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1. Introduction. The purpose of this note is to prove a local ergodic
theorem for a strongly continuous one-parameter semi-group (semi-group)
of positive bounded linear operators on LP(X) (1 ̂  p < °°) and for a
semi-group of linear contractions on LX{X) which are also linear con-
tractions on LJ^X). A local ergodic theorem for a semi-group of posi-
tive linear contractions on L^X) was conjectured by U. Krengel and
was proved by U. Krengel [5] and D. Ornstein [8] independently. M.
Akcoglu-R. Chacon [1] and T. Terrell [9] gave different treatments of
the theorem. The author generalized the theorem and proved a local
ergodic theorem for a semi-group of positive bounded operators on L^X)
[6]. We shall generalize the theorem and prove a local ergodic theorem
for a semi-group of positive bounded linear operators on LP(X) (1 ̂  p < oo)
(Theorem 1). A local ergodic theorem for a semi-group (Tt) (t ̂  0) of
linear contractions on Lλ(X) which are also linear contractions on LJ^X)
was proved by D. Ornstein [8]. This theorem asserts that we have

(*) \im±-\\τtf){x)dt=f{x) a.e.
α-+0 a Jo

for any fe L^X). T. Terrell proved the theorem in an ^-parameter
case [9]. We shall prove (*) for any feLP(X) (1 ̂  p < oo) under the
same conditions as D. Ornstein (Theorem 2). The author proved that
we have (*) for any fe Lγ{X)9 provided that (Tt) (t ̂  0) is a semi-group
of linear contractions on L^X) [7]. It may be one of the most interest-
ing open problems in ergodic theorems whether we have (*) for any
feLp(X), provided that (Tt) is a semi-group of bounded linear operators
on LP(X) (1 ̂  p < oo).

2. Definitions and the theorems. Let (X, B, m) be a σ-finite measure

space and LP(X) = LP{X, B, m) (1 ̂  p ^ oo) the Banach space of complex-

valued measurable functions on X such that | | / | | p = \\f(x)\pdm< oo

(1 ^ P < oo) or ess. sup* | f(x) \ < oo (p = oo). Let (Tt) (t ̂  0) be a strong-
ly continuous one-parameter semi-group (semi-group) of bounded linear
operators on LP(X). This means that
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(A) Tt is a bounded linear operator on LP(X) for any t ^ 0,
(B) Tt+8f = Tt o Tsf for any ί, s ^ 0 and / e LP(X),

and
(C) lim^o II TJ - f\\ = 0 for any / e LP(X).

Then there exist constants M, β such that || Tt || ^ Me?* [11]. (If we
can take M = 1, /9 = 0, then (T,) is said to be a semi-group of linear
contractions on LP(X).) Let / e LP(X) and (I,£f, λ) the Lebesgue measure
spaces on the interval / = [0, a] (0 < a < oo). Then there exists a func-
tion g(t, x) such that [4, 10],
(1) g(t, x) is ^f x 5-measurable on / x X,
(2) for a fixed ί e /, g(t, x) = (Ttf)(x) for a.a. x,
(3) if r̂'(ί, x) satisfies (1) and (2), then for almost all x,

g'(t, x) is integrable on /

and

g\t, x)dt = I g(t, x)dt for any ae I ,
o Jo

and

(4) \"g{t, x)dt = s-lim -±— I ? (Tflnf)(x) for a.a. x .
Jo *->«. [na] k=o

We define the integral \\τtf)(x)dt (0 ^ a < a < oo) by (^(ί, a?)dί.
Jo Jo

Let T be a bounded linear operator on LP(X) (1 ^ p < oo). r is said
to be positive if it satisfies (D).

(D) if / ^ 0 and fe Lp{X)y then Tf ^ 0.
We shall prove the following.
THEOREM 1 (A local ergodic theorem). Let (Tt) (t :> 0) be a semi-

group of positive bounded linear operators on LP(X) (1 ^ p < oo). Then
we have

\im — \a(TJ)(x)dt =f(x) a.e. for any feLp(X) .
a-*0 OL Jθ

COROLLARY. Under the same conditions as Theorem 1, we have

\\τtf){x)dt f ( )
lim J± = 21ΞL a.e.
"^ \"(Ttg)(x)dt g(χ)

Jo

for any f, ge LP(X) on {x: g(x) Φ 0}.

U. Krengel [5] and D. Ornstein [8] proved the conclusion of Theorem
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1 under assumptions that p = 1 and || Tt || ^ 1 (t ^ 0). Different treat-
ments were given by M. Akcoglu-R. Chacon [1] and T. Terrell [9] in
this case. The author proved the conclusion of Theorem 1 only assum-
ing that p = 1 [6].

Secondly we shall prove the following.

THEOREM 2. Let (Tt) (t ^ 0) be a semi-group of linear contractions
on Li(X). If (Tt) (t ^ 0) satisfies the following condition (E), then we
have

lim—Γ(Ttf)(x)dt =f(x) a.e. for any feLP(X) .
0 a JO

(E) ess. sup, I (Ttf)(x) | ^ess. sup, \f(x) \ for any t ^ 0 and fe L^X) f]

D. Ornstein proved the conclusion of Theorem 2 for any fe
[8]. T. Terrell proved the same conclusion as D. Ornstein in an n-
parameter case [9]. The author proved the conclusion of Theorem 2 for
any feL^X) without the condition (E) [7].

3. The proof of Theorem 1.

LEMMA 1. Let (Tt) (t Ξ> 0) be a semi-group of bounded linear opera-
tors on LP(X) (1 5g p < oo) and fe LP(X). Then for a.a. s with respect
to the Lebesgue measure on the half real line we have

±- (Tt+J)(x)dt = (T,f)(x) for a.a. x .
α->0 CC Jθ

PROOF. A little modification of the proof of Lemma 2 in U. Krengel
[5] is valid for the proof of Lemma 1.

LEMMA 2 (A maximal ergodic lemma). Let (Tt) (t ^ 0) be a semi-
group of positive bounded linear operators on LP(X) (1 ^ p < oo) and
feLP(X). If

lim sup — \°(Ttf)(x)dt > 0 on E ,
α-*0 OC Jθ

then we have

S c
\J \ v)) U/ίίi ^ 1 \J \ά)) UJ lib .

E JX

PROOF. Lemma 2 was proved by the author in case of p = 1 [6].
We shall prove Lemma 2 by modifying the proof of Lemma 2 in [6].
Let fe LP(X) and ε (0 < ε < 1) an arbitrary positive number. By the
strong continuity of (Γ«), there exists a positive number δ such that
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(5) \\Ttf-χE-ΓχE\\^ε\\f-χE\\ and | | Γ t /
+ | | ^ (1 + β)| |/+| |

for any t (0 £ t ^

and

(6)

(We denote the characteristic function of a set G by χ^.) Let us choose
a positive number rj (0 < 2^ < δ) such that

(7) _42*_||/-||<e.

There exists a positive integer I (I > 2/δ) and a subset F oί E with
properties

(8) sup Σ(Γ1

<

/ I/)(«)>0 on F

and

(9) KA (f-(x))*dm < e* ,
J E F

where [a] is the integral part of α. This may be proved as follows.
It follows from the assumption that

(10) sup — \a(Ttf)(x)dt > 0 on E.
Q<a<η (X JO

S o.
(Ttf){x)dt is a continuous function of the varia-

0

ble a > 0 for a.a. x,

(11) lim sup — \\τtf)(x)dt = sup — \"(Ttf)(x)dt for a.a. x ,
v-»oo 0<a<η (X J ° 0<α<J? ^ JO

where Qv is the set of fractions with the denominator v (v is a positive
integer). We can choose a positive number e' (0 < ε' < 1) by (10) such
that

(12) if m{A) < ε', then μ(A) <

and

(13) μ(E -

where

(14) μ{A) = κΛ (f-(x)Ydm
JΛ
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and

E(e') = \x: sup JL Γ(Γt/)(α;)cZί > 2ε'l n E .
V. 0<α<J? # JO

It follows from (11) and (14) by the Egorov theorem that there exists
an integer r such that if v ^ r,

(15) sup i- \a(TJ)(x)dt > ε'
Oί Jo

0<α<J?

for any x in a set JF\ with 2^ c ^(ε') and μ(E{εf) - F,) < εp/3. By (4)
there exists a positive integer I such that

And it follows from this that

(17) Σ
„ ΓJIr

< e'

for any a; except on a set JP2 with m(Ft) < e'. By (12), μ(F2) < e"/3.
Letting F = Ft n F ; we have (8) and (9) by (13), (14), (15) and (17).

We denote Tin by T so that (8) and (9) are written by (18) and (19),
respectively.

(18) sup Σ(ϊ 1 < /)(a;)>0 on F

and

(19) KΛ (f-(x))pdm < e* .
JE-F

We use the Chacon-Ornstein lemma.

LEMMA (Chacon-Ornstein) [3]. If supo^* Σi=o(Γ*/)(aO > ° o n F>
then there exist sequences of non-negative functions {dk} and {fk} (0 ^
k ^ N) such that

(20) Tnf+ = ±Tn~kdk+fn (O^n^N)
Jfc0

(21) Σ d* ^ / " α^d Σdk = f~ on F .
fc=0 fc=0
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REMARK. Though the lemma was proved by them under the assump-
tions that T is a positive linear operator on L^X) with || T\\ ̂  1 and
N~ oo, (20) and (21) hold good without the assumptions.

Let us apply the lemma with N = [Irj]. Put n = [l(δ — ήj\ and Snf =
ΣfcΞj Tkf. We have by (5), remembering T = TιSu

(22) || (SJn)T»f+ \\^l/n Σ

We have by (22), (20) and fN ^ 0.

(23) (1 + 6)|| /+ || ^ || (SJn)T»f+ \\ ̂  \(SJn) Σ Γ^

^ \(SJn) Σ dλ - hsjn) Σ (TN~kdk - dk)\\ .
II A ; = o || || fc=o ||

Since we have

(24) \(SJn)it(T«-kdk-dh)\
II fc=o II

I N N—k—1 II | | N N—l \\

1/n Σ Σ T +'dλ + Il/Λ Σ Σ T'dλ ,
k=0 j=0 | | II A;=0 j=0 | |

w e h a v e b y t h e p o s i t i v i t y of T, dk^0(0^k^ N ) , (6) a n d (21)

(25) I Σ {SJn){TN-"dk - dk) I ̂  (2NK/n)\ Σ ώJU (2NK/n)\\ / " ||
II fc=o II II jfc=o II

Therefore, we have by (23) and (25)

(26) (1 + 6)|| / + || + (2NK/n)\\ f - \ \ > \\(SJn) £dλ.
II k=o II

Since we have by (5),

II (SJn)f-χE - f~χE \\ £ 1/n ± \\ Tkf~χE - f~χE || ^ ε|| f~χE
k=0

we have by (21) and (6),

(27) (1 - 6)||/-χ, || ^ \\(Snln)f-χE\\ ^ ±\

We have by (26) and (27)

(28) (1 - s)|| f-χB | | 5Ξ (1 + e)|| / + | | + (2NK/n)\\ f~ | | + K\\ / -

We have by (7), (19) and (28),
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Arbitrariness of ε implies Lemma 2.

THE PROOF OF THEOREM 1. If the theorem does not hold, then
there exist a positive number 3 (0 < δ < 1), a function / and a set E
such that

(29) lim sup — [*(Ttf)(x)dt - f(x) > δ on E and 0 < m(E) < oo .
α->0 Cί JO

Let ε' be an arbitrary positive number with 0 < e' < 1/10. Put ε = ε'δ.
By Lemma 1 we can choose a function g (put g = T8f for a sufficiently
small s) such that

(30) \f(x) — Q(x)\ < ε for any α? except on a set with a measure less
than ε min (m{E), 1) ,

(31) ll/-ffll<e

and

(32) lim— \\τtg){x)dt = flr(α) a.e. .

Then we have by (29), (30) and (32)

(33) lim sup — \* Tt(f - g)(x)dt
a-+0 Ci Jo

= lim sup — \\τtf)(x)dt - f(x) + f(x) - g(x) > 8/2 on F ,
α-0 CC Jθ

where F = Ef\{%ΛAf- 9 10*0 < ε} a n d therefore by (30),

(34) m(E - F) < ε min (ra(#), 1) .

Again by Lemma 1 we can choose a non-negative function h (put h(x) =
T8(l — e/2)xF(x) for a sufficiently small s) such that

(35) 1 - ε ^ h(x) ^ 1 on G with GaF and m(F - G)< ε min {m(E), 1) ,

and

(36) lim— [a(Tth)(x)dt = M )̂ a.e. .
α->0 ^ Jo

Then we have by (33), (35) and (36)

(37) lim sup — [* Tt(f - g - dh/2)(x)dt > 0 on G .
α->0 CC J °

By Lemma 2, h ^ 0 and (31)
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(38) ( ((/ - g - §h/2)-(x)rdm ^\ ((/ - g - δh/2)+(x))'dm
JG JX

/ - g)+(x))pdm < ep.

Since we have (/ - g - δh/2)~(x) > δ/Z on G by (30), (34) and (35) we
have remembering ε = e'δ (0 < ε' < 1/10, 0 < δ < 1),

(39) m{E) ^ m(G) + 2ε < (3ε')p + 2ε' ^ (3P + 2)ε' .

Arbitrariness of ε' implies that m(E) = 0. This contradicts the assump-
tion (29) and the proof is complete.

4. The proof of Theorem 2. In this paragraph we shall give two

different proofs of Theorem 2.

LEMMA 3. Let (Tt) (t ^ 0) be a semi-group of linear contractions on
L^X) satisfying {E). Then there exists a semi-group of positive linear
contractions (ft) (t ^ 0) on LP(X) for any p(l ^ p < oo) ((ft) is called
the linear modulus of (Tt).) such that

(3.1) for any t ^ 0 and fe LP(X),

(ft\f\)(x)^\TJ\(x) for a.a. x,

(3.2) if fe LP(X), then we have for almost all x,

\a{Tt\f\){x)dt ^ ("l TJ \{x)dt for any a ^ 0 ,
Jo Jo

and
(3.3) ess. sup, | (TJ)(x) \ ̂  ess. sup, | f(x) \

for any fe L,{X) Π LJ^X) and ί ^ 0 .

The proofs of (3.1) and (3.2) (p = 1) are found in [7]. The proof of
(3.1) and (3.2) follow easily from this. The proof of (3.3) may be ob-
tained by the fact that the operator norm of the linear modulus of
bounded linear operator T is that of T [4] and the proofs of (3.1) and
(3.2) (p = 1) in [7].

THE PROOF OF THEOREM 2. (Tt) (t ^ 0) is extended to a semi-group
of linear contractions on LP(X) for any p (1 ^ p < c»). The same symbol
(Tt) is used for the extended semi-group. Let feLP(X) and ε an arbi-
trary positive number. By Lemma 1, we can choose a function g (put
g = TJ for a sufficiently small s) in LP(X) such that

(40) I!/"-firll < e ,

and
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(42) lim sup -ί \\τtf){x)dt - /(a?)
α Jo

^ lim sup
α jo

_ g)(x)dt

lim
a Jo
— (Ttg)(x)dt - g(x) \9(x)-f(x)\

Let (ft) be the linear modulus of (Tt). Then we have by (3.2) of
Lemma 3 and (41)

(43) ^ lim sup -L - g \(x)dt + \ g(x) - fix) \ .

Applying Theorem 1 to (ft) we have

lim sup λ\\TJ)(x)dt-f(x)
a Jo

Since we have | f(x) — g(x) | < ε for any x except on a set with a measure
less than ε by (40) and ε is arbitrary we have Theorem 2.

THE SECOND PROOF OF THEOREM 2. We shall give another proof of
Theorem 2 by making use of Lemma 1 and the following Lemma 4.
Let a be an arbitrary positive number. Put

(44)

and

fa~(x) = min (o,

= (max (α, \f(x) |) -

where fa~(x), fa+(%) = 0 whenever f(x) = 0.

LEMMA 4. Let (Tt) (t ̂  0) be a semi-group of linear contractions
satisfying (E). If fe LP(X) (1 ̂  p < <*>) and

1 [a,m J.V.Λ1J. > a o n # ( α ) ( α > 0) ,(45) sup

then we have

(46) ( (α - | /α+(«) | dm .

PROOF. Let ε be an arbitrary positive number and F any subset of



420 Y. KUBOKAWA

E{a) with a finite measure. By the same argument in the proof of
Lemma 2 (from (8) to (19)), there exist a positive integer I and a set
G such that

(47) sup
ι j i=0

> α o n G

and

(48) G c F and m(F - G)< e .

We use the Chacon lemma [2]. Let us denote TUι by T.

LEMMA (Chacon [2]). If fe LP(X)(1 S P < °°)

> α on G ,sup

^ ( |/•+(*)|dm.(49)

We have (49) by (47) and lemma. Since ε is arbitrary we have by
(48) and (49),

S r
(α — I fa~(x) \)dm ^ 11 fa+(x) \ dm

F J

for any subset F(F c E(a)) with m(F) < oo .

Since the measure space (X, B, m) is σ-finite we have Lemma 4 by (50).
THE PROOF OF THEOREM 2. Let fe LP(X) (1 £ p < oo) and ε an ar-

bitrary positive number with 0 < ε < 1. We can choose a function g
in LP(X) by Lemma 1 (put g = T.f for a sufficiently small s) such that

(51) ll/-ffl|<β

and

(52) l i m — ["(5Γ«ff)(a;)dί = g(x) a.e. .
α-+0 (X Jo

Then we have

(53) lim sup -ί (α(Γt/)(a;)(ίί - /(*) ^ lim sup

+ lim sup — j"(Γ,ί)F)(ίr)ίiί - g(x)

By (52) and (53)

- /(*) | .



LOCAL ERGODIC THEOREM FOR SEMI-GROUP ON Lp 421

(54)

Put

(55)

lim sup ±[(Ttf)(x)dt-f(x)
a Jo

^ lim sup jj - j " Tt(f - g)(x)dt + I g(x) - f{χ) I .

E = \ x: lim sup λ\a

Tt(f-g)(x)dt
a Jo

Then we have by Lemma 4,

(56) ^(ε - I (/ - gy-(x) \)dm ̂

By the definition of (/ — g)ε+ and (51) we have

(57) (I (/ - gY+(x) \dm<\ | fix) - g(x) \ dm
j ji(β)

^ m{α;: ε < \f(x) - g(x) \ ̂  1}

> ε

(α > | dm .

ε2p + ε3p ,

where A(ε) = {x: \f(x) — g(x)\ > ε}. There exists a subset F of i? by
(51) such that

(58) I f(x) - 0(αO I < ε/2 on F and m(£; - F)< (2ε2)p .

Since we have by the definition of (/ — g)ε~ and (58)

ε - I (/ - 9)ε-(x) I ̂  0 and β - I (/ - g)£-(x) \ ̂  ε/2 on F,

we have by (56), (57) and (58),

(59) m(E) ̂  m(F) + (2ε2)p ^ (2/ε)(ε2p + ε3p) + 2pε2p < (2P + 4)ε .

We have by (51)

(60) I g(x) — f(x) I < ε for any x except on a set with a measure less
than ε .

And therefore we have by (54), (59) and (60)

lim sup ±[(Ttf)(x)dt-f(x)
a Jo

< 2ε

for any x except on a set with a measure less than (2P + 5)ε. Arbitra-
riness of ε implies Theorem 2.
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REMARK. The author was informed after he wrote the note that
Professor R. Sato of Josai University proved independently Theorems 1
and 2 by different methods. Sato's proof is based on the maximal
ergodic lemma of the author in [6]. He proved it for any semi-group
of positive bounded linear operators on LP(X) (1 ^ p < ©o) with m(X) <
oo [12].
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