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THEOREM FOR UNITARY T*-MANIFOLDS
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1. Introduction. Let G be a compact Lie group and M a compact
unitary (i.e., weakly complex) G-manifold. Thus G acts on M by diffeo-
morphisms preserving the given complex structure of the stable tangent
bundle of M. The stable tangent bundle, with this G-action, defines an
element τM in KG{M) where KG(M) denotes the kernel of the augmenta-
tion KG{M) > H0(X, Z). If t = (tl9 έ2, •••) is a sequence of indetermi-
nates and V is a complex G-vector bundle V over M, we define Ύt(V— dim V)
in KG(M)[[t]] by

dimF

7,(7 - dim V) = Π (1 + «i( V, - 1) + W - I)2 + •)
i=l

where V is written formally as
dimF

V=Σ,Vt.
i=i

7ί extends to a map

such that

Ύt(χ + v) = Ύt

Suppose that Λf is closed (i.e., compact and without boundary) and let
p ^ : KG{M)-+Kt = if* (point) be the Gysin homomorphism of pM:M—+
point. The element PMiiTXrili)) in ifj[[f]] turns out to be an invariant
of the G-equivariant bordism class the of unitary G-manifold M so that
the assignment [M] H> p,(7#(τ Jlf)) defines a homomorphism

where Ul is the bordism ring of closed unitary G-manifolds. The homo-
morphism p also preserves the ring structure. The coefficients of the
formal power series p[M] are called equivariant if-theory characteristic
numbers of [M] e U%. Note that the coefficient ring K% has trivial odd-
dimensional component KG

ι and K% — KG is canonically isomorphic to
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the representation ring R(G) of G [4].
Let S denote the multiplicative set in KG generated by the if-theory

Euler classes \^(W) = Σ (~ l)'λ'(PΓ) of the nontrivial irreducible G-
modules W. By the localization theorem of Atiyah-Segal [2], [3], the
image of p[M] = VM^A^M)) in the localized ring S~ιKG[[t\] equals1*

where X is the fixed point set2) of the given G-action and V is the normal
bundle of X in M with the induced G-action. This fits in with the
following commutative diagram within the bordism context:

Here Bl is the bordism group derived from the pairs (X, V) of closed
unitary manifolds X and complex vector bundles3) V over X having G-
action by automorphisms without trivial irreducible factors. / is obtained
by taking the bordism class of the fixed point set and its normal bundle.
p is given by

The second vertical homomorphism is the canonical map.
Now consider the case where G is topologically cyclic,4) i.e., G is

isomorphic to Zι x Tn, the product of a cyclic group of order I and an
w-dimensional torus. It is well known that the canonical map KQ—^S^KQ

is an inclusion if G = Tn. The fixed point homomorphism / is also monic
for G = Tn (Hamrick-Ossa [13]). In this paper we shall prove

THEOREM (1.3). If G is topologically cyclic then the homomorphism

p:B°-+S-ιKG[[t]]

υ Str ict ly speaking the s ta tement is slightly more general than the theorem of Atiyah

Segal. However, their proof can also be applied to our situation.
2 ) A point x of M is called fixed point of the G-action if the isotropy subgroup a t x

coincides with G itself. The set of all fixed points is called the fixed point set.
3 ) We m a k e t h e convention t h a t a mani fo ld m a y have components of var ious d imens ion

and a vector bundle over i t m a y have var ious fiber d imensions over each component .
4 ) I t can be shown t h a t , if G is not topological ly cyclic, t h e n S'^KG = {0}. T h u s p is

non-tr iv ia l only if G is topological ly cyclic.
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is monic.

THEOREM (1.4) (Integrality theorem). We have

p-\KTn[[t]\) = f{UΓ) .

As an immediate corollary of (1.3) we obtain

COROLLARY (1.5). The homomorphism

is monic, i.e., the bordism classes of Uζn are determined by their equi-
variant K-theory characteristic numbers.

Theorem (1.4) has also the following implications. Let UI{^(1)) be
the bordism group of closed unitary G-manifolds without fixed points.
In the exact triangle of Conner-Floyd [7]

Ul f—> B°
\

\

/ is monic and hence 3 is epic if G = T\ Therefore, UΓ(J^(l)) is
canonically identified with Bln/f(Uζn) and diagram (1.1) induces

p: U

The coefficients of lβ[M] in (S~1Kτn/Kτn)[[t]\ are the v-invariants of
[M] 6 UΓ(^"(1)) of Atiyah-Singer [5, §7]. Clearly, Theorem (1.4) implies

COROLLARY (1.6).

p: UΓ{JT{1)) - (S-lKTn/KTn)[[t]]

is monic.

Finally, we define the equivariant ?7*-theory by US(Y) = U*(EG XGY)
where EG —> BG is the universal G-bundle and Y is a G-space. If W is
a G-module then EG XGW—*BG is a complex vector bundle over BG
whose Euler class in U*(BG) will be denoted by e(W). Let S be the
multiplicative set in US — U*(BG) generated by the ϋ7*-theory Euler
classes e(W) of non-trivial irreducible G-modules W. Then diagram (1.1)
for G = Tn factors through

ur —> u*n — > κ;n[[t]]
= P

= P
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where B is the Boardman map, B is induced from B (see § 5) and
KG denotes the completion of KG = i2(G)5)[4], [18]. For the precise
definition of # and #, see § 5. From (1.3) and (1.4) follows immedi-
ately

THEOREM (1.7). The homomorphisms

Λ UΓ -> Ut», Λ BV-+ S-1 U% and h Uξn(^(l)) — S"1 U%l Uf*

are monic.

Equivariant bordism and equivariant characteristic numbers are ex-
tensively studied by torn Dieck [8], [9], [10], [11], [12]. In [12] he proved
that, if G is the cyclic group of prime power order, then #', ϋ and ϋ
are monic. He also proved the corresponding results for unoriented
(Z2)

fc-manifolds [10]. In his theory torn Dieck used an equivariant cohomo-
logy theory based on an equivariant Thorn spectrum. Our method is
more direct; only knowledge of ordinary iΓ-theory and £7*-theory is
needed. In the proof of integrality theorem (1.4), Propositions (3.2) and
(3.3) are crucial. If G is a torus a geometric construction, essentially
due to Ossa [16] (cf. also [13] and [15]) yields a G-manifold bounded by
a given G-manifold without fixed points. That construction is used to
define the homomorphism Qa in (3.2).

The proof of (1.3) is given in § 2. Theorem (1.4) is proved in § 3.
In § 4 the definition of #, ϋ and their relation to p, p are briefly
discussed.

The results of the present paper have been announced in [14].

2. Proof of Theorem (1.3). Let G be a compact Lie group and
let {Wμ}μeA be the set of non-trivial irreducible G-modules. Let JίΓ =
3ίΓ(β) be the set of sequences k = (kλ)λeΛ of non-negative integers indexed
by A with almost all zero terms. A complex vector bundle V with an
G-action over a trivial G-space of the form

will be called a G-vector bundle of type k = (kλ) e Jytl If V is a complex
G-vector bundle over a trivial G-space X such that the action of G on
the fibers has no trivial irreducible factors, then V is a finite disjoint
union of the Vk where Vk is of type k with base space Xk, X being the
disjoint union of the Xk, cf. [2]. The correspondence [X, V] H->Σ* [Xk, Vk]

δ) The canonical map K& —> KG is not monic in general [18]. Suppose that G is topologi-
cally cyclic; G = Ztx Tn. Then it can be shown that S^KG is monic if I is a power of
prime, but S^KG = 0 otherwise.
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yields a canonical isomorphism

where BU(k) denotes J[μBU(kμ), BU(kμ) being a classifying space of
complex kμ-vector bundle (BU(0) = point).

If fc = (Λ̂ ) G ̂ 7 then the degree of k is by definition ΣA &Λ> and will
be denoted by \k\. A partition of type A: is a function p defined on A
with values in the set of subsets of {1, 2, , | k\), such that the cardinal
number of the set p(X) equals kλ and the intersection p(X) Π p(μ) is empty
for X Φ μ. The totality of the partitions of type k will be denoted by
^(k). If p G ̂ {k), then let τλ: {1, , kλ} -+p(X) be the unique monotone
bijection. Suppose that a triple (V, p, m) is given, where V = Σ Eμ®Wμ

is a G-vector bundle of type A: over X, p is an element of ^(k) and
m = (mu •••, mfc), fc = \k\, is a sequence of non-negative integers. Then
we define X{p m)(V)e K(X) to be the coefficient of UμIί%tμmrμU) in

where each Eμ is written formally as

Eμ — Σ ^ i (sum of line bundles) .

Similarly 7 ( 2 ) m ) ( F - \k\)eK(X) is defined to be the coefficient of

in

Π Π (tμ0 + (Eμj - l)tμί + (Eμj - l)Hn + . . . ) •

For a fixed p e ^ ( Λ ) , every λ(ί) m)(F) is a linear combination of the
yip.*)(γ — \jc\y Specifically we have the following.

LEMMA (2.1). Suppose that m = (mlf •••, mk) is such that rrii Φ m^
for i Φ j . Then, for any pe &(k), we have

= Σ (m)d(p, nW\V- k) ,

where d{p, ή) is the order of the subgroup of the symmetric group
of degree k consisting of the elements σ such that σp = p, n = nσ =
(nσ{1), •••, nalk)) and



466 A. HATTORI

n

NOTE. If σ is a permutation of {1, 2, , k} such that σp = p, then
Ύ{p n)(V-k) = Yp'»σ)(V - k).

The proof is straightforward and will be left to the reader.

LEMMA (2.2). Let kz3ίΓ with k = \k\. A bordism class [X, V]e
U*(BU(k)) vanishes if and only if we have

(2.3) pzl(7f(rJ)7^(7-fe))-0

in K(point) = Z for all pe ^(k) and all n = (nl9 , nk).

PROOF. The necessity is trivial. Suppose conversely that (2.3) holds
for all p and n. We note the Riemann-Roch relation

pxι(x) = ch(x)jT(x)[X], xeK(X),

and the fact that

chΎ{p n)(V- k) = c{p'n)(V) + higher terms

and

ch Ύt(τ X) = ct(τX) + higher terms ,

where c{p>n) are defined in a manner similar to λ(2)π), replacing complex
line bundles by their Euler classes, and ct is given by ct(fX) = Π* (1 +
xtti + x% + •••) where c(τX) + Π* (1 + χt) * s ^ e Chern class of τX.
Using the above relations, we deduce from (2.3) that

(2.4) ct{τX)c{p>n){V) = 0

for all p and n. Since the space BU(k) = ΠBU{kt) has no torsion in
ordinary homology, vanishing of all the Chern numbers of the form (2.4)
implies, by a theorem of Conner-Floyd [6], that [X, V] = 0. Thus (2.2)
is proved.

Now suppose that G is Zt x Tn. Let Wo be the standard Zrmodule,
W the standard S^module and Wt the pull-back of W by the projection
Pi'. Tn —> S1 on the i-th factor, 1 ̂  i ^ n. It is well known that the
character rings are given by i2(Zz) = Z[WO]/(1 - Wi), R(Tn) = Z[Wl9

WT1, ---,Wn, W-1] and R(G) = R{Zt) 0R(Tn). We shall denote by W the
element Wi°W}>- TF> e R(G), where λ = (λ0, \lf , λn) e Zι x Z Λ . The
ring R(G) is additively a free abelian group generated by {Wλ}. Let S
be the multiplicative set in R(G) generated by {1 — Wλ\XΦϋ\ and Sτn
the multiplicative set in R(Tn) generated by {1 - Wλ'\X' = (0, λ^ •••, λn),
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λ' Φ 0}. The following lemma is standard and the proof is omitted.

LEMMA (2.5). The homomorphism

e: S-'RiG) — C (g) SτlR{Tn) = S£l{C <g) R(Tn))

given by

\ Π (1 - Wψ* / Π (1 -

is well defined and injective. Here a) = exp (2τπ/ — 1/ΐ) and λ' =
(0, λlf , λΛ) if λ = (λ0, λL, , λ j .

We shall now proceed to the proof of Theorem (1.3). Suppose that
there are given elements kt 6 3ίΓ, 1 ^ i ^ s, and [Xit FJ e U*{BU{k%)) such
that /δ(ΣUi [Xu VJ) = 0. We wish to prove that [Xί? Vt] = 0 for all i.
Set AJ< = |ΛJ. We may assume, without loss of generality, that kt =
AJ for 1 ^ i ^ r and kj < fc for r + 1 ^ j S s. Recall that each Vt has
the form

V^ΣEixΘW* , dimEa = ka,

where kt = (ka)i Writing Ea formally as Whitney sum of complex line
bundles Ens, 1 5Ξ j ^ ka, we get

(2.6)

Given a partition p e ^ ( i : ) and a sequence n = (nίf •••, %), fc = |Jk|, we
define L(p, n)e Zι x Z w by

L(p, n) = Σ ( Σ %)λ .

Note that the sum is essentially a finite sum because p(λ) = φ for almost
all λ e Zx x Zn — 0. If m = (m1? mfc) is a sequence of mutually distinct
positive integers, then the coefficient ci>m of tmί+ίtm2+1 tmje+1 in (2.6) is
zero if r < i and is of the form

(2.7) c ί m = (- l ) f c + Σ

for 1 ^ i ^ r, where
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n

Now since all the base spaces Xiy 1 ̂  i ^ s, are compact manifolds,
there are no non-zero terms in Ύt(fXt) involving ίmi+1, •••, ίWJfe+1 provided
m^ •••, mfc are sufficiently large (see e.g. [1]). Therefore, equating to
zero the terms involving ίΛl+1, •••, tmfc+1 in ε^(Σ [X*, V,]), we obtain

(2.8) e(±pZil(yt(τXi)ci.m)) = 0

for sufficiently large ml9 •••, mfc, w h e r e c ί m is given by (2.7) when mlf

•••, mA a re mutual ly distinct.

Note t h a t ( jis a polynomial function of mlf •••, mk for a fixed n.

The following lemma can be proved easily be induction on k.

LEMMA (2.9). Let A be the set of all sequences n = (nl9 * ',nk) of

nonnegative integers. Then the |( jf are linearly independent as

functions of ml9 , mk.
neA

From (2.9) it follows that the coefficient of (*£\ in (2.8) must vanish

identically for each neA. Using the expression (2.7), we obtain

(2.10) e(±pZi{UτXi){ Σ d(p, nW^iVW^'ή)) = 0

for any neA.
Next, in addition to L(p, n), we define L0(p, ή)e Zt and L'{pf ή) e Zn by

Lo(p, n) = Σ ( Σ n

and

where λ = (λ0, λlf , λ j and λ' = (0, Xlf , λΛ). Thus

>, n) = (L0(p, Λ), L'(p, Λ)) .

We then introduce an equivalence relation p = q on the set
in the following way. Two elements p and q are defined to be equiva-
lent if and only if L'(p, n) and L'(q, ή) are identical functions of n.
We shall denote the equivalence class of p by [p]. Thus L\py n) is
actually a function of [p] which we denote by L'([p], ή). The set of
equivalence classes [p] will be denoted by Q. Let TΓ: A —> (Zt)

k be the
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natural projection. Then L0(p, n) depends only on π(ή) = g, and will be
denoted by LJj), g). From the definition we obtain immediately

LEMMA (2.11). If p = q and p Φ q then L0(p, g) and LQ(q, g) are not
identically equal as functions of g e

Let then B be the subset of A consisting of the elements m =
(mu •••, mfc) such that the mt are mutually distinct and L\[p], m) Φ
L'([q], m) for all pairs ([p], [q])eQ2 with [p] Φ [q]. B is obtained from
A by removing a finite number of hyperplanes. Note that, if me B,
then {WL'{W m)}ίPieQ form a linearly independent set in R(Tn). Observing
that

\peζ

for every class ζeQ, we see from (2.10) that, for any meB and any
class ί, the identity

(2.12) Σ Pi-, Λ^t(τXi{p))\{p m)(Vi{p)))ωL°{p'm) = 0
peζ u p >

holds, where i(p) denotes the unique i such that p
At this point we use Lemma (2.1). Fix an element #e (Zι)k. If me

(π\B)~\g) then, from (2.1) and (2.12) we have

(2.13) Σ|ΣPχ<(p)ι(%(τ-Σi(,))d(p, n)y^(ViW - k))ωL«' 'Λ(m) = 0

for any ξ e Q. From the fact that B is obtained from A by removing a finite
number of hyperplanes, it follows easily that the set (π \ B)~\g) contains
arbitrarily large m (i.e., min m3- is arbitrarily large). Therefore, the

coefficient of each (mJ in (2.13) must vanish, by (2.9). Thus, we have

proved that

(2.14) Σ pXi{p)i(yt(τXi{p))d(v, n)^'n){VM - fc))ω^*-> = 0

for any ξ e Q, n e A, and g e (Z,)fc.
For a fixed p, the function ωp: {Ztf —> C given by ωp(g) = ωL°{p 9) is

clearly an irreducible character of the group (Z^)\ and hence can be
considered as an element of iJ((ZOfc). Thus, (2.14) is translated into

(2.15) Σ P i 4 ( p ) p w

which holds in iϋ((Zz)
fc)[[*]] for any ξeQ and neA. Moreover, Lemma

(2.11) implies that, for a fixed ξeQ, {o)p}peξ is a linearly independent set
in R((Zι)k), since they are mutually distinct irreducible characters. Hence
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the coefficient of each ωp in (2.15) must vanish and we obtain

pXi{p)[(7t(fxi{p))7^WuP) - m = o,

for any p and n. In other words, for any i,l^i^r, any p
and any ne A, the relation

(2.16) Pz4,(7,(rX4)7('->(V; - fc)) = 0

holds. In virtue of Lemma (2.2) this implies

(2.17) [Xu Vt] = 0

in U*{BU{kτ)) for 1 ^ i ^ r.
Finally, the induction on max IAJ shows that (2.17) holds also for all

i, 1 <^ i <^ s. This completes the proof of (1.3).

In passing, we note the following proposition which is proved in a
manner entirely similar to (2.16).

PROPOSITION (2.18). Let G = Zz x Tn. Suppose that there are given
[Xu FJ e U*(BU(kt)) and yt e K(Xt)9 1 ^ i ^ s, such that

in S^Kgllt]]. Then the relation

holds for all i, pe ^(kt) and ne A.

3. Proof of Theorem (1.4). The integrality Theorem (1.4) follows
from more precise facts which will be stated in Propositions (3.1), (3.2)
and (3.3).

Let Gλ be the stabilizer of the irreducible Tn-module Wλ, where λ =
Ow, •••, Xn)eZn. Gλ is the subgroup of Tn consisting of the elements
{elt\ , β«») such that Σ \U Ξ 0 mod 2π. If Wλ is non-trivial (i.e., λ Φ
0), then Gλ is isomorphic to Tn~ι x Zd, where d is the greatest common
divisor of \, •••, λΛ, which we shall call the order of λ and denote by
d(X). A subcircle of Tn is of the form

where α = (αx, , an) e Zn — 0 with d(α) = 1 .
Given a subcircle Si of Tn, we define Uζn(^~(l), a) to be the t^-sub-

module of Uln(^'(l)) consisting of the elements [M] admitting a repre-
senting ΓΛ-manifold M on which the induced Si-action has no fixed points.

There are exactly two isomorphisms from S1 onto Sa. We arbitrarily
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choose one of these, which we denote by θ. If Wλ is a non-trivial ir-
reducible T%-module such that Gx "ί> Si, then the composite homomorphism

is of the form z\-^z\ with I Φ 0, where hλ is the homomorphism corres-
ponding to Wχ. We shall call Wλ positive if I is positive. In this case
I will be denoted by d(X). Note that d(X) is a multiple of d(X).

Given a subcircle S« we define Bln(a) to be the ί/^-submodule of Bl*
generated by the elements [X, V] such that V is of the form

where Si ςt Gλ, Wx is positive and dim Eλ = 1, while the sum is taken
over {μ} such that either Wμ is positive and d(μ) < d(λ), or Sι

aaGμ.
We define the subset _%ς of ^T(ΓW) as follows. A: = (kμ) e JT(T%) belongs
to J%^a if and only if there exists a positive λfc such that

2) if kμ Φ 0, ^ Φ λΛ, then either TΓ̂  is positive and d(μ) < d(λfc), or
S i c G , .
Itis clear then that

BΓ(a) = Σ U*(BU{k)) .

PROPOSITION (3.1). UΓ(^(1)) is the union of the UΓ{^{1\ a).

PROOF. Let M be a compact Tw-manifold without fixed points. Let
{Hu , Hm} be the totality of isotropy subgroups of the Γ^-action on
Jkf. They are proper subgroups of Tn, and are finite in number. For a
subcircle Si, the condition that the induced action of Si has no fixed points
is equivalent to the condition that S« is contained in none of the Ht.
But it is easy to see that a circle Si satisfying this condition exists.

PROPOSITION (3.2). There is a U^-module map Qa: Uln(^~(ϊ), a)—*Bln

such that dQa equals the identity and the image of Qa is contained in
BT*n(a). In particular, ifn = l then Q = Qa is a splitting map for d.

Proof of (3.2) will be postponed until the last part of this section.
It is not hard to see that Theorem (1.4) is an easy consequence of the
following Proposition (3.3), together with (3.1) and (3.2).

PROPOSITION (3.3). Let Si c f be a subcircle. Let pa denote

P\BΓ(a).

Then we have
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= o .
PROOF. Suppose that we are given elements [Xif FJ e U*(BU(kt)),

^ i <^ 8, where kt e 3ifM such that

(3.4)

We wish to show that [Xif FJ = 0 for all i. Let I = max* d(Xk.). We
shall proceed by induction on I and on the number of i which satisfy
d(Xk.) = I.

First, we make a few preparatory remarks. Let π: Tn —> Tn be a finite
covering map. It is easy to see that the induced map TΓ*: A-+Ais injec-
tive, where A = Zn — 0 denotes the non-trivial irreducible representations
of Tn as before. It follows that the induced homomorphism π*: R(Tn) —•
R{Tn) is also injective. Hence, it induces a homomorphism 7Γ*: S~1R(Tn)—>
S^RiT*) which is also injective. Similarly, if [X, V] e Bln, where F is of
the form

F - Σ Eμ <g) TP ,

then

is well-defined and the homomorphism π*:Bί*—>5ϊ* defined by

τr*[X, F] = [X,τr*F]

is injective. Moreover, if Si/ is the component group of π~\Sa) and g is
the degree of 7r: Si/ —»Si, then it is easy to see that π* flF^ = PP*'1 is
positive with respect to the isomorphism d:S1—+S1

af, which is uniquely
determined by πθ(z) = θ(zq) if and only if Wμ is positive, and that d(π*μ)
equals qd(μ).

We return to the proof of (3.3). Clearly we may assume that Xk. =
X if 1 £ i £ r and d(X) = I, and that Xkj Φ X and d(Xk.) ^ I if r + ί <Ξ
j ^ s. It will suffice to show that [Xt, Vt] = 0 for 1 ^ i ^ r. For then
we shall have fewer kύ such that d(kά) = Z, and the inductive argument
can be applied.

Let Tx be the connected component group of the stabilizer Gλ of Wλ.
Since TF* is positive, the group H = Saf] Tλ is finite and Si U Tλ gen-
erates Γ\ Fixing an isomorphism ΘΊ T*"1 -> Tx, we define 7r: Tn = S1 x
Tn -+ Tn by

7Γ(^, V) = Θ{U)Θ'{V) .

Then π is a finite covering map, furthermore, the connected component
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group of π~\Sa) is Si, = S1 x 1 and the degree of π: Sι

a, —> Si equals 1.
The component group Tπ*x of the stabilizer of π*Wλ = TF™ is 1 x Tn~\
hence Si/ Π Tπ*λ = 1. Now to prove that [JQ, VJ = 0 it suffices to prove
that π*[Xi9 Vi] = 0, since π* is a monomorphism. But the collection
{π*[Xit FJ} satisfies conditions similar to {[Xif FJ}, i.e.,

and if π*[Xi9 Vt] e U*(BU{k'%)), then k^eK^ and λft, = 7r*λ whenever
1 ^ ΐ <̂  r and d(π*λ) = I, while λ .̂ =£ π*λ and d(λfc,.) <£ Z f or r + 1 ^ j ^ s,
as is easily seen from the above remarks.

Therefore, replacing [Xu FJ by π*[Xif FJ, a by ar and λ by π*λ,
we may assume from the first that Si Π Tλ = 1, so that Si x Tλ = Tn.
Then changing coordinates through Θ x θ'\ Tn = Si x Γ̂  —• Γ", we may
assume that Si = T x 1 and Γ ^ l x Tn~\ so that λ = (ί, 0, , 0) e Zπ.

Let J be the subset of Zn — 0 given by

/ = {̂  = («i, *., •••, «.)[0 ύθ^l.θΦ {I, 0, ..-, 0) = λ} .

If fei(? ^ 0, where Λt = (λ;̂ )*, 1 ^ i ^ s, and θ Φ X, then it is easy to see
that 0 e J . Let Sj be the multiplicative set in R(Tn) generated by
{K-άW*) = 1- Wθ}θBJ. Define Rj to be the localized ring Sj'RiT71). This
is a subring of S~ιR(Tn). If j : Zι x T^aT1 x Γ "1 - ΓTO is the usual
inclusion and j * : R(Tn) —+ R(Zt x T71'1) is the induced homomorphism, then
it is easy to see that Q$j*Sj and hence ^SJ(zS(zR{Zι x T71-1). Thus,
we have the induced homomorphism j * : RJ-^S~1R(Zι x T*"1).

By assumption, Vit 1 ^ i ^ r, is of the form

F* = F; φ Ei ® W\ (Et is a line bundle) ,

with

VI = Σ ^ (x) TF"

where J ' = {μ = (^, ^ , ^Λ) 10 ^ ^ < ί, /ί Φ 0} c J. Now set e = 1 -
W2, Ĵ i = 1 + xif Eΐ = (1 + a,)"1. We have a formula

where N is a constant such that x\ = 0 for all i whenever j > N. Using
this formula, we obtain from (3.4) the relation

(3.5) ^ ± i . + . . . + ^ e l
Θ β
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where bά e Ej[[t]] is given by

(3.6) h = Σ PzJxi-WMTZi) 7t[V\~Jd ) >

with k'i = dim VJ. In particular, 6^+1 takes the form

(3.7) bN+1 = ± PJx?7t
i 1 \

From (3.5), it follows that

bN+1eeRj[[t]] .

Applying j * , we get

(3.8) J*(bN+ι) = O in S ιKMιXT

since y*(β) = 0.
We now regard Vi9 1 ̂  i ^ r, as a (Z, x ^"^-vector bundle via i.

Since j * maps J ' injectively into the non-trivial irreducible (Zj x T"1"1)-
modules, [X̂ , FJ belongs to U*(BU(kl)) by virtue of the identification

where k\ is induced from A:< via the mapping j . With this understanding
(3.7) and (3.8) mean that

in S-^KzjxΓ-iίίf]] for [Xif V,] e B^xτn~\ From this and Proposition (2.18),
we infer that

P^ixfΎtiτXWWί - k[)) = 0

for all i,l <^i ^r, pe &*(k'i) and n. This implies that, if we write the
coefficients of ta in bN+1 as linear combinations of elements of S~ιKZιXTn-ι[[t\]
according to (3.7), then they all vanish, and hence 6^+1 = 0.

Then, by an inductive argument on j , using (3.6), we see that

for all i (1 <̂  i ^ r), j (0 ^ j ^ ΛΓ), p e ̂ ( Λ ) and Λ. But this is equivalent
to say that

P^MτXW^iVt - kt)) = 0

for all i, 1 ̂  i ^ r, qe^(kt) and in. From Lemma (2.2) it then follows
that
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[X,, FJ = O for H i ^ r .

This proves Proposition (3.3).

It remains to prove (3.2). Let M be a closed unitary Γw-manifold
such that the induced action of Si has no fixed points. Thus [M] e
Uln(^'(X), a). There are only a finite number of isotropy subgroups of
the Si-action and these are all finite cyclic groups. Let I be the maximum
order of these cyclic group . Let Yu , Ym be the totality of con-
nected components of the fixed point set under the action of Zx a Si.
We shall make the following construction for each Yt. First suppose that
I is greater than 1. Let Y denote one of the Yt. The group Z{ acts on
the normal bundle U of Γ by automorphisms and therefore yields a
unique decomposition

u=Σ.ut,
0<i<l

where geZt acts on Ut by the scalar multiplication on θ'^g1), which we
denote by ψ'θ~ι(gι). Thus, if we denote by ψ(g) the action of ge Tn, then
f{g) = ψ'θ-^g1) on Ut for g e Zx c Sι

a c T\ It follows that there exists
a unique S'-action ψ" on U such that

(3.9) ψθ{g) = ψ'(g)ψ'(g)1 , g e S\ on U, .

The action ψ" commutes with the Traction ψ and is principal. Set Y' =
Y/o/r'̂ S1). Since ψ" is a principal action, Yf is a smooth manifold and
the projection Y —• Y' is an S^bundle. Let Z70' denote the complex line
bundle over Yr associated with it. There is a unique weakly complex
structure on Y' such that, if Uό is endowed with a weakly complex
structure as the total space of a complex line bundle over the weakly
complex manifold Y'9 then the weakly complex structure on Y as the
boundary of the disk bundle D(Uό) of Uό coincides with the original
structure on Y induced from that of M. Furthermore, Uf = U/f'iS1) is
a complex vector bundle over Yf. Define U to be the lift of Ur over
D(Uό). Then clearly U\Y = U, and D(U)\JS(U) = dD(U) can be identified
with the sphere bundle S(U'0®U') of Uό®U', where Sφ) denotes the
sphere bundle of U. Define W to be the weakly complex manifold
(Jkf-int D(U)) \J-S(U) where -S(U) is the weakly complex manifold S(U)
with the opposite structure. Since the action ψ of Tn commutes with
ψ", it induces an action of Tn on U, which we shall also denote by ψ.

ASSERTION (3.10). The restricted action of Si on U has no fixed
points outside of Y' = Y/ψ^iS1). On S(U), the isotropy subgroups of Sλ

a

are cyclic groups of order less than I, so that the fixed point set of the
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restricted action of Zx c Si on Mf equals \J Y3 — Y. Hence, S( Uό φ Uf)
and Mf represent elements of Uζn(^(l), a), in which we have

For the proof, see [16] or [15].
Since Tn is a connected abelian group, the submanifold Y is invariant

under the action of Tn. Let Hlf" ,H8 be the totality of isotropy
subgroups of codimension 1 of the Traction on Y and let Fl9 •••, F8 be
the corresponding fixed point sets. From the maximality of I, it follows
that Si Π Hj = Zt for all j . We set X3 = Fj/f'iS1).

ASSERTION (3.11). The fixed point set of the induced Tn-action ψ on
D(Uo φ Uf) is precisely the disjoint union of Xl9 , X8, so that each X3

has a natural weakly complex structure. Let V3 be the normal bundle
of Xj in D(UQ φ ?/')• Then V3 decomposes as a direct sum of complex
vector bundles

Vi = Ul\Xi®U'\Xi®VJr.,

where V3Y, is the normal bundle of X3 in Yf. The bundles Ό[\X$, U'\Xj
and V3Y, are invariant under the Tn-action ψ. Uό\X3 is a line bundle
and ifWλ is the unique irreducible Tn-module contained in it then Wλ

is positive and d(X) = I. Irreducible Tn-modules contained in Uf \ Xt are
all positive and the d(μ) are less than I. Finally, for irreducible Tn-
modules Wμ contained in V3Y,, we have SaCiGμ. In particular, [X3, V3]
belongs to Bln(ά).

PROOF. The first part is easy, hence we prove the only second part.
On Uό, the scalar multiplication ψ[(g) of g e S1 is given by ψ"{g), and the
action φ" of S1 restricted to Y, the sphere bundle of Z70', is related to
ψ by ψ(θ(g)) = f"{g)1, so that we have ψ(θ(g)) = ψ[{g)K If Wλ is the
irreducible TVmodule contained in Uo\X3, then this means that Wλ is
positive and d(X) = I. As in (3.9), the actions ψ, ψf and ψ" are related
by Ψ(0(g)) = Ψ'(g)ψ'(9)1 on Ui9 where g e S1. Therefore, on VI = UJf'iS1),
we have the relation

ψ(θ(g)) = ψ[(gy , geS1.

Because of the inequalities 0 < i < I, this shows that if Wμ is an irre-
ducible TΛ-module contained in Ul c Ur, then Wμ is positive and d{μ) < I.
Finally, Si keeps fixed every point of V3Y,. Hence, if Wμ is contained in
VjT't then it is clear that Sι

acGμ.

ASSERTION (3.12). The notations being as above, let X = \J X3 and
V be the normal bundle of X in Y'. Thus V\X3 = V, and [X, V] =
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Vj] e Bln(a). If S(V) is the sphere bundle of V then we have

(3.13) [M] = [S(V)] + [M'\ .

To prove this it is sufficient, by virtue of (3.10) and (3.11), to show
that [S(V)] = [S(E7ίφEP)]. But the manifold D{m@U') - intD(F) is
Tw-invariant and, there are no fixed points of the induced Tw-action on
that manifold. This provides the bordism between S(Uo(&U') and S(V)
in ί/Γ(J^(l)).

Now, we have started from an element [M] e Uζn(^Γ(l)) and arrived
at a pair [X, V] e BΓ(a) and [Mf] e UΓ{^{1\ a) such that the number
of components of the fixed point set under the induced ZΓaction on M'
is decreased by one, and such that (3.13) is satisfied. We can proceed by
induction on I and the number of components of the fixed point set of
ZtCzSlt, repeating the same construction as above, to get [X{1), V{1)] e Bln(a)
and [M(1)] e UΓ(^(1), a) such that

(3.14) [M] =

and the induced Si-action on [M{ί)] is principal. Moreover, it is not hard
to see that the above construction is canonical and that the assignments
[ikf]ι—>[X(1), F(1)] and [M]h->[ikf(1)] are well-defined £7*-module homomorphisms
Uζn(^r(l),a)-+BΓS(a) and UΓ{JT{1), a) — Uζn(J^(l), a), respectively.

At this final stage, the Si-action ψ on M(1) being principal, M{1) —>
M{1)/ψ(Sa) is a differentiate S^principal bundle, where S1 is identified
with Si via θ. Let V be the associated complex line bundle. The mani-
fold Y(0) = Mίl)/ψ(Sa) can be given a unique weakly complex structure such
that, if V is endowed with the weakly complex structure as the total
space of complex line bundle, then the weakly complex structure on ikf(1)

as the boundary of D(V') coincides with the given one. The Traction
ψ extends uniquely over V. Let Xi0) be the fixed point set of the
Γ -action on D(V); Xw is contained in Γί0). Let F (0) denote the normal
of X(0) in D(V). Then we have a direct sum decomposition

where Vγw is the normal bundle in Y{0). V'\X{0) and Vτw are TMnvariant,
and we see, exactly as in (3.11), that if Wλ is the unique irreducible
ΓΛ-module contained in V'\Xm, then Wλ is positive and d(X) = 1, and that
[X(0), F0 )] belongs to BΓ(a). We see also, as in (3.12), that

(3.15) [M(1)] = 3[X(0), F (0)] .

Moreover, the assignment [M(1)] H> [X(0), V(0)] is well-defined homomorphism.
Then we define Qa: UΓ(^(1\ a)->BτS(a) by
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Qa[M] = [X(0), F(0)] + [X(1), F(1)] .

This is a well-defined homomorphism and satisfies BQa[M] = [M], by (3.14)
and (3.15). This proves (3.2) and hence completes the proof of (1.4).

4. Equivariant Z7*-theory characteristic numbers. The contents of
this section are not new (cf. [8]). However, they are included here be-
cause it seems appropriate to give a brief description of the material
in terms of ordinary ϊ7*-theory and if-theory.

Z7*-cohomology theory is extended over infinite CTf-complexes with
finite skeletons by defining

U*(Y) = limDr*(Yβ) ,

where Ya ranges over all finite subcomplexes of Y.
Let G be a compact Lie group and π: EG —> BG a universal G-bundle.

We may assume that BG is an inductive limit of compact smooth manifolds
BGq. We then define an equivariant £7*-theory on the category of compact
G-spaces and G-maps by letting U*( ) = U*(EG XG ). In this theory,
products are defined in an obvious way. If X and Y are closed weakly
complex manifolds with smooth G-action preserving weakly complex struc-
tures, and g: X—> Y is a G-map, then g can be given a natural complex orien-
tation in the sense of Quillen [17]. If EGq~>BGq is the restriction of
E on BGq, then 1 Xa g: EGq XG X-+EGq XG Y is also a complex oriented
map and hence induces a Gysin homomorphism (1 XG g)lq: U*(EGq XG X) —>
U*(EGqXGY). It is not hard to show that the Gysin homomorphisms
(lXGg)ιq commute with the limiting process as q—>°°, and thus define
a map gr. UG(X) —>UG{Y), which may be called the Gysin homomorphism
of g in the ί7£-theory. It is easy to see that g, is a i7*-module map.

Next, let V—* X be a G-complex vector bundle over a compact G-
space X. Then EGXGV-*EGXGX is also a complex vector bundle.
Let e(V)e Uξ(X) = U*(EGXGX) denote its ί7*-theory Euler class [17];
we then have the usual product formula e(Vγ © F2) =; e(Vi)e(V2). In
particular, if W is a G-module, then its Euler class e(W) is defined in
US = US (point). Let S denote the multiplicative set in US generated by
Euler classes of non-trivial irreducible G-modules, and let S^U* denote
the localized ring of US with respect to S. More generally, S~ιU%{X) can
be defined, since US(X) is a C/J-module.

We now define &: US ~+ US by

*[Λf] = ftrι(l) ,

where pMl:U£(M)—>U$ is the Gysin homomorphism of pM: M—>point.
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The verification of the following proposition is easy and will be left to
the reader.

PROPOSITION (4.1). #: UZ-+U% is a well-defined ring homomorphism,
and in particular, a U*'-module map. The product in U% is given by

= [M, x M2] ,

where the G-action on M1 x M2 is the diagonal action.

Next we require the following lemma.

LEMMA (4.2). Let [X, V]eB%. Then e(V) is invertible when it is
regarded as an element in S~1US(X)

PROOF. Clearly, we may assume that X is connected. By the product
formula for Euler classes we may assume that V contains only one irre-
ducible G-module W, i.e., that V is of the form E®W. If dim # = k
and degree W = d then, applying the formal group law in C7*-theory
[17], we have

e(V) = e(W)k + Σ atJq , aίjq e U~2i - U? U*\X) ,
q>Q,feO

-i+j+q=dk

where U~2i U2J U2q(X) stands for the image of the cross-product U~2i x
W x U2q(X)-+U*(BG x X) = US(X). Notice that X is a trivial G-space.
Therefore, in the ring S~ιU$(X), we have

bijq e U~2i U^-dk> U2\X) .bijq

Since X is a finite CW-complex, elements in Xg > 0 U
2q(X) are nilpotent

[17]. Hence b = Σ K*is nilpotent and (1 + 6)"1 exists in S^USiX). Thus,
β(F)/e(T7)fe is invertible in Ŝ Z/Sί-ST).

As is readily seen, the Gysin homomorphism pxι:U%(X)—>U% is a
C7S-:module map and hence induces pxι: S~ιUt{X)-+ S~XUQ. We define
$:B%-+S-ιU£ by

PROPOSITION (4.3). ??: JB* —> S"1 US is a well-defined ring homomorphism,
and in particular, a U*-module map. The product in B% is given by

[Xu FJ[X2, V2] = [X, x X2, V, x V2] .

The verification is left to the reader.

PROPOSITION (4.4). The following diagram is commutative:
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TTG > TΓ*
u* > uG

k , J
-£>* > o UG .

Here the second vertical arrow represents the canonical map. Moreover
f is a ring homomorphism.

PROOF. An argument similar to that of [2] and [3] applies here.
Given a closed unitary G-manifold M, let X be its fixed point set, V the
normal bundle of X in M, and i: X—>M the inclusion. By the definition
of Euler class [17], we have

i*iι(x) = e(V)x

for xe U%(X). Passing to S~ιU%f we obtain

e(V)-H%(x) = x .

On the other hand, it was shown by torn Dieck [11] that

i*:S-ιUg(M)-+S-1US(X)

is an isomorphism, hence it follows that iι{e{V)~ι) = 1. Thus in S~ιUl we
have

This proves the commutativity. The statement regarding / is clear.

Finally, we define the Boardman map

as the limit of the maps B: U*(BGq) -> K*(BGq)[[t]] defined by

where g is a complex oriented map (Y, d Y) —> {BGq, dBGq) from a compact
smooth manifold Y and vg is the stable complex normal bundle of g.β)

It can be shown that B is a well-defined ring homomorphism. Moreover,
the following proposition is an immediate consequences of the definition
of #, B and p.

PROPOSITION (4.5). The composition B-& coincides with the com-

position Uξ -£-> KG[[t]\ -> Kβllt]].

L E M M A (4.6). If W is a G-module, then we have

β) Usual convention seems to adopt the definition
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B(e(W)) = X^(W)(Ύt(W - dimT^))"1 .

PROOF. Let Wq denote the vector bundle EGqXGW-+BGq. Under
the canonical map aq: KG = R(G)-+K(BGq), W is mapped into Wq. Let Y
be a self-intersection of BGq in Wq and i: YaBGq the inclusion. By defi-
nition, we have e(Wq) = i,(l). Similarly, in if-theory, X-^Wg) = i,(l).
Moreover, vt = i*(Wq). Using the Riemann-Roch relation, we deduce that

B(e(Wq)) = hi*(Ύt(Wq -

Taking the limit and using the canonical identification a: KG = lim K(BGq)

[4], we obtain the desired relation.
By virtue of (4.6), the ring homomorphism B passes to the localization

and induces

The following proposition can be proved in a manner similar to (4.6).
Details are left to the reader.

PROPOSITION (4.7). The composition Bo& coincides with the com-

position B% —^ S-\BΓβ[[f]] — S-ιKa[[t]].
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