THE INDEX THEOREM FOR CLOSED GEODESICS

WILHELM KLINGENBERG*

(Received September 19, 1973)

1. Let $c = c(t)$, $0 \le t \le \omega$, $|\dot{c}(t)| = 1$, be a closed geodesic on a Riemannian manifold *M* of dimension $n + 1$. By considering *c* as critical point of the energy integral E on the Hilbert manifold M of closed H^1 -curves on M , the index of c is defined as the index of the Hessian $D^2E(c)$ with respect to the Hilbert product on the tangent space T_c/M , cf. [2]. On the other hand, we can associate to the closed geodesic a $2n$ -dimensional vector bundle over the circle S_{ω} of length ω as follows. Let

$$
\tau^{2n}\colon\thinspace T^{2n}\thinspace T_1M\to\thinspace T_1M
$$

be the subbundle of the tangent bundle of $T₁M$ formed by the vectors orthogonal to the geodesic spray. Then we have from the immersion

$$
\dot{c} \colon S_{\omega} \longrightarrow T_{1}M
$$

an induced bundle which we denote by

$$
\tau^{2n}\colon V^{2n}\longrightarrow S_{\omega} .
$$

Moreover, the decomposition of *τ 2n* into its horizontal and its vertical subbundles τ_k^n and τ_v^n gives a corresponding decomposition over S_{ω} :

$$
\tau^n_k\colon V^n_k\to S_\omega\ ;\qquad \tau^n_v\colon V^n_v\to S_\omega\ .
$$

On τ^{2n} we have a symplectic structure defined by (with $(X_{\hbar}, X_{\varepsilon}) \in V_{\hbar}^n \oplus V_{\varepsilon}^n$)

$$
2\alpha((X_h, X_v), (Y_h, Y_v)) = \langle X_h, Y_v \rangle - \langle Y_h, X_v \rangle
$$

and we have the geodesic flow ϕ_t which carries the fibre $V^{2n}(t_0)$ over $t_0 \in S$ into the fibre $V^{2n}(t_0 + t)$ over $t_0 + t$ mod $\omega \in S_{\omega}$ by associating to an element

$$
(A, B) \in V^n_h(t_0) \bigoplus V^n_v(t_0)
$$

the value at $t + t_0$ of the Jacobi field $Y(t)$ and its covariant derivative $\sqrt{V(t)}$ determined by

$$
\widetilde{Y}(t_0):=(Y(t_0),\, \nabla\, Y(t_0))=(A,\,B)\;.
$$

^{*} The content of this paper falls under the program of the SFB Theoretische Mathematik at Bonn University. The paper was written during a visit at Tόhoku University sponsored by the Japan Society for the Promotion of Science.

574 W. KLINGENBERG

The geodesic flow respects the symplectic structure on τ^{2n} . In particular we have the map

$$
P:=d\phi_{\omega}: V^{2n}(0) \longrightarrow V^{2n}(0)
$$

of the fibre over 0 onto the fibre over $\omega = 0 \in S_{\omega}$, the so-called (linear) Poincaré map. The closed geodesic c is non-degenerate if and only if P has no eigenvalue $=1$.

In this paper we will show how the index of *c* defined above can also be expressed by using the bundle τ^{2n} and its structure. For the special case that *P* has no eigenvalue ρ with $|\rho| = 1$ this was done already in the paper [4]. We thus get a natural analogue of the Morse index theorem for geodesic segments, cf. M. Morse [5]. The general case where we allow the eigenvalue $\rho = 1$ for P will be discussed in a later paper; there we will also establish the relation of our theory with Bott's paper [1] on the iteration of closed geodesies and the Sturm intersection theory; this means that we will have to derive an index theorem for the space of H^1 -vector fields ξ along c satisfying the boundary condition $\xi(\omega)$ = $\rho\xi(0)$ for every complex number ρ with $|\rho|=1$.

The results of this paper were announced in [3].

2. We start with some results of the geometry of a linear symplectic space V^{2n} with symplectic form α :

LEMMA 2.1. Let $P: V^{2n} \to V^{2n}$ be a linear symplectic map. Then *there exists, up to a symplectic isomorphism, a unique decomposition*

$$
V^{2n} = V^{2p}_{in} \bigoplus V^{2q}_{un}
$$

into invariant non-degenerate subspaces V_{in}^{2p} and V_{un}^{2q} such that $P|V_{in}^{2p}$ does *not belong to a compact subgroup of Sp(n) and has an invariant isotropic* $subspace \; V^n_{in}$. $P|V^{2q}_{un}$ has only eigenvalues $\rho \; with \; |\rho|=1$ and possesses a $decomposition \; V^{2q'}_{nc} \bigoplus V^{q'}$ cc ? " *into non-degenerate subspaces with the following properties:* $V_{\epsilon_0}^{2q}$ is spanned by proper eigenvectors and $P|V_{\epsilon_0}^{2q}$ belongs to *a compact subgroup of* $Sp(n)$ *.* $V_{n}^{2q'}$ can be written as a sum of non*degenerate subspaces having a base of the form*

$$
(P\bar{\rho}-1)^{i}X\,,\qquad 0\leq j\leq 2l
$$

with $(P\bar{\rho} - 1)^{2l+1}X = 0, l > 0, \rho$ an eigenvalue with $|\rho| = 1$. $P|V^{2q'}_{nc}$ does *not belong to a compact subgroup.*

PROOF. We complexify V^{2n} and write again V^{2n} . The symplectic form α is extended to a hermitian symplectic form. With ρ also $\bar{\rho}$, ρ^{-1} and $\bar{\rho}^{-1}$ are eigenvalues. Let $V(\rho)$ be the generalized eigenspace belonging to the eigenvalue ρ of P. For $|\rho| \neq 1$ we put $V(\rho) \bigoplus V(\overline{\rho}^{-1})$ into V_{in}^{2p} and

one of the summands into $V_{i_{\alpha}}^{p}$. For $|\rho|=1$ we can decompose $V(\rho)$ into non-degenerate subspaces $V'(\rho) \bigoplus V''(\rho)$ such that $V''(\rho)$ consists entirely of eigenvectors whereas $V'(p)$ can be written as orthogonal sum of nondegenerate space having a base of the form

(*)
$$
(P\bar{\rho} - 1)^i X, 0 \leq j \leq k, k > 0.
$$

V"(ρ) is taken into V_{co}^{2q} " $\subset V_{un}^{2q}$. If in (*) we have $k = 2l > 0$ then the subspace is taken into $V_{nc}^{2q} \subset V_{n}^{2q}$. If, however, $k = 2l - 1$ then the subspace is taken into $V_{i,n}^{sp}$ and its invariant isotropic subspace spanned by the vectors $(P\bar{p} - 1)^j X$ with $l \leq j \leq 2l - 1$ is taken into V_{in}^p .

LEMMA 2.2. Let $V_{u_n}^q$ be an isotropic subspace of $V_{u_n}^{2q}$. Assume that 1 is not an eigenvalue of $P|V^{2q}_{nn}$. Then

$$
Q(X, Y) := -2\alpha(X, (P-1)^{-1}Y)
$$

is a quadratic form on V_{un}^q . Its nullspace consists of $(P-1)(V_{un}^q \cap P^{-1}V_{un}^q)$.

PROOF. 1. Put

$$
(P-1)^{-1}X = S, \qquad (P-1)^{-1}Y = T.
$$

Then

$$
\begin{aligned} 0&=2\alpha((P-1)S,(P-1)T)=-2\alpha(X,(P-1)^{-1}Y)\\ &+2\alpha((P-1)S,PT)=Q(X,\ Y)+2\alpha(S,\ T)\\ &-2\alpha(S,PT)=Q(X,\ Y)+2\alpha((P-1)T,\ S)\\ &=Q(X,\ Y)+2\alpha(Y,(P-1)X)=Q(X,\ Y)-Q(Y,\ X)\ .\end{aligned}
$$

2. Assume that $Y \in V_{un}^q$ is such that $Q(X, Y) = 0$ for all $X \in V_{un}^q$. That means, since $V_{u_n}^q$ is an isotropic subspace of maximal dimension in *V*^{2*a*}_{*n*}</sub>, that $(P - 1)^{-1}Y = Y' \in V'_{u}$, Hence, $Y = PY' - Y' \in V'_{u}$, i.e., $Y' \in V''_{u}$ $V_{un}^q \cap P^{-1}V_{un}^q$. Conversely, if $(P-1)^{-1} Y \in V_{un}^q \cap P^{-1}V_{un}^q$, so $Y = PY' - I$ $Y' \in V_{u}^q$ and $Y \in \text{nullspace of } Q$.

LEMMA 2.3. *Let*

$$
V^{2n} = V_{in}^{2p} \bigoplus V_{un}^{2q}
$$

be an orthogonal decomposition into non-degenerate subspaces. Let V?ⁿ be an isotropic subspace of V_{in}^{2p} and let V_{v}^{n} be an isotropic subspace of *V 2n .*

Claim, (i) *The projection of*

$$
V_{\scriptscriptstyle v}^{\scriptscriptstyle n} \cap (V_{\scriptscriptstyle in}^{\scriptscriptstyle p} \bigoplus V_{\scriptscriptstyle un}^{\scriptscriptstyle 2q})
$$

into V_{nn}^{2q} modulo V_{in}^{p} gives a q-dimensional isotropic subspace $V_{un}^{q} \subset V_{un}^{2q}$. (ii) *The space*

$$
V_{\mathfrak{e}}^n := V_{\mathfrak{e}}^p \oplus V_{\mathfrak{e}}^q
$$

is an n-dimensional isotropic subspace of V2n .

(iii) There exists a q-dimensional subspace $V_*^q \subset V_*^*$ such that

$$
V_{\scriptscriptstyle e}^{\scriptscriptstyle n}=V_{\scriptscriptstyle in}^{\scriptscriptstyle p}\oplus V_{\scriptscriptstyle v}^{\scriptscriptstyle q}\ .
$$

PROOF. Let $V_{in}^k := V_{v}^n \cap V_{in}^p$ have dimension $k \geq 0$. Let V_{in}^{*p} be an isotropic complement of V_{in}^p in V_{in}^{2p} . The projection V_{in}^{*l} of V_v^n into V_{in}^* modulo $V_{in}^p \bigoplus V_{un}^{2q}$ shall have dimension *l*. Since every $X_{in}^* \in V^{*l}$ can be complemented by an $X' \in V_{\scriptscriptstyle in}^p \bigoplus V_{\scriptscriptstyle \mathit{un}}^{\scriptscriptstyle 2q}$ to give an element $X^* + X' \in V_{\scriptscriptstyle v}^*$ we have, for every $X \in V_{in}^k$,

$$
\alpha(X^*, X) = \alpha(X^* + X', X) = 0.
$$

Since $\alpha | V_{in}^p \oplus V_{in}^{*p}$ is non-degenerate it follows that $k + l \leq p$. Hence, $\dim V_{v}^{n}\cap (V_{i n}^{p}\bigoplus V_{u n}^{2q})=n-l\geqq n + k - p\;\;\textrm{and\;\;therefore, the\;\;projection}$ into V_{un}^{2q} has dimension $\geq n-p = q$. Note, however, that this projection is isotropic. Indeed, elements *X* and *Y* of the projection can be com plemented by elements X' and Y' of $V_{i n}^{p}$ so as to give elements $X + X'$ and $Y + Y'$ of the isotropic space V_*^* ; i.e.,

$$
0=\alpha(X+X', Y+Y')=\alpha(X, Y),
$$

 $\text{ since }\ \alpha(V_{\scriptscriptstyle in}^{\scriptscriptstyle p},\ V_{\scriptscriptstyle un}^{\scriptscriptstyle 2q})=0.$

Hence, the projection has the exact dimension q and can be denoted by $V_{\alpha n}^q$. Thus we have proved (i).

(ii) follows immediately from this.

But also (iii) is clear from the definition of $V_{u_n}^{\tau}$.

3. Let $c = c(t)$, $0 \le t \le \omega$, $|\dot{c}(t)| = 1$, be a closed geodesic. To the fibre $V^{2n}(0)$ over $0 = \omega \in S_{\omega}$ of the bundle τ^{2n} we apply the results of (2), with $P: = d\phi_{\omega}$ and $V_{\nu}^{n} = V_{\nu}^{n}(0) =$ fibre over $0 = \omega$ of the vertical bundle $\tau_*^*: V_*^* \to S_*$. For each $t \in [0, \omega]$, $d\phi_t V_*^*(0)$ will be an isotropic subspace of *V*²ⁿ(*t*). In general, however, $d\phi_{\omega} V_i^{\omega}(0) = PV_i^{\omega}(0)$ will be different from $V_*^*(0)$, i.e., in general we will not obtain in this way a bundle over S_* . An exception would be the case that $p = n$, e.g., if all eigenvalues ρ of *P* satisfy $|\rho| \neq 1$, cf. [4]. For each $t \in [0, \omega]$ we define the space

$$
W(t):=V_{v}^{n}(t)\cap d\phi_{t}V_{e}^{n}(0).
$$

Put dim $W(t) = c(t)$. $c(t) = 0$, except for a finite number of value, as follows from the

PROPOSITION 3.1. Let $\dim W(t_0) = \ell_0 > 0$. Choose a base $\widetilde{Y}_i(t) := (Y_i(t),$ $\nabla \phi_i(t)$), $1 \leq i \leq n$, of Jacobi fields for $d\phi_t V_i^n(0)$ such that the $\widetilde{Y}_i(t_o), 1 \leq i \leq n$

 \mathbf{z}_0 , are a base of $W(t)$. *Claim,* (i) *The elements*

 $\forall Y_i(t_0),\, 1\leq i \leq t_0,\,\, Y_j(t_0),\, t_0+1\leq j \leq n$

of Teito)M form a base for the n-dimensional space orthogonal to $\dot{c}(t_{\text{o}}) \in T_{c(t_{\text{o}})}M$.

(ii) *For all t* \neq *t₀, sufficiently near t₀, the Y_i(t),* $1 \leq i \leq n$ *, are linearly independent.*

PROOF. Since $\tilde{Y}(t_0) = (Y(t_0), Y Y(t_0)) \in W(t_0)$ means that $Y(t_0) = 0$ it follows that the $Y_j(t_0), j > l_0$, are linearly independent. Clearly, also the $\nabla Y_i(t_o), 1 \leq i \leq t_o$, are linearly independent. From $\alpha \mid d\phi_{t_o} V_i^*(0) \equiv 0$ it follows $\text{that} \ \ \langle \text{\emph{F}} \ Y_i(t_o), \ Y_j(t_o) \rangle = 0 \ \ \text{for} \ \ 1 \leq i \leq \text{\emph{c}}_o, \ \ \text{hence} \ \ (\text{i}) \ \ \text{does hold.} \ \ \ (\text{ii}) \ \ \text{simply}$ follows from the observation that for $\widetilde{Y}(t) \neq 0$, $Y(t_0) = 0$ implies $\mathcal{F} Y(t_0) \neq 0$.

We can now formulate the main result of this paper, i.e., the index theorem for closed geodesies.

THEOREM 3.2. Let $c = c(t)$, $0 \le t \le \omega$, be a non-degenerate closed *geodesic. Using the previous notations we then have*

$$
\text{Index } c = \sum_{0 < t \leq \omega} \ell(t) + \text{Index } Q
$$

where c(t) = dim *W(t) and Q is the quadratic form defined in* 2.2 *on the* space $V_{un}^q(0)$.

PROOF. 1. We define for each $t_0 \in [0, \omega]$ an injective map

ζ: $W(t_0) \rightarrow T$

as follows: Write $\widetilde{Y}(t_0) \in W(t_0)$ as

$$
\widetilde{Y}(t_0)=\widetilde{Y}_{in}(t_0)+\widetilde{Y}_{un}(t_0)\in d\phi_{t_0}V_{in}^n(0)\bigoplus d\phi_{t_0}V_{un}^q(0)\;.
$$

 $\operatorname{Put} \ \ (P-1)^{-1} \widetilde{Y}_{in}(t) = \widetilde{Z}_{in}(t), \ (P-1)^{-1} \widetilde{Y}_{un}(t) = \widetilde{Z}_{un}(t). \ \ \ \ \text{Note that} \ \ \widetilde{Z}_{in}(t) \in \mathbb{C}.$ $d\phi_t V_{in}^p(0)$ whereas $\widetilde{Z}_{un}(t) \in d\phi_t V_{un}^{2q}(0)$. We define an element $\zeta \in T_eA$, i.e., a continuous vector field along c by

$$
\zeta(t) = \begin{cases} Z_{in}(t + \omega) + Z_{un}(t + \omega), 0 \leq t \leq t_0 \\ Z_{in}(t) + Z_{un}(t), t_0 \leq t \leq \omega. \end{cases}
$$

$$
\nabla \zeta(t_{\text{o}}-)-\nabla \zeta(t_{\text{o}}+)=\nabla Y(t_{\text{o}}) \ .
$$

The injectivity of $W(t_0) \rightarrow T_c A$ is obvious.

2. For $t_0 \neq t'_0$, the spaces $\zeta W(t_0)$ and $\zeta W(t'_0)$ will be linearly inde pendent except possibly if $|t_0 - t'_0| = \omega$, e.g., $t_0 = \omega$, $t'_0 = 0$. In this case, **578 W. KLINGENBERG**

$$
\zeta(\, \widetilde{Y}^{\prime}(\omega)) \, = \, \zeta(\, \widetilde{Y}(0))
$$

means

$$
\widetilde{Z}_{in}'(t) + \widetilde{Z}_{un}'(t) = \widetilde{Z}_{in}(t + \omega) + \widetilde{Z}_{un}(t + \omega)
$$

i.e.,

$$
\widetilde{Y}'(0) = \widetilde{Y}(\omega) \in W(0) \cap W(\omega) .
$$

Let $W^*(0)$ be a complement of $W(0) \cap W(\omega)$ in $W^*(0)$. Then the linear map

$$
\zeta: W: = \bigoplus_{0 < t \leq w} W(t) \oplus W^*(0) \longrightarrow T_c A
$$

is injective. Denote the image in T_e by

$$
\dim \zeta W = J_c + \dim W^*(0)
$$

where we have put $\sum_{0 \leq t \leq \omega} \ell(t) = J_c$.

3. We define a linear map

$$
\lambda\colon \zeta W \to V^q_{un}(0)
$$

by associating to an element $\zeta = \zeta(\widetilde{Y}(t_0))$ with

$$
\widetilde{Y}(t_0)=\widetilde{Y}_{in}(t_0)+\widetilde{Y}_{un}(t_0)\in d\phi_{t_0}V_{in}^p(0)\bigoplus d\phi_{t_0}V_{un}^q(0)
$$

the element $\tilde{Y}_{un}(0)$. Note that λ is surjective: Indeed, from 2.3 (iii) we know that every $\widetilde{Y}_{u n}(0) \in V_{u n}^q(0)$ occurs in an element $\widetilde{Y}(0) = \widetilde{Y}_{i n}(0) +$ ${\widetilde Y}_{un}(0) \in V_{v}^{n}(0) \cap V_{\epsilon}^{n}(0)=W(0). \quad \text{Moreover,} \ \ W(\omega) \cap W(0) \bigoplus W^{*}(0)=W(0). \quad \text{It}$ follows that dim ker $\lambda = J_c - \dim(W(\omega) \cap W(0))$. We claim: If $\zeta =$ $\zeta(\,\widetilde{Y}(t_{\scriptscriptstyle 0})),\, \zeta'=\,\zeta(\,\widetilde{Y}'(t'_{\scriptscriptstyle 0})),\, \text{ then}$

$$
D^2E(c)(\zeta, \zeta') = Q(\lambda \zeta, \lambda \zeta').
$$

For the proof we can assume: $t'_{0} \leq t_{0}$. We find with the expressions given in 1:

$$
D^2E(c)(\zeta, \zeta') = \int_0^{\omega} \frac{d}{dt} \langle \overline{V}\zeta, \zeta' \rangle dt
$$

\n
$$
- \int_0^{\omega} \langle \overline{V}^2(\zeta) + R(\zeta), \zeta' \rangle dt
$$

\n
$$
= \langle \overline{V} Y(t_0), Z'_{in}(t_0) + Z'_{un}(t_0) \rangle
$$

\n
$$
= -2\alpha(\widetilde{Y}_{in} + \widetilde{Y}_{un}, \widetilde{Z}'_{in} + \widetilde{Z}'_{un})
$$

\n
$$
= -2\alpha(\widetilde{Y}_{un}, \widetilde{Z}'_{un}) = Q(\lambda \zeta, \lambda \zeta')
$$

because $2\alpha(\widetilde{Y}_{in}, \widetilde{Z}'_{in}) = 0.$

It follows that $\text{index } c \geq \dim \ker \lambda + \text{Index } Q + \text{nullity } Q = J_c + \text{Index } Q$, since nullity $Q = \dim W(\omega) \cap W(0)$, cf. 2.3.

4. To prove that actually equality does hold, we show that any *ξ* e

 T_cA satisfying

$$
D^s E(c)(\zeta, \xi) = 0, \text{ for all } \zeta \in \zeta W, \text{ and}
$$

$$
D^s E(c)(\xi, \xi) \leq 0
$$

belongs already to *ζW* or nullspace of *D² E(c)* which is 1-dimensional with the element $\dot{c}(t)$ as generator, because c is supposed to be non-degenerate. $\textbf{Indeed, the first condition means for } \zeta = \zeta(\widetilde{Y}(t_{\scriptscriptstyle{0}})) \textbf{:}$

$$
\langle V Y(t_0), \xi(t_0) \rangle = 0.
$$

Using 3.1 we have that $\xi(t)$ can be written in the form

$$
\xi(t) = \sum_i w^i(t) Y_i(t)
$$

where the $\widetilde{Y}_i(t)$, $1 \leq i \leq n$, form a basis of Jacobi fields for $d\phi_t V_i^*(0)$. We can assume that $\widetilde{Y}_i(0) \in V_i^n(0)$ for $i > p$, i.e., $w^i(0) = 0$ for $i > p$. Since the $\widetilde{Y}_i(0), \, 1 \leqq i \leqq p,$ and the $\widetilde{Y}_i(\omega), \, 1 \leqq i \leqq p,$ span the same space $V_{i\!}^p(0) =$ *V*_{*n*}</sup>(*ω*) and since $ξ(ω) = ξ(0)$ we have: $wⁱ(ω) = 0$ for $i > p$. With this we get:

$$
0 \geq D^2 E(c)(\xi, \xi) = -\int_0^{\omega} \langle \sum_i w^i (F^2 Y_i + R(Y_i)), \sum_j w^j Y_j \rangle dt
$$

+
$$
\int_0^{\omega} \sum_{i,j} w^i w^j 2\alpha (\widetilde{Y}_i, \widetilde{Y}_j) dt + \int_0^{\omega} |\sum_i w^i Y_i|^2 dt
$$

+
$$
\int_0^{\omega} \frac{d}{dt} \langle \sum_i w^i \nabla Y_i, \sum_j w^j Y_j \rangle dt
$$

$$
\geq \sum_{i,j} w^j (0) w^i (\omega) 2\alpha (\widetilde{Y}_j(0), \widetilde{Y}_i(\omega)) = 0.
$$

Hence, $\dot{w}^i(t) = 0$, the $w^i(t)$ are locally constant. But then one sees easily that $\xi(t) \in \zeta W$ or nullspace of $D^2E(c)$ which is 1-dimensional with the element $\dot{c}(t)$ as generator, because c is supposed to be non-degenerate. Thus our theorem is proved.

REFERENCES

- [1] R. BOTT, On the iteration of closed geodesies and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206.
- [2] W. KLINGENBERG, Closed geodesics, Ann. of Math., 89 (1969), 68-91.
- [3] W. KLINGENBERG, Le théorème de l'indice pour géodésiques fermées, C. R. Acad. Sc. Paris. 276 (1973), 1005-1008.
- [4] W. KLINGENBERG, Manifolds with geodesic flow of Anosov type, Ann. of Math. (to appear).
- [5] M. MORSE, The Calculus of Variations in the Large, Amer. Math. Soc. Coll. Publ., Vol. 18, New York, 1934.

MATHEMATISCHES INSTITUT UNIVERSITA'T BONN BONN, WEST GERMANY