THE INDEX THEOREM FOR CLOSED GEODESICS

WILHELM KLINGENBERG*

(Received September 19, 1973)

1. Let c = c(t), $0 \le t \le \omega$, $|\dot{c}(t)| = 1$, be a closed geodesic on a Riemannian manifold M of dimension n + 1. By considering c as critical point of the energy integral E on the Hilbert manifold M of closed H^1 -curves on M, the index of c is defined as the index of the Hessian $D^2E(c)$ with respect to the Hilbert product on the tangent space $T_c \Lambda M$, cf. [2]. On the other hand, we can associate to the closed geodesic a 2n-dimensional vector bundle over the circle S_{ω} of length ω as follows. Let

$$\tau^{2n}: T^{2n}T_1M \to T_1M$$

be the subbundle of the tangent bundle of T_1M formed by the vectors orthogonal to the geodesic spray. Then we have from the immersion

$$\dot{c}: S_{\omega} \to T_1 M$$

an induced bundle which we denote by

$$\tau^{2n}: V^{2n} \to S_{\omega}$$
.

Moreover, the decomposition of τ^{2n} into its horizontal and its vertical subbundles τ_h^n and τ_v^n gives a corresponding decomposition over S_{ω} :

$$\tau_h^n \colon V_h^n \to S_\omega ; \qquad \tau_v^n \colon V_v^n \to S_\omega .$$

On τ^{2n} we have a symplectic structure defined by (with $(X_h, X_v) \in V_h^* \bigoplus V_v^*$)

$$2lpha((X_h, X_v), (Y_h, Y_v)) := \langle X_h, Y_v \rangle - \langle Y_h, X_v \rangle$$

and we have the geodesic flow ϕ_t which carries the fibre $V^{2n}(t_0)$ over $t_0 \in S_{\omega}$ into the fibre $V^{2n}(t_0 + t)$ over $t_0 + t \mod \omega \in S_{\omega}$ by associating to an element

$$(A, B) \in V_h^n(t_0) \bigoplus V_v^n(t_0)$$

the value at $t + t_0$ of the Jacobi field Y(t) and its covariant derivative $\nabla Y(t)$ determined by

$$\widetilde{Y}(t_0)$$
:= $(Y(t_0), \nabla Y(t_0)) = (A, B)$.

^{*} The content of this paper falls under the program of the SFB Theoretische Mathematik at Bonn University. The paper was written during a visit at Tôhoku University sponsored by the Japan Society for the Promotion of Science.

W. KLINGENBERG

The geodesic flow respects the symplectic structure on τ^{2n} . In particular we have the map

$$P := d\phi_{\omega} : V^{2n}(0) \to V^{2n}(0)$$

of the fibre over 0 onto the fibre over $\omega = 0 \in S_{\omega}$, the so-called (linear) Poincaré map. The closed geodesic c is non-degenerate if and only if P has no eigenvalue =1.

In this paper we will show how the index of c defined above can also be expressed by using the bundle τ^{2n} and its structure. For the special case that P has no eigenvalue ρ with $|\rho| = 1$ this was done already in the paper [4]. We thus get a natural analogue of the Morse index theorem for geodesic segments, cf. M. Morse [5]. The general case where we allow the eigenvalue $\rho = 1$ for P will be discussed in a later paper; there we will also establish the relation of our theory with Bott's paper [1] on the iteration of closed geodesics and the Sturm intersection theory; this means that we will have to derive an index theorem for the space of H^1 -vector fields $\hat{\varsigma}$ along c satisfying the boundary condition $\hat{\varsigma}(\omega) = \rho \hat{\varsigma}(0)$ for every complex number ρ with $|\rho| = 1$.

The results of this paper were announced in [3].

2. We start with some results of the geometry of a linear symplectic space V^{2n} with symplectic form α :

LEMMA 2.1. Let $P: V^{2n} \rightarrow V^{2n}$ be a linear symplectic map. Then there exists, up to a symplectic isomorphism, a unique decomposition

$$V^{2n} = V^{2p}_{in} \bigoplus V^{2q}_{un}$$

into invariant non-degenerate subspaces V_{in}^{2p} and V_{un}^{2q} such that $P | V_{in}^{2p}$ does not belong to a compact subgroup of Sp(n) and has an invariant isotropic subspace V_{in}^{p} . $P | V_{un}^{2q}$ has only eigenvalues ρ with $|\rho| = 1$ and possesses a decomposition $V_{nc}^{2q'} \bigoplus V_{co}^{2q''}$ into non-degenerate subspaces with the following properties: $V_{co}^{2q''}$ is spanned by proper eigenvectors and $P | V_{co}^{2q''}$ belongs to a compact subgroup of Sp(n). $V_{nc}^{2q'}$ can be written as a sum of nondegenerate subspaces having a base of the form

$$(Par
ho-1)^j X$$
 , $0\leq j\leq 2l$

with $(P\bar{\rho}-1)^{2l+1}X = 0$, l > 0, ρ an eigenvalue with $|\rho| = 1$. $P|V_{nc}^{2q'}$ does not belong to a compact subgroup.

PROOF. We complexify V^{2n} and write again V^{2n} . The symplectic form α is extended to a hermitian symplectic form. With ρ also $\bar{\rho}$, ρ^{-1} and $\bar{\rho}^{-1}$ are eigenvalues. Let $V(\rho)$ be the generalized eigenspace belonging to the eigenvalue ρ of P. For $|\rho| \neq 1$ we put $V(\rho) \bigoplus V(\bar{\rho}^{-1})$ into V_{in}^{2n} and

574

one of the summands into V_{in}^{p} . For $|\rho| = 1$ we can decompose $V(\rho)$ into non-degenerate subspaces $V'(\rho) \bigoplus V''(\rho)$ such that $V''(\rho)$ consists entirely of eigenvectors whereas $V'(\rho)$ can be written as orthogonal sum of nondegenerate space having a base of the form

$$(*)$$
 $(Par
ho-1)^j X, 0 \leq j \leq k, k>0$

 $V''(\rho)$ is taken into $V_{cc}^{2q'} \subset V_{un}^{2q}$. If in (*) we have k = 2l > 0 then the subspace is taken into $V_{nc}^{2q'} \subset V_{un}^{2q}$. If, however, k = 2l - 1 then the subspace is taken into V_{in}^{2p} and its invariant isotropic subspace spanned by the vectors $(P\bar{\rho}-1)^{j}X$ with $l \leq j \leq 2l - 1$ is taken into V_{in}^{p} .

LEMMA 2.2. Let V_{un}^q be an isotropic subspace of V_{un}^{2q} . Assume that 1 is not an eigenvalue of $P|V_{un}^{2q}$. Then

$$Q(X, Y) := -2\alpha(X, (P-1)^{-1}Y)$$

is a quadratic form on V_{un}^q . Its nullspace consists of $(P-1)(V_{un}^q \cap P^{-1}V_{un}^q)$.

PROOF. 1. Put

$$(P-1)^{_{-1}}X=S$$
 , $(P-1)^{_{-1}}Y=T$.

Then

$$\begin{split} 0 &= 2\alpha((P-1)S,\,(P-1)T) = -2\alpha(X,\,(P-1)^{-1}Y) \\ &+ 2\alpha((P-1)S,\,PT) = Q(X,\,Y) + 2\alpha(S,\,T) \\ &- 2\alpha(S,\,PT) = Q(X,\,Y) + 2\alpha((P-1)T,\,S) \\ &= Q(X,\,Y) + 2\alpha(Y,\,(P-1)X) = Q(X,\,Y) - Q(Y,\,X) \,. \end{split}$$

2. Assume that $Y \in V_{un}^q$ is such that Q(X, Y) = 0 for all $X \in V_{un}^q$. That means, since V_{un}^q is an isotropic subspace of maximal dimension in V_{un}^{2q} , that $(P-1)^{-1}Y = Y' \in V_{un}^q$. Hence, $Y = PY' - Y' \in V_{un}^q$, i.e., $Y' \in V_{un}^q \cap P^{-1}V_{un}^q$. Conversely, if $(P-1)^{-1} Y \in V_{un}^q \cap P^{-1}V_{un}^q$, so $Y = PY' - Y' \in V_{un}^q$ and $Y \in$ nullspace of Q.

LEMMA 2.3. Let

$$V^{2n} = V^{2p}_{in} \bigoplus V^{2q}_{un}$$

be an orthogonal decomposition into non-degenerate subspaces. Let V_{in}^p be an isotropic subspace of V_{in}^{2p} and let V_v^n be an isotropic subspace of V^{2n} .

Claim. (i) The projection of

$$V_v^n \cap (V_{in}^p \bigoplus V_{un}^{2q})$$

into V_{un}^{2q} modulo V_{in}^{p} gives a q-dimensional isotropic subspace $V_{un}^{q} \subset V_{un}^{2q}$. (ii) The space

$$V_e^n := V_{in}^p \bigoplus V_{un}^q$$

is an n-dimensional isotropic subspace of V^{2n} .

(iii) There exists a q-dimensional subspace $V_v^q \subset V_v^n$ such that

$$V^n_e = V^p_{in} \bigoplus V^q_v$$
.

PROOF. Let $V_{in}^k := V_v^n \cap V_{in}^p$ have dimension $k \ge 0$. Let V_{in}^{*p} be an isotropic complement of V_{in}^p in V_{in}^{2p} . The projection V_{in}^{*l} of V_v^n into V_{in}^{*p} modulo $V_{in}^p \bigoplus V_{un}^{2q}$ shall have dimension l. Since every $X_{in}^* \in V^{*l}$ can be complemented by an $X' \in V_{in}^p \bigoplus V_{un}^{2q}$ to give an element $X^* + X' \in V_v^n$ we have, for every $X \in V_{in}^k$,

$$\alpha(X^*, X) = \alpha(X^* + X', X) = 0$$
.

Since $\alpha | V_{in}^{p} \bigoplus V_{in}^{*p}$ is non-degenerate it follows that $k + l \leq p$. Hence, dim $V_{v}^{n} \cap (V_{in}^{p} \bigoplus V_{un}^{2q}) = n - l \geq n + k - p$ and therefore, the projection into V_{un}^{2q} has dimension $\geq n - p = q$. Note, however, that this projection is isotropic. Indeed, elements X and Y of the projection can be complemented by elements X' and Y' of V_{in}^{p} so as to give elements X + X'and Y + Y' of the isotropic space V_{v}^{n} ; i.e.,

$$0 = \alpha(X + X', Y + Y') = \alpha(X, Y),$$

since $\alpha(V_{in}^p, V_{un}^{2q}) = 0$.

Hence, the projection has the exact dimension q and can be denoted by V_{un}^{q} . Thus we have proved (i).

(ii) follows immediately from this.

But also (iii) is clear from the definition of V_{un}^{q} .

3. Let c = c(t), $0 \leq t \leq \omega$, $|\dot{c}(t)| = 1$, be a closed geodesic. To the fibre $V^{2n}(0)$ over $0 = \omega \in S_{\omega}$ of the bundle τ^{2n} we apply the results of (2), with $P := d\phi_{\omega}$ and $V_v^n := V_v^n(0) =$ fibre over $0 = \omega$ of the vertical bundle $\tau_v^n : V_v^n \to S_{\omega}$. For each $t \in [0, \omega]$, $d\phi_t V_e^n(0)$ will be an isotropic subspace of $V^{2n}(t)$. In general, however, $d\phi_{\omega} V_e^n(0) = PV_e^n(0)$ will be different from $V_e^n(0)$, i.e., in general we will not obtain in this way a bundle over S_{ω} . An exception would be the case that p = n, e.g., if all eigenvalues ρ of P satisfy $|\rho| \neq 1$, cf. [4]. For each $t \in [0, \omega]$ we define the space

$$W(t) := V_v^n(t) \cap d\phi_t V_e^n(0)$$
.

Put dim $W(t) = \iota(t)$. $\iota(t) = 0$, except for a finite number of value, as follows from the

PROPOSITION 3.1. Let dim $W(t_0) = \iota_0 > 0$. Choose a base $\tilde{Y}_i(t) := (Y_i(t), \nabla \phi_i(t)), 1 \leq i \leq n$, of Jacobi fields for $d\phi_t V^n_*(0)$ such that the $\tilde{Y}_i(t_0), 1 \leq i \leq n$

576

 ι_0 , are a base of W(t). Claim. (i) The elements

 ${\it V}\,Y_{\it i}(t_{\scriptscriptstyle 0}),\,1\leq i\leq \iota_{\scriptscriptstyle 0},\;Y_{\it j}(t_{\scriptscriptstyle 0}),\,\iota_{\scriptscriptstyle 0}+1\leq j\leq n$

of $T_{e(t_0)}M$ form a base for the n-dimensional space orthogonal to $\dot{c}(t_0) \in T_{e(t_0)}M$.

(ii) For all $t \neq t_0$, sufficiently near t_0 , the $Y_i(t)$, $1 \leq i \leq n$, are linearly independent.

PROOF. Since $\tilde{Y}(t_0) = (Y(t_0), \nabla Y(t_0)) \in W(t_0)$ means that $Y(t_0) = 0$ it follows that the $Y_j(t_0), j > t_0$, are linearly independent. Clearly, also the $\nabla Y_i(t_0), 1 \leq i \leq t_0$, are linearly independent. From $\alpha \mid d\phi_{t_0} V_e^n(0) \equiv 0$ it follows that $\langle \nabla Y_i(t_0), Y_j(t_0) \rangle = 0$ for $1 \leq i \leq t_0$, hence (i) does hold. (ii) simply follows from the observation that for $\tilde{Y}(t) \neq 0, Y(t_0) = 0$ implies $\nabla Y(t_0) \neq 0$.

We can now formulate the main result of this paper, i.e., the index theorem for closed geodesics.

THEOREM 3.2. Let c = c(t), $0 \leq t \leq \omega$, be a non-degenerate closed geodesic. Using the previous notations we then have

Index
$$c = \sum_{0 < t \leq \omega} t(t) + \text{Index } Q$$

where $\iota(t) = \dim W(t)$ and Q is the quadratic form defined in 2.2 on the space $V_{un}^{q}(0)$.

PROOF. 1. We define for each $t_0 \in [0, \omega]$ an injective map

 $\zeta: W(t_0) \to T_c \Lambda$

as follows: Write $\widetilde{Y}(t_0) \in W(t_0)$ as $\widetilde{Y}(t_0) = \widetilde{Y}(t_0) + \widetilde{Y}(t_0)$

$$\tilde{Y}(t_0) = \tilde{Y}_{in}(t_0) + \tilde{Y}_{un}(t_0) \in d\phi_{t_0} V^p_{in}(0) \oplus d\phi_{t_0} V^q_{un}(0)$$

Put $(P-1)^{-1}\widetilde{Y}_{in}(t) = \widetilde{Z}_{in}(t), (P-1)^{-1}\widetilde{Y}_{un}(t) = \widetilde{Z}_{un}(t)$. Note that $\widetilde{Z}_{in}(t) \in d\phi_t V_{in}^p(0)$ whereas $\widetilde{Z}_{un}(t) \in d\phi_t V_{un}^{2q}(0)$. We define an element $\zeta \in T_c \Lambda$, i.e., a continuous vector field along c by

$$\zeta(t) = egin{cases} Z_{in}(t+\omega) + Z_{un}(t+\omega), \ 0 \leq t \leq t_0 \ Z_{in}(t) + Z_{un}(t), \ t_0 \leq t \leq \omega \ . \end{cases}$$

 $\zeta(t)$ is even differentiable except possibly at $t = t_0$ where we have:

$$abla \zeta(t_0-) -
abla \zeta(t_0+) =
abla Y(t_0)$$
.

The injectivity of $W(t_0) \rightarrow T_c \Lambda$ is obvious.

2. For $t_0 \neq t'_0$, the spaces $\zeta W(t_0)$ and $\zeta W(t'_0)$ will be linearly independent except possibly if $|t_0 - t'_0| = \omega$, e.g., $t_0 = \omega$, $t'_0 = 0$. In this case,

W. KLINGENBERG

$$\zeta(\widetilde{Y}'(\omega)) = \zeta(\widetilde{Y}(0))$$

means

$$\widetilde{Z}'_{in}(t) + \widetilde{Z}'_{un}(t) = \widetilde{Z}_{in}(t+\omega) + \widetilde{Z}_{un}(t+\omega)$$

i.e.,

$$\widetilde{Y}'(0) = \widetilde{Y}(\omega) \in W(0) \cap W(\omega)$$
.

Let $W^*(0)$ be a complement of $W(0) \cap W(\omega)$ in $W^*(0)$. Then the linear map

$$\zeta: W := \bigoplus_{0 < t \leq \omega} W(t) \bigoplus W^*(0) \longrightarrow T_c \Lambda$$

is injective. Denote the image in $T_c\Lambda$ by ζW .

$$\dim \zeta W = J_e + \dim W^*(0)$$

where we have put $\sum_{0 < t \leq \omega} l(t) = J_c$.

3. We define a linear map

$$\lambda: \zeta W \to V^q_{un}(0)$$

by associating to an element $\zeta = \zeta(\widetilde{Y}(t_0))$ with

$$\widetilde{Y}(t_0) = \widetilde{Y}_{in}(t_0) + \widetilde{Y}_{un}(t_0) \in d\phi_{t_0} V^p_{in}(0) \bigoplus d\phi_{t_0} V^q_{un}(0)$$

the element $\tilde{Y}_{un}(0)$. Note that λ is surjective: Indeed, from 2.3 (iii) we know that every $\tilde{Y}_{un}(0) \in V_{un}^{q}(0)$ occurs in an element $\tilde{Y}(0) = \tilde{Y}_{in}(0) + \tilde{Y}_{un}(0) \in V_{v}^{n}(0) \cap V_{e}^{n}(0) = W(0)$. Moreover, $W(\omega) \cap W(0) \bigoplus W^{*}(0) = W(0)$. It follows that dim ker $\lambda = J_{e} - \dim (W(\omega) \cap W(0))$. We claim: If $\zeta = \zeta(\tilde{Y}(t_{0})), \zeta' = \zeta(\tilde{Y}'(t_{0}))$, then

$$D^{2}E(c)(\zeta, \zeta') = Q(\lambda \zeta, \lambda \zeta')$$
.

For the proof we can assume: $t'_0 \leq t_0$. We find with the expressions given in 1:

$$egin{aligned} D^2 E(c)(\zeta,\,\zeta') &= \int_0^\omega rac{d}{dt} \langle arphi \zeta,\,\zeta'
angle dt \ &- \int_0^\omega \langle arphi^2(\zeta)\,+\,R(\zeta),\,\zeta'
angle dt \ &= \langle arphi\,Y(t_0),\,Z'_{in}(t_0)\,+\,Z'_{un}(t_0)
angle \ &= -2lpha(\widetilde{Y}_{in}\,+\,\widetilde{Y}_{un},\,\widetilde{Z}'_{in}\,+\,\widetilde{Z}'_{un}) \ &= -2lpha(\widetilde{Y}_{un},\,\widetilde{Z}'_{un}) = Q(\lambda\zeta,\,\lambda\zeta') \ , \end{aligned}$$

because $2\alpha(\widetilde{Y}_{in}, \widetilde{Z}'_{in}) = 0$.

It follows that index $c \ge \dim \ker \lambda + \operatorname{Index} Q + \operatorname{nullity} Q = J_c + \operatorname{Index} Q$, since nullity $Q = \dim W(\omega) \cap W(0)$, cf. 2.3.

4. To prove that actually equality does hold, we show that any $\xi \in$

578

 $T_{c}\Lambda$ satisfying

$$D^2E(c)(\zeta,\,\xi)=0, ext{ for all } \zeta\in \zeta W, ext{ and } D^2E(c)(\xi,\,\xi)\leq 0$$

belongs already to ζW or nullspace of $D^2 E(c)$ which is 1-dimensional with the element $\dot{c}(t)$ as generator, because c is supposed to be non-degenerate. Indeed, the first condition means for $\zeta = \zeta(\tilde{Y}(t_0))$:

$$\langle V Y(t_0), \xi(t_0)
angle = 0$$

Using 3.1 we have that $\xi(t)$ can be written in the form

$$\xi(t) = \sum_{i} w^{i}(t) Y_{i}(t)$$

where the $\tilde{Y}_i(t)$, $1 \leq i \leq n$, form a basis of Jacobi fields for $d\phi_i V_i^n(0)$. We can assume that $\tilde{Y}_i(0) \in V_i^n(0)$ for i > p, i.e., $w^i(0) = 0$ for i > p. Since the $\tilde{Y}_i(0)$, $1 \leq i \leq p$, and the $\tilde{Y}_i(\omega)$, $1 \leq i \leq p$, span the same space $V_{in}^p(0) = V_{in}^p(\omega)$ and since $\xi(\omega) = \xi(0)$ we have: $w^i(\omega) = 0$ for i > p. With this we get:

$$egin{aligned} 0 &\geq D^2 E(c)(\hat{arsigma},\,\hat{arsigma}) &= -\int_0^w \langle \sum\limits_i w^i (arsigma^2 Y_i + R(Y_i)),\,\sum\limits_j w^j Y_j
angle dt \ &+ \int_0^w \sum\limits_{i,j} \dot{w}^i w^j 2lpha(ilde{Y}_i,\, ilde{Y}_j) dt + \int_0^w |\sum\limits_i \dot{w}^i Y_i|^2 dt \ &+ \int_0^w rac{d}{dt} \langle \sum\limits_i w^i arsigma Y_i,\,\sum\limits_j w^j Y_j
angle dt \ &\geq \sum\limits_{i,i} w^j (0) w^i (\omega) 2lpha(ilde{Y}_i(0),\, ilde{Y}_i(\omega)) = 0 \;. \end{aligned}$$

Hence, $\dot{w}^i(t) = 0$, the $w^i(t)$ are locally constant. But then one sees easily that $\xi(t) \in \zeta W$ or nullspace of $D^2 E(c)$ which is 1-dimensional with the element $\dot{c}(t)$ as generator, because c is supposed to be non-degenerate. Thus our theorem is proved.

REFERENCES

- R. BOTT, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206.
- [2] W. KLINGENBERG, Closed geodesics, Ann. of Math., 89 (1969), 68-91.
- [3] W. KLINGENBERG, Le théorème de l'indice pour géodésiques fermées, C. R. Acad. Sc. Paris. 276 (1973), 1005-1008.
- [4] W. KLINGENBERG, Manifolds with geodesic flow of Anosov type, Ann. of Math. (to appear).
- [5] M. MORSE, The Calculus of Variations in the Large, Amer. Math. Soc. Coll. Publ., Vol. 18, New York, 1934.

Mathematisches Institut Universität Bonn Bonn, West Germany