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1. Introduction. Let G be a compact Lie group and M a compact
unitary (i.e., weakly complex) G-manifold. Thus G acts on M by diffeo-
morphisms preserving the given complex structure of the stable tangent
bundle of M. The stable tangent bundle, with this G-action, defines an
element TM in Ko(M) where K (M) denotes the kernel of the augmenta-
tion K (M) mHO(X, Z). If t=(t, ¢, -++) is a sequence of indetermi-
nates and V is a complex G-vector bundle V over M, we define v,(V—dim V)
in K (M)[[t]] by

TV —dim V) =L (L + 6(Vy — 1) + £V, = 1 + +-2)

where V is written formally as

dimV

V= Zf V..
v, extends to a map
7.t Ko(M) — K (M)[[]
such that
7@ + ) = 7@V Y) -

Suppose that M is closed (i.e., compact and without boundary) and let
D Ko(M) — K} = K} (point) be the Gysin homomorphism of p,: M —
point. The element p,,(v(TM)) in KZ[[t]] turns out to be an invariant
of the G-equivariant bordism class the of unitary G-manifold M so that
the assignment [M]— p,(v(TM)) defines a homomorphism

o: Ui — K3[[t]

where U§ is the bordism ring of closed unitary G-manifolds. The homo-
morphism p also preserves the ring structure. The coefficients of the
formal power series p[M] are called equivariant K-theory characteristic
numbers of [M]e U¢. Note that the coefficient ring K% has trivial odd-
dimensional component K;' and K} = K, is canonically isomorphic to
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the representation ring R(G) of G [4].

Let S denote the multiplicative set in K, generated by the K-theory
Euler classes M_,(W) = 3, (— 1)\ (W) of the nontrivial irreducible G-
modules W. By the localization theorem of Atiyah-Segal [2], [3], the
image of o[M] = py(v(TM)) in the localized ring S K,[[t]] equals”

_p%W—&mW>
Toa(Y)

where X is the fixed point set” of the given G-action and V is the normal
bundle of X in M with the induced G-action. This fits in with the
following commutative diagram within the bordism context:

Px ('71(2_'

w Ui ——— K, [[t]
| | |
B —f - STK] .

Here B{ is the bordism group derived from the pairs (X, V) of closed
unitary manifolds X and complex vector bundles® V over X having G-
action by automorphisms without trivial irreducible factors. f is obtained
by taking the bordism class of the fixed point set and its normal bundle.
0 is given by

(V—&mm>.

(L.2) AIX, V] = (0=

The second vertical homomorphism is the canonical map.

Now consider the case where G is topologically cyclic,” i.e., G is
isomorphic to Z, x T", the product of a cyclic group of order ! and an
n-dimensional torus. It is well known that the canonical map K;— S™' K
is an inclusion if G = T". The fixed point homomorphism f is also monic
for G = T" (Hamrick-Ossa [13]). In this paper we shall prove

THEOREM (1.8). If G s topologically cyclic then the homomorphism
p: B — ST K[[¢]]

1 Strictly speaking the statement is slightly more general than the theorem of Atiyah
Segal. However, their proof can also be applied to our situation.

2 A point x of M is called fixed point of the G-action if the isotropy subgroup at =z
coincides with G itself. The set of all fixed points is called the fixed point set.

3 We make the convention that a manifold may have components of various dimension
and a vector bundle over it may have various fiber dimensions over each component.

4 It can be shown that, if G is not topologically cyclic, then S~'Kg = {0}. Thus p is
non-trivial only if G is topologically cyclic.
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18 monic.
THEOREM (1.4) (Integrality theorem). We have

P (Kol[E]]) = (UL .
As an immediate corollary of (1.3) we obtain
COROLLARY (1.5). The homomorphism
p: U™ — Kpl[8]]
is monic, i.e., the bordism classes of Uy" are determined by their equi-

variant K-theory characteristic numbers.

Theorem (1.4) has also the following implications. Let U§(% (1)) be
the bordism group of closed unitary G-manifolds without fixed points.
In the exact triangle of Conner-Floyd [7]

U¢ ————f——> B¢
N /
N /0
Ui(# (1)) .
f is monic and hence 0 is epic if G = T". Therefore, U" (& (1)) is
canonically identified with B%"/f(U%") and diagram (1.1) induces

p: U(F (1) = ST Kl [0}/ Kpa[[E]] = (S7"Kopu/Kpa)[[E]].

The coefficients of p[M] in (S'K;«/K;+)[[t]] are the v-invariants of
[M]e U*(< (1)) of Atiyah-Singer [5,87]. Clearly, Theorem (1.4) implies
COROLLARY (1.6).
0: UN(F (1)) = (ST Ko/ Kpa) [[£]]
18 momnic.

Finally, we define the equivariant U*-theory by U(Y) = U*(EG X,Y)
where EG — BG is the universal G-bundle and Y is a G-space. If W is
a G-module then EG X,W — BG is a complex vector bundle over BG
whose Euler class in U*(BG) will be denoted by e¢(W). Let S be the
multiplicative set in U} = U*(BG) generated by the Ug-theory Euler

classes e(W) of non-trivial irreducible G-modules W. Then diagram (1.1)
for G = T* factors through

vt ——2 U ——2 L k]

I

B — s § U — s SR,

S
I

o &
Sl

Il
=TI~
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where B is the Boardman map, B is induced from B (see §5) and
K; denotes the completion of K, = R(G)”[4], [18]. For the precise
definition of & and ¢, see §5. From (1.3) and (1.4) follows immedi-
ately

THEOREM (1.7). The homomorphisms
#: UL — Ufa, 9: BI" — S7'U¥. and I UMz Q) — S Uk Ufn
are monic. |

Equivariant bordism and equivariant characteristic numbers are ex-
tensively studied by tom Dieck [8], [9], [10], [11], [12]. In [12] he proved
that, if G is the cyclic group of prime power order, then &, J and 3
are monic. He also proved the corresponding results for unoriented
(Z,)k-manifolds [10]. In his theory tom Dieck used an equivariant cohomo-
logy theory based on an equivariant Thom spectrum. Our method is
more direct; only knowledge of ordinary K-theory and U*-theory is
needed. In the proof of integrality theorem (1.4), Propositions (3.2) and
(3.3) are crucial. If G is a torus a geometric construction, essentially
due to Ossa [16] (cf. also [13] and [15]) yields a G-manifold bounded by
a given G-manifold without fixed points. That construction is used to
define the homomorphism @, in (3.2).

The proof of (1.3) is given in §2. Theorem (1.4) is proved in § 3.
In §4 the definition of ¢, ¢ and their relation to p, ¢ are briefly
discussed.

The results of the present paper have been announced in [14].

2. Proof of Theorem (1.3). Let G be a compact Lie group and
let {W,}... be the set of non-trivial irreducible G-modules. Let .2 =
%7 (G@) be the set of sequences k = (k;);., of non-negative integers indexed
by 4 with almost all zero terms. A complex vector bundle V with an
G-action over a trivial G-space of the form

V=3EQW,dmE,=1F,

will be called a G-vector bundle of type k = (k;) € .2¢. If V is a complex
G-vector bundle over a trivial G-space X such that the action of G on
the fibers has no trivial irreducible factors, then V is a finite disjoint
union of the V, where V, is of type k with base space X,, X being the
disjoint union of the X, cf. [2]. The correspondence [X, V]+— 3. [Xi Vil

5 The canonical map Ky — K¢ is not monic in general [18]. Suppose that G is topologi-
cally cyclic; G = Z; X T*. Then it can be shown that S~'Kg is monic if ! is a power of
prime, but S-1K¢ = 0 otherwise.
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yields a canonical isomorphism
BS = >\ U.(BU(k))
ke

where BU(%X) denotes [, BU(k,), BU(k.) being a classifying space of
complex k,-vector bundle (BU(0) = point).

If k = (k.)e 9, then the degree of k is by definition 3, k;, and will
be denoted by |k|. A partition of type k is a function p defined on 4
with values in the set of subsets of {1, 2, ---, | k|}, such that the cardinal
number of the set p(\) equals k; and the intersection p(») N p(x) is empty
for » = p. The totality of the partitions of type k will be denoted by
F(k). If pe F(k), then let 7;: {1, -+, k;} —»(\) be the unique monotone
bijection. Suppose that a triple (V, p, m) is given, where V = >\ E.QW,
is a G-vector bundle of type k over X, p is an element of (k) and
m = (m, --+, my), k = | k|, is a sequence of non-negative integers. Then
we define M»™(V)e K(X) to be the coefficient of T, IT%, bume iy 1D

ke oy

ITTT (o + Bt + Bt + Bistus + -2+
i=1

where each E, is written formally as

kp

E, =3, E, (sum of line bundles) .

Similarly v*™(V — |k|)e K(X) is defined to be the coefficient of

ky

I 1T tume
#oj=1
in

kp
1;[ ]1;[1 (t;lo + (EM‘ - 1)t#1 + (Em' - 1)2tﬂ2 + . ‘) .
For a fixed pe.Z(k), every M»™(V) is a linear combination of the
v*"(V — |k|). Specifically we have the following.

LemMMA (2.1). Suppose that m = (m,, +++, m;) is such that m; + m;
for © #~ 3. Then, for any p<c FP(k), we have
m
wmno=z()ﬂnmwwV—m,
= \n
where d(p, n) is the order of the subgroup of the symmetric group

of degree k consisting of the elements o such that op =p, n =n’ =
(na(l)’ ey 'n'a(k)) and
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m k m;
() =1%)-
n i=1\ N;
NoTE. If o is a permutation of {1, 2, ---, k} such that op = p, then
YoV — k) = ¥V — k).
The proof is straightforward and will be left to the reader.

LEMMA (2.2). Let ke o with k = |k|. A bordism class [X, V]e
U.(BU(k)) vanishes if and only tf we have

(2.3) Pr(MEX)Y*"(V — k) =0
in K(point) = Z for all pe FP(k) and all n = (n, «--, ny).

PROOF. The necessity is trivial. Suppose conversely that (2.3) holds
for all p and n. We note the Riemann-Roch relation

pr(®) = ch(x).7 (x)[X], ze K(X),

and the fact that
ch v*"(V — k) = ¢*™(V) + higher terms

and
ch7(tX) = ¢(TX) + higher terms,

where ¢'*® are defined in a manner similar to A‘*™, replacing complex
line bundles by their Euler classes, and ¢, is given by ¢(7X) = II. (1 +
zit, + o}, + -+-) where ¢(7X) + II, (1 + #,) is the Chern class of TX.
Using the above relations, we deduce from (2.3) that

(2.4) c(TX)e"(V) =0

for all p and n. Since the space BU(k) = II BU(k;) has no torsion in
ordinary homology, vanishing of all the Chern numbers of the form (2.4)
implies, by a theorem of Conner-Floyd [6], that [X, V] = 0. Thus (2.2)
is proved.

Now suppose that G is Z, x T". Let W, be the standard Z,-module,
W the standard S'-module and W, the pull-back of W by the projection
p;: T"— S* on the 4-th factor, 1 <7<n. It is well known that the
character rings are given by R(Z) = Z[W,]/Q — W}), R(T") = Z[W,,
Wityeoo , W, W' and R(G) = R(Z) Q R(T"). We shall denote by W?* the
element WiWi ... Wi»e R(G), where x = (Ao, Ay, =*+, M) € Z; X Z™. The
ring R(G) is additively a free abelian group generated by {W?%. Let S
be the multiplicative set in R(G) generated by {1 — W?*|\ = 0} and S;«
the multiplicative set in R(7T™) generated by {1 — W¥ |\ = (0, Ay, +++, ),
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N # 0}, The following lemma is standard and the proof is omitted.
LEMMA (2.5). The homomorphism

&: ST'R(G) — C ® SiaR(T™) = Syi(C ® R(T™)
given by

1—1 . -1
2 Wik Py &
€ =0 — =0 s Xi e R(Tn) ,

I;I (1 - Wl)ul I;I (1 _ wloWl')az

is well defined and injective. Here ® = exp 2V —1/l) and N =
(01 )“11 R 7\'“) ’bf )“ = ()‘Oy )"’19 °t 7\'1»)'

We shall now proceed to the proof of Theorem (1.3). Suppose that
there are given elements k;€ .97, 1 < 1 < s, and [X,, V;] € U,(BU(k;)) such
that p(Cui-, [X;, Vi]) = 0. We wish to prove that [X,, V;] =0 for all 4.
Set k, = |k,]. We may assume, without loss of generality, that k, =

kEforl1<i<rand k; <k for r+1=<7<s. Recall that each V, has
the form

Vi:-x;E”@Wz, dimE“:k.,;z,
0

where k, = (k;;);. Writing E,, formally as Whitney sum of complex line
bundles E;;, 1 < j < k,;, we get

@6 XVi—k)
A(V3)
= (=1~ TI ﬁ(———l— + b, + (B W — 1) + ) .
1 =i E“sz - 1 1 2 4
Given a partition pe (k) and a sequence n = (n,, -+, ), k = | k|, we
define L(p, n)e Z, X Z" by

Note that the sum is essentially a finite sum because p(\) = ¢ for almost
all ne Z, x Z* — 0. If m = (m, ---m,)is a sequence of mutually distinct
positive integers, then the coefficient ¢; . of t, i itmysi = * tmyss in (2.6) is
zero if r <1 and is of the form

@7  ein=(-DHEN (—1)2”"(':)<p8§(k.>d(p, NS (VYo )

for 1 < ¢ < r, where
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)-1)-

Now since all the base spaces X,, 1 <1 < s, are compact manifolds,
there are no non-zero terms in 7,(7X,) involving ¢, ., ***, tm,+, DProvided
m,, --+, m, are sufficiently large (see e.g. [1]). Therefore, equating to
zero the terms involving ¢, ., *+*, tm+ in (3 [X;, V.]), we obtain

2.9) (3 ro(rEX)ei) ) = 0

for sufficiently large m,, .-, m,, where ¢, , is given by (2.7) when m,,
«+., m;, are mutually distinct.

Note that <"':>is a polynomial funection of m,, ---, m, for a fixed n.
The following lemma can be proved easily be induction on k.

LEMMA (2.9). Let A be the set of all sequences n = (n, +++, n;) of
nonnegative integers. Then the {(7:)} are linearly independent as
neAd

Sunctions of my, «+-, m,.

From (2.9) it follows that the coefficient of (’:) in (2.8) must vanish
identically for each ne A. Using the expression (2.7), we obtain

@10 (S p(nEX( S, do, mpen(VIwEen))) = 0

per(

for any ne A.
Next, in addition to L(p, n), we define Ly(p, n) € Z, and L'(p, n) € Z" by

Lip,m) = 3(, 3, mi )

A0

and

Lp,m) = 2 (jg%z)nj)x,

270
where A = (A, Ay, +++, A,) and M = (0, A}, +++, \,). Thus
L(pr n) = (Lo(py n), L’(pr n)) .

We then introduce an equivalence relation p = ¢ on the set U,<,<, Z(k))
in the following way. Two elements p and ¢ are defined to be equiva-
lent if and only if L’(p, n) and L’(q, n) are identical functions of n.
We shall denote the equivalence class of » by [p]. Thus L'(p, n) is
actually a function of [p] which we denote by L’([p], n). The set of
equivalence classes [p] will be denoted by Q. Let 7: A— (Z,))* be the
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natural projection. Then L,(p, n) depends only on 7(n) = g, and will be
denoted by Ly(p, g). From the definition we obtain immediately

LEMMA (2.11). If p=gq and p + q then L|(p, g) and Lyq, g) are not
identically equal as functions of ge (Z)*.

Let then B be the subset of A consisting of the elements m =
(m,, «--, m;) such that the m, are mutually distinct and L'([p], m) =
L'([q], m) for all pairs ([p], [¢]) € @ with [p] + [¢q]. B is obtained from
A by removing a finite number of hyperplanes. Note that, if me B,

then {W¥lmy ., form a linearly independent set in R(7T™"). Observing
that

5(2 WL(p,nﬂ) — (Z ng(p.nd) WL'(e,m)

peé peE

for every class £e @, we see from (2.10) that, for any me B and any
class &, the identity

(2-12) 3% Dty (E XN (Vi)™ = 0

holds, where i(p) denotes the unique ¢ such that pe Z(k,).
At this point we use Lemma (2.1). Fix an element ge (Z)*. If me
(r|B)™(g9) then, from (2.1) and (2.12) we have

(2.13) 2{2 Py (VT Xiip)d(®, )Y (Vi) — k))w““"”}(:) =0

€é

for any £e Q. From the fact that B is obtained from A by removing a finite
number of hyperplanes, it follows easily that the set (7|B)'(9) contains
arbitrarily large m (i.e., min m; is arbitrarily large). Therefore, the
coefficient of each <'Z> in (2.13) must vanish, by (2.9). Thus, we have
proved that

(2.14) %pxi(p)l(%(fxi(p))d(p, n)Y? (Vi — k))w™? =0

for any £eQ, nc A, and g€ (Z)".

For a fixed p, the function w,: (Z))* — C given by w,(9) = w™*? is
clearly an irreducible character of the group (Z))* and hence can be
considered as an element of R((Z))*). Thus, (2.14) is translated into

(2.15) %pxi(l,)l(’ﬂ(z—'){t(m)d(p’ n)Y?*" (Vi — k))w, =0
which holds in R((Z)")[[¢]] for any £€Q and ne A. Moreover, Lemma

(2.11) implies that, for a fixed £€Q, {®,},.. is a linearly independent set
in R((Z))"), since they are mutually distinct irreducible characters. Hence
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the coefficient of each w, in (2.15) must vanish and we obtain
pX.'(p)'('Y'(z_-‘Xim)'Y(p'")( Vi — k) =0,

for any p and n. In other words, for any 4,1 <1 <7, any pe . ZF(k)
and any ne A, the relation

(2.16) P (T(T X)Y"(V, — k) =0
holds. In virtue of Lemma (2.2) this implies
(2.17) [X, Vi =0

in U, (BU(k;)) for 1 <1 < 7.
: Finally, the induction on max |k;| shows that (2.17) holds also for all
1,1 <1 <s. This completes the proof of (1.3).

In passing, we note the following proposition which is proved in a
manner entirely similar to (2.16).

PROPOSITION (2.18). Let G = Z, x T". Suppose that there are given
[X., Vile U (BU(k,) and y,c K(X,),1 <1 < s, such that

= (Vi — |kz’) —
3 pea(por X)X ) = 0

in ST'KG[[t]]l. Then the relation
pXi,(yi"/t(in)’)’”’"‘)(Vi — k) =0
holds for all i, pe (k) and ne A.

3. Proof of Theorem (1.4). The integrality Theorem (1.4) follows
from more precise facts which will be stated in Propositions (8.1), (3.2)
and (3.3).

Let G; be the stabilizer of the irreducible T"-module W?* where A =
Ny sos, M) €EZ™. @G, is the subgroup of T consisting of the elements
(e, «++, &) such that 3 \;t, = 0 mod 2x. If W? is non-trivial (i.e., N #
0), then G; is isomorphic to 7" x Z,, where d is the greatest common
divisor of A, +++, \,, which we shall call the order of A and denote by
d(\). A subcircle of T* is of the form

St = (@, oy )

where a = (a,, ---, @,) € Z" — 0 with d(a) = 1.
Given a subcircle S. of T", we define UL"(# (1), @) to be the U,-sub-
module of UL"(# (1)) consisting of the elements [M] admitting a repre-

senting T"-manifold M on which the induced Si-action has no fixed points.
There are exactly two isomorphisms from S* onto S,. We arbitrarily
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choose one of these, which we denote by 6. If W? is a non-trivial ir-
reducible T"-module such that G;  S., then the composite homomorphism

ssicm Mg
is of the form 2z 2!, with [ = 0, where %, is the homomorphism corres-
ponding to W,. We sllall call W? positz;ve if 1 is positive. In this case
! will be denoted by d(\). Note that d(\) is a multiple of d(\).

Given a subcircle S; we define B%"(«) to be the U,-submodule of BL"
generated by the elements [X, V] such that V is of the form

V=%Z,E,,®W“Q9E,1®WZ

where S & G;, W? is positive and dim E; = 1, while the sum is taken
over {¢} such that either W* is positive and d(#) < d(»), or SicCG,.
We define the subset .27, of 22°(T") as follows. k = (k.)€ 22°(T") belongs
to .97, if and only if there exists a positive A, such that

1) k=1,

2) if k,#0, ¢t # ), then either W* is positive and d(y) < d(\.), or
S: CG,.

Itis clear then that

Bi(@) = 3, U(BU(K)) .

ProproSITION (8.1). UL"(# (1)) is the union of the UL (F (1), ).

ProOF. Let M be a compact T"-manifold without fixed points. Let
{H, ---, H,} be the totality of isotropy subgroups of the T™-action on
M. They are proper subgroups of 7", and are finite in number. For a
subcirele S., the condition that the induced action of S; has no fixed points
is equivalent to the condition that S! is contained in none of the H,.
But it is easy to see that a circle S satisfying this condition exists.

PROPOSITION (8.2). There is a U,-module map Q.: Ui (# (1), ) — BY"
such that 0Q, equals the identity and the image of Q. ts contained in
B (). Im particular, if n =1 then Q = Q, is a splitting map for 0.

Proof of (3.2) will be postponed until the last part of this section.
It is not hard to see that Theorem (1.4) is an easy consequence of the
following Proposition (8.3), together with (3.1) and (3.2).

PROPOSITION (3.3). Let Sy T be a subcircle. Let p, denote
pl1 B (a) .
Then we have
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P (Kr[[2]]) = 0 .
Proor. Suppose that we are given elements [X,, V.]e U, (BU(k,),
1 < ¢ <s, where k,c 57, such that

(3-4) (X X, Vi) e Koal[2]]

We wish to show that [X, V,] =0 for all i. Let ! = max,d(\.,). We
shall proceed by induction on ! and on the number of 7+ which satisfy
ad0w,) = 1.

First, we make a few preparatory remarks. Let z: T"— T™ be a finite
covering map. It is easy to see that the induced map 7*: 4 — 4 is injec-
tive, where 4 = Z"* — 0 denotes the non-trivial irreducible representations
of T" as before. It follows that the induced homomorphism z*: R(T™) —
R(T™) is also injective. Hence, it induces a homomorphism =*: S7'R(T") —
S™R(T™) which is also injective. Similarly, if [X, V] e B%", where V is of
the form

V=>EQW,

red
then
TV = %E,,@n*W/‘
re
is well-defined and the homomorphism 7*: BL" — B%" defined by
X, V] = [X, =* V]
is injective. Moreover, if S. is the component group of 7#7'(S)) and ¢ is
the degree of x:S. — S., then it is easy to see that 7*W* = W™* is
positive with respect to the isomorphism &:S'— S., which is uniquely
determined by 76(z) = 6(z°) if and only if W* is positive, and that d(z*t)
equals qd().

We return to the proof of (3.3). Clearly we may assume that A, =
A if 1<¢<r and d(») =1, and that A, = X\ and J(xkj)gl if r+1=
j =s. It will suffice to show that [X,, V] =0 for 1 <7 <7r. For then
we shall have fewer k; such that d(k;) =, and the inductive argument
can be applied.

Let T, be the connected component group of the stabilizer G; of W2,
Since W* is positive, the group H = SN T, is finite and S U T; gen-
erates T". Fixing an isomorphism 6¢’: "' — T,, we define 7: T" = S' X
T — T* by

(u, v) = 0(w)d’'(v) .

Then 7 is a finite covering map, furthermore, the connected component
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group of #7'(S.) is Sy = S' X 1 and the degree of z: S. — S! equals 1.
The component group T,., of the stabilizer of #*W?* = W™ is 1 x T"},
hence S, N T..; =1. Now to prove that [X;, V.] = 0 it suffices to prove
that 7*[X,, V,] =0, since 7* is a monomorphism. But the collection
{r*[X,, V.]} satisfies conditions similar to {[X,, V.]}, i.e.,

P [ X, Vi) e Koal[€]]
and if w*[X,, Vi]e U (BU(k;), then kie K, and M\, =7*\ whenever

1<i <7 and d@@*\) =1, while Me; # TN and d()»k)<lfor'r+1<g<s,
as is easily seen from the above remarks.
Therefore, replacing [X,, V;] by 7n*[X,, V.], « by «a’ and N by ©*)\,
we may assume from the first that S:N T, =1, so that S, x T, = T".
Then changing coordinates through 6 x ¢’: T* =S, X T; — T", we may
assume that S, =T'x1land Th=1x T"* so that A =(, 0, -+, 0)e Z".
Let J be the subset of Z* — 0 given by

= {0 =(017 02, "',0”)IO§01§L0¢(Z, Oy "'70) :)"} .

If k., + 0, where k, = (kis)s, 1 <1 < s, and 0 # ), then it is easy to see
that #eJ. Let S; be the multiplicative set in R(T") generated by
(W) =1 — W?%,.,;. Define R; to be the localized ring S;*R(T"). This
is a subring of ST'R(T™). If 5: Z, x T"'CT"x T" ' = T" is the usual
inclusion and j*: R(T™) — R(Z, x T"")is the induced homomorphism, then
it is easy to see that 0¢ j*S; and hence j*S;cSc R(Z, x T*"). Thus,
we have the induced homomorphism j*: B; — S™'R(Z, x T"™).
By assumption, V;, 1 < ¢ < 7, is of the form

V,=V,® E, QW (E, is a line bundle),
with
Vi= Z Eiy ® we
pred’

where J' = {¢t = (&, to *-, )]0, <~ 0 cJ. Now set e =1 —
WL E, =1+, BEf =0 + 2,)"". We have a formula

T-Tf@“‘w_z‘ L a(E) v a(E)T
S B (BLY o (B

where N is a constant such that 2 = 0 for all + whenever j > N. Using
this formula, we obtain from (3.4) the relation

(3.5) byss %e R,

eN+1
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where b; € R,[[t]] is given by

L — u j—1 J1%5 p— 7:(V1,, - k:)
(3.6) b; =3, px,.x<x$ E; ’%(fAi)————-x_l(Vg) )
with %k = dim V;. In particular, by,, takes the form
_ vy (7)Y Vi — k3)
(8.7) byt = ,Zl' pxﬂ(“’w 7(T X)) (VD) ) .

From (3.5), it follows that
by € eR,[[2]] .

Applying j*, we get
(3-8) j*(bN+l) =0 in S le,xT"—lut]] ’
since j*(e) = 0.

We now regard V,, 1 <1 < r, as a (£, X T"')-vector bundle via j.
Since j* maps J' injectively into the non-trivial irreducible (Z, x T"%)-
modules, [X;, V;] belongs to U,(BU(k)) by virtue of the identification

By = 5, UJ(BUK)),

K eor (ZyxTn—1)
where k; is induced from k; via the mapping j. With this understanding
(3.7) and (3.8) mean that

S Ney (F (Vi — k) _
3 pe(arn@x) HEZL) < 0

in S7'K;,«rn[[t]] for [X,, V.]€ BZ*"""'. From this and Proposition (2.18),
we infer that

Py (@I (T XY (Vi — k) = 0
for all 3,1 =<¢=<r, pe ZP(k}) and n. This implies that, if we write the
coefficients of #* in by,, as linear combinations of elements of S™ K . rx—1[[#]]
according to (3.7), then they all vanish, and hence by, = 0.

Then, by an inductive argument on j, using (3.6), we see that

Pr (@ (T XY (V] — k) =0
forallt(1<i1<7),j(0<j<N), pe (ki) and n. But this is equivalent
to say that

px,-!(%(in)'Y(q'm)(Vi —k)) =0

for all ©,1 =1 =7, 9 (k) and m. From Lemma (2.2) it then follows
that
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[X, Vi]=0 for 1< 7.
This proves Proposition (3.3).

It remains to prove (3.2). Let M be a closed unitary T™-manifold
such that the induced action of S. has no fixed points. Thus [M]e
UI"(# (1), «). There are only a finite number of isotropy subgroups of
the Si-action and these are all finite cyclic groups. Let ! be the maximum
order of these cyclic group . Let Y, .-+, Y,, be the totality of con-
nected components of the fixed point set under the action of Z, — S..
We shall make the following construction for each Y,. First suppose that
lis greater than 1. Let Y denote one of the Y,. The group Z, acts on
the normal bundle U of Y by automorphisms and therefore yields a
unique decomposition

U= 2 Ui ’
0<i<l!
where ge Z, acts on U, by the scalar multiplication on 67'(¢?), which we
denote by 4'67'(¢g). Thus, if we denote by (g) the action of ge 7", then
¥(9) = ¥'07(9") on U, for ge Z,c S, < T*. It follows that there exists
a unique S'-action " on U such that

3.9) PO(9) = ¥(9)¥"(9)', geS', onU;.

The action +"" commutes with the T"-action  and is principal. Set Y’ =
Y/4"(S). Since " is a principal action, Y’ is a smooth manifold and
the projection Y— Y’ is an S-bundle. Let U; denote the complex line
bundle over Y’ associated with it. There is a unique weakly complex
structure on Y’ such that, if U, is endowed with a weakly complex
structure as the total space of a complex line bundle over the weakly
complex manifold Y’, then the weakly complex structure on Y as the
boundary of the disk bundle D(U;) of U; coincides with the original
structure on Y induced from that of M. Furthermore, U’ = U/4"'(S") is
a complex vector bundle over Y. Define U/ to be the lift of U’ over
D(U!). Then clearly U|Y = U, and D(U)US(U) = 6D(U) can be identified
with the sphere bundle S(U, @ U’) of U, P U’, where S(U) denotes the
sphere bundle of U. Define M’ to be the weakly complex manifold
(M—int D(U))U —S(T) where —S(U) is the weakly complex manifold S(T)
with the opposite structure. Since the action v of 7" commutes with
¥, it induces an action of T" on U, which we shall also denote by .

ASSERTION (3.10). The restricted (iction of St on U has no fized
points outside of Y’ = Y/¥"(S"). On S(U), the isotropy subgroups of S,
are cyclic groups of order less than 1, so that the fized point set of the
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restricted action of Z,C S, on M’ equals JY; — Y. Hence, S(U, BU")
and M' represent elements of UL (F (1), ), in which we have

[M] = [S(U; @ U] + [M] .

For the proof, see [16] or [15].

Since T™ is a connected abelian group, the submanifold Y is invariant
under the action of T". Let H, ---, H, be the totality of isotropy
subgroups of codimension 1 of the 7T™-action on Y and let F,, ---, F, be
the corresponding fixed point sets. From the maximality of [, it follows
that S, N H; = Z, for all j. We set X; = F;/4"(S").

ASSERTION (3.11). The fixed point set of the induced T -action + on
D(U; @ U’) is precisely the disjoint union of X, ---, X,, so that each X;
has a nmatural weakly complex structure. Let V; be the mormal bundle
of X; im D(U; P U"). Then V; decomposes as a direct sum of complex
vector bundles

Vi=U| X; QU | X; D Vie

where Viy, 18 the mormal bundle of X; in Y'. The bundles U;j|X;, U'| X;
and Vi are invariant under the T"-action . U;|X; is a line bundle
and if W* is the unique irreducible T"-module contained in it them W?
is positive and d(\) = 1. Irreducible T™modules contained in U’|X, are
all positive and the d(t) are less than I. Finally, for irreducible T*-
modules W* contained in Vjy, we have S CG,.. In particular, [X; V;]
belongs to BL"(a).

Proor. The first part is easy, hence we prove the only second part.
On Uj, the scalar multiplication 4j(9) of ge S' is given by +'(g), and the
action "’ of S* restricted to Y, the sphere bundle of Uj, is related to
¥+ by +(6(9)) = +v"(9)}, so that we have +(0(g)) = +i(9)'. If W? is the
irreducible T"-module contained in U;|X;, then this means that W?* is
positive and d(A) =1. As in (8.9), the actions v, v’ and " are related
by ¥(8(9))=+"(9)'+"(9)' on U,, where ge S*. Therefore, on U/ = U,/4"'(S"),
we have the relation

¥(0(9)) = ¥i(9)*, geS'.
Because of the inequalities 0 < ¢ < I, this shows that if W* is an irre-
ducible T"-module contained in U; c U’, then W* is positive and d(y) < I.
Finally, S. keeps fixed every point of V;,,. Hence, if W* is contained in
Vi, then it is clear that S.c@,.

ASSERTION (3.12). The motations being as above, let X = J X; and
V be the normal bundle of X in Y'. Thus V|X; =V; and [X, V] =
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X5, Vile By («). If S(V) is the sphere bundle of V then we have
(3.13) [M] = [S(V)] + [M'] .

To prove this it is sufficient, by virtue of (3.10) and (3.11), to show
that [S(V)] = [S(U; & U’)]. But the manifold D(U; @ U’) — int D(V) is
Trinvariant and, there are no fixed points of the induced T"-action on
that manifold. This provides the bordism between S(U; @ U’) and S(V)
in U(&Z(1)).

Now, we have started from an element [M]e UZLZ" (< (1)) and arrived
at a pair [X, V]e BY"(a) and [M']e UL (< (1), @) such that the number
of components of the fixed point set under the induced Z;-action on M’
is decreased by one, and such that (3.13) is satisfied. We can proceed by
induction on ! and the number of components of the fixed point set of
Z,c S, repeating the same construction as above, to get [ X, V?¥] e BY"(«)
and [M™]e UL"(# (1), @) such that

(3.14) [M] = o[X™, V] + [M™],

and the induced Si-action on [M™] is principal. Moreover, it is not hard
to see that the above construction is canonical and that the assignments
[M]—[X", V"] and [M]+—[M™] are well-defined U,-module homomorphisms
Ui*(# (1), ) —» BY(a) and UL"(Z (1), a) = ULI" (& (1), a), respectively.

At this final stage, the Si-action 4 on M being principal, M® —
M®©[p(S;) is a differentiable S'-principal bundle, where S' is identified
with S. via 6. Let V’ be the associated complex line bundle. The mani-
fold Y = M /+4(S.) can be given a unique weakly complex structure such
that, if V' is endowed with the weakly complex structure as the total
space of complex line bundle, then the weakly complex structure on M™
as the boundary of D(V’) coincides with the given one. The T"-action
< extends uniquely over V'. Let X be the fixed point set of the
T*-action on D(V’); X is contained in Y. Let V' denote the normal
of X in D(V’). Then we have a direct sum decomposition

VO =V XD Vyo

where Vo is the normal bundle in Y. V’|X® and Vyw are T"-invariant,
and we see, exactly as in (3.11), that if W? is the unique irreducible
T"-module contained in V’| X, then W?is positive and d()) = 1, and that
[X©, V] belongs to Bi" (). We see also, as in (3.12), that

(3.15) [M®] = 3[X", VO] .

Moreover, the assignment [M®] — [X®, V] is well-defined homomorphism.
Then we define Q,: UL (# (1), a) — B%Y"(a) by
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QL] = [X°, VO + [X, V.

This is a well-defined homomorphism and satisfies 0Q,[M] = [M], by (3.14)
and (3.15). This proves (3.2) and hence completes the proof of (1.4).

4. Equivariant U*-theory characteristic numbers. The contents of
this section are not new (cf. [8]). However, they are included here be-
cause it seems appropriate to give a brief description of the material
in terms of ordinary U*-theory and K-theory.

U*-cohomology theory is extended over infinite CW-complexes with
finite skeletons by defining

U*(Y) =1limU*(Y,),

where Y, ranges over all finite subcomplexes of Y.

Let G be a compact Lie group and 7: EG — BG a universal G-bundle.
We may assume that BG is an inductive limit of compact smooth manifolds
BG,. We then define an equivariant U*-theory on the category of compact
G-spaces and G-maps by letting U}( ) = U*(EG X; ). In this theory,
products are defined in an obvious way. If X and Y are closed weakly
complex manifolds with smooth G-action preserving weakly complex struc-
tures, and ¢g: X— Y is a G-map, then g can be given a natural complex orien-
tation in the sense of Quillen [17]. If EG,— BG, is the restriction of
E on BG, then 1 X,9: EG, X;X— EG, X, Y is also a complex oriented
map and hence induces a Gysin homomorphism (1 X 9),,: U*(EG, X¢ X) —
U*(EG,X;Y). It is not hard to show that the Gysin homomorphisms
(1 X 9),, commute with the limiting process as g — «, and thus define
a map ¢,: U¥(X)— Uf(Y), which may be called the Gysin homomorphism
of g in the U}-theory. It is easy to see that g, is a U*-module map.

Next, let V— X be a G-complex vector bundle over a compact G-
space X. Then EG X,V — EG X, X is also a complex vector bundle.
Let e(V)e Ui(X) = U*(EG X4 X) denote its U*-theory Euler class [17];
we then have the usual product formula e¢(V,BV,) =e(V)e(V,). In
particular, if W is a G-module, then its Euler class ¢(W) is defined in
U} = UX(point). Let S denote the multiplicative set in U} generated by
Euler classes of non-irivial irreducible G-modules, and let S~'U} denote
the localized ring of U} with respect to S. More generally, S~ U%(X) can
be defined, since Uj(X) is a Ux-module.

We now define ¢#: U — U} by

¢M] = py(1) ,
where p:UX(M)— U} is the Gysin homomorphism of p,: M — point.
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The verification of the following proposition is easy and will be left to
the reader.

ProrosiTioN (4.1). ¢: Ui — U} is a well-defined ring homomorphism,
and in particular, a U*-module map. The product in US is given by

[M1][M2] = [Ml X Mz] ’
where the G-action on M, x M, s the diagonal action.
Next we require the following lemma.

LEMMA (4.2). Let [X, V]e BS. Then e(V) is invertible when it s
regarded as an element in SUX(X).

ProoF. Clearly, we may assume that X is connected. By the product
formula for Euler classes we may assume that V contains only one irre-
ducible G-module W, i.e., that V is of the form EQW. If dmFE =k
and degree W = d then, applying the formal group law in U*-theory
[17], we have

e(V)=eW)+ 3 ay,, a,eU Uy -U"(X),

¢>0,520
—i+jtqg=dk

where U™ .U¥ - U*(X) stands for the image of the cross-product U* x
U¥ x U(X)—U*(BG x X)=U}(X). Notice that X is a trivial G-space.
Therefore, in the ring S'U#(X), we have

V) _ i T
G =L B b b U U UM

—it+j+q=dk

Since X is a finite CW-complex, elements in >,.,U*(X) are nilpotent
[17]. Hence b = 3\ b,,, is nilpotent and (1 + b)™* exists in S~ U(X). Thus,
e(V)/e(W)* is invertible in S~ U%(X).

As is readily seen, the Gysin homomorphism py: U¥(X)— U} is a
Ux-module map and hence induces py:S'U(X)— SU%. We define
&#: B — S'U¥ by

IX, V] = pa(e(V)?) .

PROPOSITION (4.3). &: BS — S~U% is a well-defined ring homomorphism,

and in particular, a U*-module map. The product in BS is given by

[X, VIIIX,, Vo] =X, X X, V. X V],
The verification is left to the reader.

PRrROPOSITION (4.4). The following diagram is commutative:
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v —1 - ug
| |
@ +

B —— S7'U¢ .
Here the second vertical arrow represents the canonical map. Moreover

f s a ring homomorphism.

PROOF. An argument similar to that of [2] and [3] applies here.
Given a closed unitary G-manifold M, let X be its fixed point set, V the
normal bundle of X in M, and ¢: X — M the inclusion. By the definition
of Euler class [17], we have

*i,(x) = e(V)x
for xe U%(X). Passing to S~'U}, we obtain
e(V)i*i(x) = .
On the other hand, it was shown by tom Dieck [11] that
i*: ST UH(M) — ST U(X)

is an isomorphism, hence it follows that 4,(e(V)™) = 1. Thus in S7'U; we
have

Di(1) = pant! (e(V)7) = pai(e(V)7) .
This proves the commutativity. The statement regarding f is clear.
Finally, we define the Boardman map
B: U — K3"[[¢]
as the limit of the maps B: U*(BG, — K*(BG,)[[t]] defined by
B(9:(1)) = 9.(v(—=v,)) ,

where ¢ is a complex oriented map (Y, 0Y) — (BG,, 0BG,) from a compact
smooth manifold Y and vy, is the stable complex normal bundle of ¢.”
It can be shown that B is a well-defined ring homomorphism. Moreover,
the following proposition is an immediate consequences of the definition
of ¢, B and p.

PROPOSITION (4.5). The composition B -8 coincides with the com-
position UZ -2 K,[[#] — K;I[t].
LEMMA (4.6). If W is a G-module, then we have

8 Usual convention seems to adopt the definition
B(g:(1)) = g:(r:(vy)) -
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B(e(W)) = »(W)(v(W — dim W))~* .

ProoF. Let W, denote the vector bundle EG, X, W — BG,. Under
the canonical map a,: K; = R(G)— K(BG,), W is mapped into W,. Let Y
be a self-intersection of BG, in W, and i: Y c BG, the inclusion. By defi-
nition, we have e(W,) = 4,(1). Similarly, in K-theory, »_(W,) = i,(1).
Moreover, v, = i*(W,). Using the Riemann-Roch relation, we deduce that

B(e(W)) = 14*(v(W, — dim W)™
= 5, (1)(r(W, — dim W,))™*
= A (W) (W, — dim W)
= a,(M.(W)(W — dim W))7'} .-
Taking the limit and using the canonical identification a: K; = (hin K(BG,)

[4], we obtain the desired relation.

By virtue of (4.6), the ring homomorphism B passes to the localization
and induces

B: S'Ux — ST'Kg[[¢]] -

The following proposition can be proved in a manner similar to (4.6).
Details are left to the reader.

PROPOSITION (4.7). The composition Bod coincides with the com-
position BS —— S K [[t]] — S K;[[]].
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