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1. Letc=¢(t),0 =t Zw, |é(t)| =1, be a closed geodesic on a Rieman-.
nian manifold M of dimension % + 1. By considering ¢ as critical point
of the energy integral E on the Hilbert manifold M of closed H'-curves
on M, the index of ¢ is defined as the index of the Hessian D*E(c) with
respect to the Hilbert product on the tangent space T.4AM, cf. [2]. On
the other hand, we can associate to the closed geodesic a 2n-dimensional
vector bundle over the circle S, of length w as follows. Let

o T T M — T\M
be the subbundle of the tangent bundle of T.M formed by the vectors
orthogonal to the geodesic spray. Then we have from the immersion
éS,— T\M
an induced bundle which we denote by
V- S, .

Moreover, the decomposition of 7** into its horizontal and its vertical
subbundles 77 and 77 gives a corresponding decomposition over S,:

e Vi—8,; o Ver— S, .
On 7** we have a symplectic structure defined by (with (X,, X,)e Vr D V)
2a((X;, X)), (Y, Yo)):= (X4, Y,) — (Ys, X,)
and we have the geodesic flow ¢, which carries the fibre V?*'(t,) over ¢, e S,

into the fibre V*(t, + t) over ¢, + ¢t mod we S, by associating to an
element

(4, B)e Vi(t,) © V(L)
the value at ¢t + ¢, of the Jacobi field Y(¢) and its covariant derivative
V' Y(t) determined by
Y(t):= (Y(t), P Y(t)) = (4, B) .
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The geodesic flow respects the symplectic struecture on z**. In particular
we have the map

P:= dg,: V*(0) — V*(0)

of the fibre over 0 onto the fibre over w = 0e S,, the so-called (linear)
Poincaré map. The closed geodesic ¢ is non-degenerate if and only if P
has no eigenvalue =1.

In this paper we will show how the index of ¢ defined above can also
be expressed by using the bundle 7* and its structure. For the special
case that P has no eigenvalue o with |o| = 1 this was done already in
the paper [4]. We thus get a natural analogue of the Morse index theorem
for geodesic segments, cf. M. Morse [6]. The general case where we allow
the eigenvalue 0 =1 for P will be discussed in a later paper; there
we will also establish the relation of our theory with Bott’s paper [1]
on the iteration of closed geodesics and the Sturm intersection theory;
this means that we will have to derive an index theorem for the space
of H'-vector fields & along c¢ satisfying the boundary condition &(w) =
0&(0) for every complex number o with |o| = 1.

The results of this paper were announced in [3].

2. We start with some results of the geometry of a linear symplectic
space V** with symplectic form a:

LEMMA 2.1. Let P.:V*™—V®™ be a linear symplectic map. Then
there exists, up to a symplectic isomorphism, a unique decomposition

Ve =Vaed Vi

nto imvariant non-degenerate subspaces VP and V2 such that P|VE? does
not belong to a compact subgroup of Sp(n) and has an invariant isotropic
subspace VE,. P|Vi has only eigenvalues p with |p| = 1 and possesses a
decomposition VI @V into non-degenerate subspaces with the following
properties: V' is spanned by proper eigenvectors and P|VZ’ belongs to
a compact subgroup of Sp(n). V3 can be written as a sum of mon-
degenerate subspaces having a base of the form

(Po—-1YX, oO0=j=2
with (Pp — 1)*"X =0,1>0, 0 an eigenvalue with |o| =1. P|V:? does
not belong to a compact subgroup.

ProoF. We complexify V** and write again V**. The symplectic form
a is extended to a hermitian symplectic form. With o also g, o' and
p~' are eigenvalues. Let V(o) be the generalized eigenspace belonging
to the eigenvalue p of P. For |p| =~ 1 we put V(o) @ V(@) into V?? and
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one of the summands into V7. For |po] =1 we can decompose V(p) into
non-degenerate subspaces V'(0) @ V" (p) such that V''(0) consists entirely
of eigenvectors whereas V’(0) can be written as orthogonal sum of non-
degenerate space having a base of the form

(%) (PO —1YX,0=7=<k k>0.

V"(p) is taken into VX' c V. If in (x) we have k =20 > 0 then the
subspace is taken into V¢ c V2. If, however, k = 2] — 1 then the subspace
is taken into V?? and its invariant isotropic subspace spanned by the
vectors (Pp — 1)’X with [ < j <20 — 1 is taken into V3.

LEMMA 2.2. Let V2, be an isotropic subspace of V2. Assume that

1 is not an eigenvalue of P|VZi. Then
QX, Y):= —2a(X, (P —-1)'Y)
1s a quadratic form on V2,. Its nullspace consists of (P — 1)(Vi, N P~'V3,).
Proor. 1. Put
P-1)'X=218, P-1)'Y=T.
Then
0=2a((P—1S,(P—-1)T)= —2a(X, (P —1)'Y)
+ 2a((P—-1)S, PT) = Q(X, Y) + 2a(S, T)
—2a(S, PT) = Q(X, Y) + 2a((P — 1)T, S)
=Q(X, YY)+ 2a(Y, (P - 1X) =Q(X, Y) - QY, X).

2. Assume that Ye V7, is such that Q(X, Y) =0 for all Xe Vu,.
That means, since V¢, is an isotropic subspace of maximal dimension in
Vi, that (P—1)"'Y=Y'eV%. Hence, Y=PY' —Y'eVy,ie., Y'c
Ve.N P'Ve,. Conversely, if (P—1)y*YeVi, NP 'V, so Y=PY —
Y’ e V¢, and Y € nullspace of Q.

LEmMMA 2.3. Let

V=V Vi
be an orthogonal decomposition into mon-degenerate subspaces. Let VP2,
be an tsotropic subspace of Vi’ and let V; be an isotropic subspace of
VZn'
Claim. (i) The projection of

Von(VaEP Vi)

wnto V2 modulo Vi gives a g-dimensional isotropic subspace Vi, C V2,
(ii) The space
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Vi=VaDVi.

18 an m-dimensional isotropic subspace of V*".
(iii) There exists a q-dimensional subspace VI V?* such that

Vi=VvVadV:.

PrROOF. Let VEi:= Vr»N V2 have dimension k= 0. Let Vi® be an
isotropic complement of V%, in VZ. The projection VX' of V» into V;?
modulo V2 @ V2 shall have dimension !. Since every X%e V*' can be
complemented by an X'e€ V2P V2 to give an element X* + X'e VI we
have, for every Xe Vi,

a(X*, X) =a(X* + X', X) = 0.

Since a|VE @ ViP is non-degenerate it follows that & + [ < p. Hence,
dim VN (Ve BVH =n—1=n+k—p and therefore, the projection
into V2 has dimension =n — p = q. Note, however, that this projection
is isotropic. Indeed, elements X and Y of the projection can be com-
plemented by elements X’ and Y’ of V% so as to give elements X + X’
and Y + Y’ of the isotropic space V7;i.e.,

0=aX+X,Y+7)=aX,Y),

since a(Vz, V) = 0.
Hence, the projection has the exact dimension ¢ and can be denoted by V..
Thus we have proved (i).

(ii) follows immediately from this.

But also (iii) is clear from the definition of VZ,.

3. Let c=¢(t),0=t=w,|ét)] =1, be a closed geodesic. To the
fibre V**(0) over 0 = we S, of the bundle 7 we apply the results of (2),
with P:= d¢, and VI:= V?(0) = fibre over 0 = w of the vertical bundle
% Vr—8S,. For each te |0, ], dg,V*(0) will be an isotropic subspace of
V**(t). In general, however, dg¢,V?(0) = PV"(0) will be different from
V*0), i.e., in general we will not obtain in this way a bundle over S,.
An exception would be the case that p = n, e.g., if all eigenvalues o of
P satisfy |o] = 1, cf. [4]. For each ¢t e [0, ] we define the space

W(t):= Vi(¢) N dg, V()

Put dim W(t) = «(t). ¢(t) =0, except for a finite number of value, as
follows from the

PROPOSITION 8.1. Let dim W(t) = ¢, > 0. Choose a base Y (t): = (Y. (t),
Vot), 1 < i < n, of Jacobi fields for dg,V(0) such that the Y,(t,),1 < i <
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t, are a base of W(t).
Claim. (i) The elements

PYt), 1=i=¢, Y;t),6+15j<n
of TewyM form a base for the m-dimensional space orthogonal to
é(to) € Towy M.

(ii) For all t # t,, sufficiently near t,, the Y,(t), 1 <1 < n, are linearly
independent.

PROOF. Since Y(t,) = (Y (%), 7 Y(t,)) € W(t,) means that Y(¢) = 0 it
follows that the Yj(t,), j > ¢, are linearly independent. Clearly, also the
VYi(t),1<1i=¢, are linearly independent. From a|dg, V;(0) =0 it follows
that (FY,(t), Y;(t,)> =0 for 1 <7 <¢, hence (i) does hold. (ii) simply
follows from the observation that for Y(t) 0, Y(¢,) = 0 implies 7 Y(t,) = O.

We can now formulate the main result of this paper, i.e., the index
theorem for closed geodesics.

THEOREM 3.2. Let ¢c=c¢(t), 0 <t < w, be a mon-degenerate closed
geodesic. Using the previous motations we then have

Indexc = 3 ¢«(t) + Index @

<tzw

where (t) = dim W () and Q ts the quadratic form defined in 2.2 on the
space V,(0).

ProoF. 1. We define for each ¢,€ [0, w] an injective map
CWwW(t)— T.A
as follows: Write Y(¢,) e W(t,) as
1’7(150) = ?in(to) + 17un(to) € d¢c0 V,;’.’,L(O) @ d¢t0 VZn(O) .
Put (P - 1)—1 N11‘)1,(t)N: ZNin(t)! (P - 1)_1 Nun(t) = Zun(t)' NOte that Zin(t) €
dg, VE(0) whereas Z,,(t) € dp,V2(0). We define an element (e T.4,i.e., a
continuous vector field along ¢ by
() = Z(t + @) + Znt + ), 0 <t < 8,

2@ + Zu@) st 0.

{(t) is even differentiable except possibly at ¢ = ¢, where we have:
Vi(t,—) — Vet,+) =rY(,) .

The injectivity of W(t,) — T.A is obvious.
2. For ¢, = t;, the spaces {W(t,) and {W(t;) will be linearly inde-
pendent except possibly if |¢, — t;| = @, e.g., {, = w, t; = 0. In this case,
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LY ()) = &(¥(0)
means
ZL@t) + Z0t) = Z.o(t + ©) + Z,.(t + @)
1.e.,
Y'(0) = Y(w) e W(0) N W(w) .
Let W*(0) be a complement of W(0) N W(w) in W*(0). Then the linear map
GWi= @ W(t) W) — T.A

is injective. Denote the image in T.4 by {W.

dim (W = J, + dim W*(0)
where we have put > .<.t) = J..

3. We define a linear map
M CW — Vi, (0)
by associating to an element ¢ = {(¥(t,)) with
Y(t) = Yiult) + Yuult) € dg,, Va(0) @ do., VEn(0)

the element Y,.(0). Note that M is surjective: Indeed, from 2.3 (iii)
we know that every Y,,(0) € V{,(0) occurs in an element Y(0) = Y,.(0) +
Y..(0) € V*0) N VX0)=W(0). Moreover, W(w) N W(O0)PW*(0) =W (0). It
follows that dim kerx = J, — dim (W(w) N W(0)). We claim: If {=
E(Y(t,)), &' = &(Y'(t), then

D’E(e)(C, ¢) = QI AL) .
For the proof we can assume: ¢ <+¢. We find with the expressions
given in 1:

DE(E)(, ) = S:%WC, ydt

- {70 + R, Dat
= FY(), Zin(ty) + Zua(to))
= '—2a(?in + lNl;u/m Z~:n + Z;ﬂ)
= —2a(¥.., Zl.) = QL)
because 2a(Y.., Z%,) = 0.
It follows that index ¢=dim ker »+Index Q +nullity Q = J,+ Index Q,
since nullity @ = dim W(w) N W(0), cf. 2.3.

4. To prove that actually equality does hold, we show that any &€
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T.A satisfying
D*E(c)(&, & =0, for all {elW, and
D*E(c)(,8) <0

belongs already to {W or nullspace of D*E(c) which is 1-dimensional with
the element ¢(¢) as generator, because ¢ is supposed to be non-degenerate.
Indeed, the first condition means for { = {(Y(¢t,)):

<V Y(to); E(to» =0.
Using 3.1 we have that &(¢) can be written in the form

§(t) = 3w V()

where the Y(t), 1 < ¢ < n, form a basis of Jacobi fields for dg, V*(0). We
can assume that Y,(0)e V7(0) for ¢ > p,i.e., w'(0) = 0 for ¢ > p. Since
the ¥,(0), 1 < i < p, and the Y (), 1 < i < p, span the same space Vz(0) =
Vr(w) and since &(w) = £(0) we have: wi(w) = 0 for © > p. With this we
get:

0z DEOE 6 = — [0, + ROV, 5w Yyt

7

+ S:Z.w"w"2a( 7, ¥)dt + S“l S0t Pdt
+ S:Ed{@ WY, 3w Y;ydt
= 3 wi0)w'(@)2a(Y(0), Yiw)) =0.

J

Hence, 4'(t) = 0, the w'(t) are locally constant. But then one sees easily
that &(t) e LW or nullspace of D*E(c) which is 1-dimensional with the
element é(t) as generator, because ¢ is supposed to be non-degenerate.
Thus our theorem is proved.
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