The canonical projection
MA—S
is holomorphic by Theorem 2. For each se S, Aut (77'(s)) contains the
identity map I,. Hence \ is surjective. This shows (1) of Main Theorem.
X XsA is an open subset of X X5 H. By Theorem 2, the map
XXsA— X
defined by
(P, f)— f(P),
where 7(P) = \(f), is holomorphic. This shows (2) of Main Theorem.
Now, we show (3) of Main Theorem. Let o be a point of S. Let I,
be the identity map of V = 77*(0). We review the considerations in §3-§5
replacing f, (Y, &, S), (w,), hy, and &; in §3 to I, (X, 7, §), (z), 9 and 7,
respectively. We may assume that open sets W; and W, in §3 satisfy
UcW,cU,cW,
in the present case. We may also assume that
W, = {z;¢ ﬁz] |z, <1+ ¢’}
and
Wi={z,eUi||2:| <1+ ¢ — e}

where ¢ and e’ are small positive numbers such that 0 < e <é¢’ < 1. The
holomorphic vector bundle F' in §4 becomes T'V (the holomorphic tangent
bundle) in the present case. Now let se S’ and let f’ be a holomorphic
map of 77!(s) into itself. We assume that

s N X)ecn'(s)NY;

where X, =77 (U; x §’') and Y, = 9;*(W, x S’). Then f’ is expressed
locally as vector valued holomorphic functions fi(z;), 2;€ U,. We put
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#.(2;) = fi(2) — 2 and
¢ = {p:}ies€ C(F, | [) .

We have associated (¢, s)e C°(F, | |) x T,S to f’ in §5.

Now we assume that f’ = I,, the identity map of 77'(s). Then the
local expression fi(z) of f’ must be the identity function: fi(z,) = z,.
Hence the corresponding ¢ must be zero. We use the notations in §5.
We put

M = {(¢, s)e B. x S.|K(¢, s) = 0} .

Then the above consideration shows that
0,s)e M
for all s€ S.. On the other hand, the map L in §5 was defined by
L(¢, s) = (¢ + E,BAK($, s) — E,0¢, s) .
Thus
L(0, s) = (0 + E,BAK(0, s) — E,00,s) = (0, s) .

Hence the set

(0, s)e (H'(F] [) N B.) x S.|seS.)
is contained in

T={&s)e(H'F,| )N B,) x S..| HIAK®(&, s) = 0} .
Each (0, s)e T, se S., corresponds to the identity map I, of 77'(s). The
map
seS.,—(0,8)eT

is holomorphic. The proof of Lemma 8.1 shows that there is an open
neighborhood 7" of (0,0) in T such that 7" gives a local chart in 4
around I,. This proves (3) of Main Theorem.

Finally we prove (4) of Main Theorem.

LEMMA 8.2. Let (X, w, S) be a family of compact complex manifolds.
We assume that S satisfies the second axiom of countability. Let

A = II Aut (77'(s))

ses

be the analytic space whose analytic space structure is introduced above.
Then the map

fed—fled

18 holomorphic.



280 M. NAMBA

Proor. Let o be a point of S. Let f be an automorphism of V =
n~'(0). We replace f and g in the proof of Theorem 4 to f~*' and f
respectively. Thus, in the present case, we replace (Z, 7, S), (v.) and ;
to (X, 7, S), (2,), and 7, respectively. We may assume that the open sets
N, and N, in §7 satisfy

UcN,cU,cN,
in the present case. We may assume that
N; = {z;¢ U’i[ [2;] <1+ e}
and
Ni={z.eU]l|z| <1+¢ —e}
where ¢ and ¢ are small positive numbers such that 0 <e <e’' <1. We

note that the set A of indices in §7 is empty in the present case. Now
we put

h=f".
Let s be a point of S’. Let 2’ and f’ be holomorphic maps of 77(s)
into itself such that
Kr'(s)Nn X,)cn'(s)NY, and
f@ ) NY)ea(s)N Z
where Z, = 7;7'(N; X S’). We express the maps 2’ and f’ by the equations
w; = hi(z),
for z,€ U,, and
2, = fuw),
for w,e W,, respectively. We write
hi=h; + ¢; and
fi=fi+ 4.
We consider the elements
¢ = {¢:}ier€ C°(G, | ) and
¥ = {Yikiere C(F, | |)
where G = W*TV = (f™)*TV and F = f*TV.
As in §7, We associate
(4,9eC@G, | |)x T,S and
(v,8)eC(F, | |) x T,S



DEFORMATIONS OF AUTOMORPHISM GROUPS 281

to &' and f’ respectively. Then the composition f’h’ corresponds to
(£,8)eC(H, | |) x T.S
where H= TV and £ = {;},.; where
£(2) = fi(hi(z) + 6.(2)) — 2 + yu(hi(2) + $:(2)))
for z;e U,, We define a map
k: B(G) X B.(F)— C'(H, | |)
by
K($, ¥)i(2:) = fu(hi(2:) + 6:2.)) — 2 + Yu(hu(2)) + $4(22))

for z,€ U,. By Lemma 7.1, £ is analytic, provided ¢ is sufficiently small.
By Lemma 7.2,

£'(0, 0)(g, ¥) = (W*Jp)p + h*vy,
for (¢, v)e C(G, | |) X C(F, | |), where
((h*J)¢)(2:) = (O iJow)(hi(2:))p(2:)
for z,e U, and
(W*9)i(z:) = Pi(hi(2)
for z,€ U,, We consider an analytic map
B: B.(G) x B(F)— C'(H, | |) x C'(F, | |)

defined by
B(g, ¥) = (k(g, ¥), ¥) .
Then
, _ h*J; h*

It is easy to see that

R*J;: CG, | ) — C(H, | |)
is a continuous linear isomorphism. Hence 5'(0, 0) is a continuous linear
isomorphism. By the inverse mapping theorem, there are a small positive

number ¢/, an open neighborhood U of (0,0) in B,(G) x B.(F) and an
analytic isomorphism

a: B.(H) X BAF)—U
such that g|U = a™'. We write
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a(k, ¥) = (YK, ¥), ¥) .
Then the map
¥ € B.(F) — (0, ¥) € B.(G)
is an analytic map. Hence the map
(¥, )€ B.(F) x 2. — (7(0, ), )€ B.(G) x 2.

is analytic, where 2., is the open ¢'-ball in T,S with the center o. Now
it is clear that if (v, s)e B..(F') x S., corresponds to an automorphism f’ of
m7'(s), then (7(0, v), s) corresponds to (f’)™*. Let T,and T,-: be the analytic
spaces constructed in §5 with respect to f and & = f~' respectively. Let
®; and L, be the analytic maps defined in §5 with respect to f and f*
respectively. The proof of Lemma 8.1 shows that if we take a sufficiently
small open neighborhood 7T’ of (0,0) in T, then each t=(§ s)e T’
corresponds to an automorphism E, of 77'(s). We put @,(t) = (v, s).
Then the above argument shows that L,-1(v(0, ), s) belongs to T, and
corresponds to E;'. Now the map

T, - Tf—l
defined by

@
t = (é’ S) _—{—) ("l’) S) - Lf"l(’y(or Qlf)y S)
is holomorphic. This proves Lemma 8.2. q.e.d.

Now, A XA is an open subset of H X H. Hence Theorem 4 and
Lemma 8.2 imply (4) of Main Theorem.
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