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1. Let c = c(t), 0 ̂  t 5g ω, \ c(t) | = 1, be a closed geodesic on a Rieman-
nian manifold M of dimension n + 1. By considering c as critical point
of the energy integral E on the Hubert manifold M of closed iΓ-curves
on M, the index of c is defined as the index of the Hessian D2E(c) with
respect to the Hubert product on the tangent space TCΛM, cf. [2]. On
the other hand, we can associate to the closed geodesic a 2^-dimensional
vector bundle over the circle Sω of length ω as follows. Let

τ2n: T2nTM-> TXM

be the subbundle of the tangent bundle of TγM formed by the vectors
orthogonal to the geodesic spray. Then we have from the immersion

c: Sω -> TλM

an induced bundle which we denote by

τ2n: V2n — Sω .

Moreover, the decomposition of τ2n into its horizontal and its vertical
subbundles τ\ and τ; gives a corresponding decomposition over Sω:

τh V h — > &ω > ~v. V v —> O ω .

On τ2n we have a symplectic structure defined by (with (Xk, Xv) e Vl φ Vf)

2a((Xh, XX (Yh, Yυ)):= <Xh, Yυ) - (Yh, Xv)

and we have the geodesic flow φt which carries the fibre V2n(t0) over ί0 e Sω

into the fibre V2n(t0 + t) over ί0 + t mod ω e Sω by associating to an
element

(A,B)eV:(t0)®V:(t0)

the value at t + ί0 of the Jacobi field F(£) and its covariant derivative
VY{t) determined by

Ϋ(to):=(Y(to),FY(to)) = (A,B).

* The content of this paper falls under the program of the SFB Theoretische Mathematik
at Bonn University. The paper was written during a visit at Tόhoku University sponsored
by the Japan Society for the Promotion of Science.
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The geodesic flow respects the symplectic structure on τ2n. In particular
we have the map

P: = dφω: V2n(0) -> F2*(0)

of the fibre over 0 onto the fibre over ω = 0 e Sω, the so-called (linear)
Poincare map. The closed geodesic c is non-degenerate if and only if P
has no eigenvalue = 1 .

In this paper we will show how the index of c defined above can also
be expressed by using the bundle τ2n and its structure. For the special
case that P has no eigenvalue p with \p\ = 1 this was done already in
the paper [4]. We thus get a natural analogue of the Morse index theorem
for geodesic segments, cf. M. Morse [5]. The general case where we allow
the eigenvalue p = 1 for P will be discussed in a later paper; there
we will also establish the relation of our theory with Bott's paper [1]
on the iteration of closed geodesies and the Sturm intersection theory;
this means that we will have to derive an index theorem for the space
of ίΓ-vector fields ζ along c satisfying the boundary condition ξ(ω) =
pζ(O) for every complex number p with \p\ = 1.

The results of this paper were announced in [3].

2. We start with some results of the geometry of a linear symplectic
space V2n with symplectic form a:

LEMMA 2.1. Let P:V2n—+V2n be a linear symplectic map. Then
there exists, up to a symplectic isomorphism, a unique decomposition

into invariant non-degenerate subspaces V2l and V2q

n such that P | V*i does
not belong to a compact subgroup of Sp(n) and has an invariant isotropic
subspace Vfn. P\V!ί has only eigenvalues p with \p\ = 1 and possesses a
decomposition Vnΐ 0FC

2

O

?" into non-degenerate subspaces with the following
properties: Vlf is spanned by proper eigenvectors and P\VIΓ belongs to
a compact subgroup of Sp(n). V2q

c' can be written as a sum of non-
degenerate subspaces having a base of the form

- iyx, o ̂  3 s 2i

with (Pp - l)2l+1X= 0,1 > 0, p an eigenvalue with \p\ = 1. P\VIX does

not belong to a compact subgroup.

PROOF. We complexify V2n and write again V2n. The symplectic form
a is extended to a hermitian symplectic form. With p also p, p~ι and
p"1 are eigenvalues. Let V(p) be the generalized eigenspace belonging
to the eigenvalue p of P. For | p \ Φ 1 we put V(p) φ V(ρ~ι) into VU and
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one of the summands into V&. For \p\ = 1 we can decompose V(ρ) into
non-degenerate subspaces V'(p) 0 V"(p) such that V"(p) consists entirely
of eigenvectors whereas V'(p) can be written as orthogonal sum of non-
degenerate space having a base of the form

( * ) (Pp- iγχ9 0 ^ j ^ k, k > 0 .

V"(ρ) is taken into V2

cf aVll. If in (*) we have k = 21 > 0 then the
subspace is taken into Vii' c Vll. If, however, k = 21 — 1 then the subspace
is taken into Vf£ and its invariant isotropic subspace spanned by the
vectors (Pp - l)jX with I ^j <>2l - I is taken into V&.

LEMMA 2.2. Let Vin be an isotropic subspace of Vll. Assume that
1 is not an eigenvalue of P\Vll. Then

Q(X, Y):= ~2a(Xf(P-iyίY)

is a quadratic form on Vϊn. Its nullspace consists of (P — l)(Vln Π P'1 Vϊn).

PROOF. 1. Put

(P~l)-ιX= S , (P-l)~ιY= T .

Then

0 = 2a((P - 1)S, (P - 1)Γ) = -2a(X, (P - l^'Y)

+ 2a((P - 1)S, PT) = Q(X, Y) + 2a(S, T)

- 2a(S, PT) = Q(X, Y) + 2a((P - 1)Γ, S)

= Q(X, Y) + 2a(Y, (P - 1)X) = Q(X, Y) - Q(Y, X) .

2. Assume that Ye Vq

un is such that Q(X, Y) = 0 for all Xe Vq

un.
That means, since Vq

un is an isotropic subspace of maximal dimension in
VΆf that (P- l)~ιY= Y'e Vq

un. Hence, Y= PY' - Y'e Vq

n, i.e., Y'e
VL Π P-'VL Conversely, if (P - I)"1 YeVq

unΠ P~ιVq

ny so Y = PY' -
Y'e Vq

n and Ye nullspace of Q.

LEMMA 2.3. Let

be an orthogonal decomposition into non-degenerate subspaces. Let V?n

be an isotropic subspace of Vϊ£ and let V" be an isotropic subspace of

V2n.
Claim, (i) The projection of

v:n(v?nφv:q

n)

into Vll modulo Vin gives a q-dimensional isotropic subspace V%n c Vll.
(ii) The space
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is an n-dimensional isotropic subspace of V2n.
(iii) There exists a q-dimensional subspace Vξ c F* such that

yn _ yp /τ\ T ?̂

PROOF. Let V&: = F ; Π F> have dimension & ;> 0. Let F<ΐp be an
isotropic complement of Vfn in VH. The projection Vά1 of V* into VJΪ
modulo V & φ F J ί shall have dimension ϊ. Since every X,* e F* z can be
complemented by an Xr e V& 0 Ftt

2* to give an element X* + X' e V? we
have, for every l e F&,

α(JSΓ*f X) = α(X* + X', X) = 0

Since a \ Vfn 0 VXP is non-degenerate it follows that k + I ^ p. Hence,
dim V? Π (Vfn 0 Ftt

2£) = n — l ^ n + k — p and therefore, the projection
into V£ί has dimension ^ ^ — ί9 = q. Note, however, that this projection
is isotropic. Indeed, elements X and Y of the projection can be com-
plemented by elements X' and Y' of Vfn so as to give elements X + X'
and F + F ' of the isotropic space F"; i.e.,

0 - a(X + X',Y+ Y') = a(X, Y) ,

since α(V&, Ftt

2^) = 0.
Hence, the projection has the exact dimension q and can be denoted by F£».
Thus we have proved (i).

(ii) follows immediately from this.
But also (iii) is clear from the definition of Vq

un.

3. Let c = c(f), 0 ^ t ^ ω, \ό(t)\ = 1, be a closed geodesic. To the
fibre F2*(0) over 0 = ω e Sω of the bundle τ2n we apply the results of (2),
with P: = dφω and V*: = Vϋ(0) = fibre over 0 = ω of the vertical bundle
TT- VZ-+Sω. For each te [0, ω], dφtV?(0) will be an isotropic subspace of
V2n(t). In general, however, dφωV?(0) = PVn

e{0) will be different from
FΓ(0), i.e., in general we will not obtain in this way a bundle over Sω.
An exception would be the case that p = n9 e.g., if all eigenvalues p of
P satisfy \p\ Φ 1, cf. [4]. For each te [0, ω] we define the space

Put dim W(t) ~ c(t). c(t) = 0, except for a finite number of value, as
follows from the

PROPOSITION 3.1. Let dim W(t0) = c0>0. Choose a base Ϋt(t): = (Yt(t)9

Vφi{t)), l ^ i ^ n , of Jacobi fields for dφt FΓ(0) such that the Ϋi(t0), 1 ^ i ^
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cQ, are a base of W(t).
Claim, (i) The elements

r r 4 ( ί 0 ) , l ^ % ̂  <0, Yyfc,), <0 + i ^ i ^ n

of Teito)M form a base for the n-dimensional space orthogonal to

e Te{tQ)M.
(ii) For all t Φ t0, sufficiently near tOf the Yi(t), 1 ^ i ^ n, are linearly

independent.

PROOF. Since Ϋ(t0) = (Y(t0), ΓY(to))e W(t0) means that Y(tQ) = 0 it
follows that the Γy(ί0), i > co> are linearly independent. Clearly, also the
VYi(tQ), l^ίi^Co, are linearly independent. From a\ dφtQV?(0) = 0 it follows
that <FΓ,(ίo), r,(ίo)> = 0 for 1 ^ i ^ c0, hence (i) does hold, (ii) simply
follows from the observation that for Ϋ(t) Φ 0, Y(tQ) = 0 implies FY(t0) Φ 0.

We can now formulate the main result of this paper, i.e., the index
theorem for closed geodesies.

THEOREM 3.2. Let c = c(t), 0 ^ t ^ ω, be a non-degenerate closed
geodesic. Using the previous notations we then have

Index c = X c(t) + Index Q

where c(t) = dim W(t) and Q is the quadratic form defined in 2.2 on the
space VU(0).

PROOF. 1. We define for each toe [0, ω] an injective map

ζ:W(to)->TcΛ

as follows: Write Ϋ(tQ) e W(t0) as

Ϋ(Q = ΫiniQ + ΫuΛQ e dφtQVU0) 0 dφHVιM -

Put (P - l ) - 1 ? ^ ) ^ Ziu(t), (P - l)~ιΫuJt) = Zun(t). Note that Zin(t) e
dφtV&(0) whereas Zun(t)edφtV%(0). We define an element ζe TeΛ, i.e., a
continuous vector field along c by

Zin{t + ω) + Zun(t + ω), 0 ^ ί ^ ί0

ζ(£) is even diίferentiable except possibly at ί = ί0 where we have:

The injectivity of W(tQ) —> Γc/ί is obvious.
2. For t0 ^ t'O9 the spaces ζTΓ(ί0) and ζW(t'o) will be linearly inde-

pendent except possibly if |ί0 — ίS| = α>, e.g., t0 — ω, t'o = 0. In this case,
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means

ZL(t) + ^n(0 = Zin(t + ω) + Zun{t + ω)

i.e.,

f'(0) - f(ω) e W(0) n TF(<y) .

Let W*(0) be a complement of W(0) Π W(ω) in W*(0). Then the linear map

ζ: W: = φ

is injective. Denote the image in TCΛ by

where we have put Σ 0 < ί g β ) (̂ί) = Jc.
3. We define a linear map

by associating to an element ζ = ζ(F(£0)) with

the element ?„„(()). Note that λ is surjective: Indeed, from 2.3 (iii)
we know that every Ϋun(0) e Vln(ϋ) occurs in an element Ϋ(0) = Ϋin(0) +
ΫunΦ) 6 V:(0) n V:(0) - W(0). Moreover, W(ω) n TΓ(O)0TΓ*(O) = W(0). It
follows that dimkerλ = Jc - dim(TF(co)n W(0)). We claim: If ζ =
ζ(Ϋ(t0)), ζ' - ζ(Ϋ'(Q), then

D2^(c)(ζ, C) - Q(λζ, λζ') .

For the proof we can assume: t[ ^ ί0. We find with the expressions
given in 1:

jo d

Γ R(Q, ζ')dt
o

= -2a(Ϋtn + Ϋun, Z'in + Z'un)

= -2a(Ϋun, ZL) = Q(λζ, λζ') ,

because 2a(Ϋin, Z'in) = 0.
It follows that index c ^ dim ker λ + Index Q+nullity Q = J c + Index Q,

since nullity Q = dim W(ω) n W(0), cf. 2.3.

4. To prove that actually equality does hold, we show that any ξ e
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TCΛ satisfying

D2E(c)(ζ, ξ) = 0, for all ζe ζW, and

D2E(c)(ξ, ξ ) £ 0

belongs already to ζW or nullspace of D2E(c) which is 1-dimensional with
the element c(t) as generator, because c is supposed to be non-degenerate.
Indeed, the first condition means for ζ = ζ(Ϋ(t0)):

Using 3.1 we have that $(t) can be written in the form

where the Ϋi(t), 1 ^ i <L n, form a basis of Jacobi fields for dφtV?(0). We
can assume that Ϋ^O) e F?(0) for i > p, i.e., w\0) = 0 for i > p. Since
the Γ*(0), 1 <; i ^ p, and the Ϋi(ω), 1 <* i <Z p, span the same space V?w(0) =
Vfn(ω) and since ζ(ω) = f(0) we have: w\ώ) = 0 for i > p. With this we
get:

0 ^ D2E(c)(ξ, £) = -
JO i

( " , Ϋ3)dt +

^ Σ wί(0)wi(ω)2a(Ϋj(0), Ϋt(ω)) = 0 .

Hence, w\t) = 0, the w*(ί) are locally constant. But then one sees easily
that ξ(t)eζW or nullspace of D2E(c) which is 1-dimensional with the
element c(t) as generator, because c is supposed to be non-degenerate.
Thus our theorem is proved.
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