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1. For p — 2, oo, let U be the usual class of Lebesgue measurable
functions on the unit circle of the complex plane and let Hp be the closed
subspace of U of functions whose Fourier coefficients vanish on the
negative integers. We say a function φ in L°° is inner if φ e H°° and
\φ\ = 1 a.e.. For φeL°°, we denote by Lφ the Laurent operator on L2

defined by Lφf — φ-f for every / in L2 and by Tφ the Toeplitz operator
on H2 defined by Tφ — PLΦP where P is the orthogonal projection of L2

onto H2. We say a Toeplitz operator Tφ is analytic if φ e H°°.
In order to study Toeplitz operators Tφ, it is natural to examine the

behavior of φ as a function in L°° and, in fact, almost known results are
given by using the functional method. However, the following charac-
terization of Toeplitz operators makes it possible to deal with them as
operators with some relation to a simple unilateral shift and it seems
that such a treatment is useful to study Toeplitz operators, systematically.

The purposes of this note are to study some of properties on Toeplitz
operators from this point of view and to show the relations between
several results given by A. Brown and G. Douglas, A. Brown and P. R.
Halmos, R. Goor, P. Hartman and A. Wintner or T. Itδ and T. K. Wong,
independently and ours.

At first, we prove several results on invariant subspaces of Lφ and
next, using these, we give a sufficient condition that a function φ of Tφ

is inner in terms of subspace of H2 and lastly, we prove a result on the
spectrum of Tφ.

We state here a characterization of Toeplitz operators and also ana-
lytic Toeplitz operators given by A. Brown and P. R. Halmos.

THEOREM 1. ([3]) A necessary and sufficient condition that an operator
A on H2 be a Toeplitz operator (or an analytic Toeplitz operator) is that
T*ATZ = A (or TZA = ATZ). Since a simple unilateral shift V on a Hilbert
space K is unitarily equivalent to Tz on H2, a necessary and sufficient
condition that an operator B on K be unitarily equivalent to a Toeplitz
operator (or an analytic Toeplitz operator) is that V*BV = B (or VB —
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BV).

For our purpose, we need the following result given by A. Beurling.

THEOREM 2. ([1]) Let ^ be a non-zero closed subspace of H2. Then
^ is invariant under Tz if and only if ^ = TψH2, where ψ is an
inner function.

By Theorems 1 and 2, we have easily the following

COROLLARY 1. Every invariant subspace of a simple unilateral shift
is hyper-invariant, that is, invariant under every bounded linear operator
which commutes with the simple unilateral shift.

2. THEOREM 3. // Tφ is non-analytic, then the only invariant sub-
space of Lφ which includes H2 is L2 itself.

PROOF. Let ^€ = V {Ln

φf: f e H2, n ^ 0} (which denotes the smallest
closed subspace of L2 containing L%f, f e H2, n ^ 0), then ^£ is the
smallest invariant subspace of Lφ which includes H2. Hence we have
only to prove ^ = L2. Since Lz commutes with Lφ and since H2 is in-
variant under Lz,^ is invariant under Lz. If ^ reduces Lz, then ^ =
L2 because L2 is the minimal unitary extension space of Tz, that is, L2 is
the smallest subspace which includes H2 and reduces Lz. If ^ is a non-
reducing invariant subspace of Lz, then Lz\^ is a simple unilateral shift
on ^ because Lz is a simple bilateral shift on ZΛ Since Lz commutes
with Lφ, Lz I ^ commutes with Lφ \ ^ . By Corollary 1, H2 is invariant
under Lφ\^ and hence invariant under Lφ. Therefore, φeH°°. This
contradicts with the hypothesis that Tφ is non-analytic.

COROLLARY 2. If φ is a non-constant function in L°°, then the only
subspace of L2 that includes H2 and reduces Lφ is L2 itself ([3]). Since,
if Tφ is analytic, then Lφ is a normal extension of Tφ, in the case where
φ is a non-constant function in H°°, Lφ is the minimal normal extension
of Tφ.

PROOF. Let ^ be a subspace of L2 that includes H2 and reduces
Lφ and let ^£ Φ L2, then, by Theorem 3, Tφ and T* are analytic and
hence φ e H°° Π H* = {λl} where I F denotes the complex conjugate of H°°.
This contradicts with the hypothesis that φ is non-constant.

Since L2 Q H2 is a non-reducing invariant subspace of L*, Lf \ L2 Q
H2 is a simple unilateral shift on L2 Q H2 with the minimal unitary
extension L*. Hence, by Theorem 1, we may think that (/ — P)L*(7 — P)
is a Toeplitz operator on L2 θ H2 with the corresponding Laurent operator
L£. If Tφ is non-analytic, then φ$H°° and hence φίL°°n(L2ί
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where φ denotes the complex conjugate of φ. Therefore, we may think
(I— P)L$(I — P) is a non-analytic Toeplitz operator on L2Q H2. Hence,
by Theorem 3, the only invariant subspace of L£ which includes L 2 0
H* is L2 itself. And hence we have the following

THEOREM 4. // Tφ is non-analytic, then the only invariant subspace
of Lφ contained in H2 is {0} itself.

As an application of Theorem 4, we have

THEOREM 5. For a Tφ such as \\ Tφ\\ g 1, if {/ e H2: \\ T;f\\ = | | / | | ,
n ;> 0} Φ {0}, then φ is inner.

PROOF. Let Λ = {fe H2: || Γ;/|| = | | / | | , n ^ 0} and let

^r - V mf: fe^e n^o},

then, for fe^t, we have | | / | | = || Tφf\\ = \\PLφf\\ ^ \\Lφf\\ ^ | | / | | because it
is known that \\LΦ\\ = || 2V||. This implies that Tφf = Lφf and LfLφf = f.
Hence, we have | | / | | = | |Γ ;/ | | = | |Γ,L,/ | | = | |PL}/ | | ^ \\L$f\\ ^ \\f\\ and
Tlf = L\f. Similarly, we have T f = LnJ for all / e ^ and n ^ 0.
Clearly, ^ ^ is invariant under Tφ and it is a closed subspace of Hz

because ^ = ΠΓ=o {/ e H2: T£nT;f = /}. Therefore ^Γ - ^ ^ Since
,^f ^ {0} and since ^J? = Λ^ is a invariant subspace of Z^ contained in
H2, by Theorem 4, 2^ is analytic, i.e., φ e H°°. And hence we have T$ Tφ =
PL^PLΦP = PL^LΦP = PLlφl2P. This implies that Γ^Γ^ is also a Toeplitz
operator on iϊ2. Since, for f e^f, L*Lφf = f, we have Llφl2^f = ^
and hence, by Theorem 4, TJΓ^ is also analytic, i.e., \φ\2eH°°. Thus, |0| =
λl a.e.. For fe^f = Llφ{2f = \φ\2f = λ2/ and we have \φ\ = 1 a.e./
Therefore, ^ is inner.

COROLLARY 3. If Tφ is norm-achieved (i.e., for some non-zero vector
finH2, \\Tφf\\ = \\TΦ\\ 11/11), hyponormal (i.e., T$TΦ^ TΦT$), then φ is a
scalar multiple of an inner function. And, as a special case, a necessary
and sufficient condition that Tφ be isometric is that φ be inner ([3]).

PROOF. We may assume that || Tφ\\ = 1. Let Λ = {/ e H2: \\ Tφf \\ =
||/1|}, then, by the hypothesis, ^£ Φ {0} and, by the hyponormality of
Tφ, Γ ^ c ^ Hence, we have ^ - {/ e H2: \\ Tn

φf\\ = \\f\\, n ^ 0} Φ {0}.
Therefore, by Theorem 5, φ is inner.

REMARK. In above Corollary 3, we need the hyponormality of Tφ

only to show ^ is invariant under Tφ. It is known that there are
more wide classes of operators which have ^ as an invariant subspace
of them. For example, the following operator is that: An operator T
on a Hubert space H such that || Tkx\\ ̂  || Tx\\k for all unit vector xe H
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where k ^ 2 is a fixed integer.

COROLLARY 4. -For α non-constant function φ in L°°, if Tφ is a con-
traction (i.e., \\TΦ\\ ^ 1), then it is completely non-unitary, that is, Tφ

has no non-zero reducing subspaces restricted to which Tφ is unitary
([4]). And, as a complementary case, the only unitary Toeplitz operators
are the scalars of modulus 1 ([3]).

PROOF. By the decomposition theorem of contractions, the unitary-
part of Tφ is the restriction of Tφ on H{u) = {f e H2: \\ T:f\\ = \\ Tf*f\\ =
11/11, w^O}. Hence we have only to prove H{u) = {0}. If H{u) Φ.{0},
then, by Theorem 5, φ e H°° n £F = {λl}. This contradicts with the hy-
pothesis.

From above corollary, it is natural the following question arises:
Is every non-normal Toeplitz operator completely non-normal? As a partial
answer of this question, we have

THEOREM 6. If φ is a non-constant function in H°°, then Tφ is
completely non-normal, that is, Tφ has no non-zero reducing subspaces
restricted to which Tφ is normal.

PROOF. Let ^ be a reducing subspace of Tφ such that TΦ\^T is
normal, then, for / e ^ ||Z,y/|| ^ II PL?/11 = II 27/11 = II Γ,/|| = | |L#/|| =
| |L?/ | | because ^ G HM. This implies that L?/ = PL$f= Tife^ti Hence
^J? is invariant under L*. Since φ is a non-constant function in H°°, T*
is non-analytic and hence, by Theorem 4, ^ = {0}.

3. Next, we prove the following result on the spectrum of Toeplitz
operators.

THEOREM 7. If φ is a non-constant function in L°°, then σP(Tφ) π
σp(Tφ) — 0 , where <JP(TΦ) denotes the point spectrum of Tφ and the bar
denotes the complex conjugate.

PROOF. If σp{Tφ) n σp(T$) Φ 0 , then we may assume Oeσp(Tφ) n
GpJTf) because Tφ — XI is also a Toeplitz operator. Then there is a non-
zero vector / in H2 such that Tφf = 0. Since, for n ^ 0, T?nTφT"zf =
Tφf = 0, we have

Z#T?/ = ^ Γ . -^o + λ2TΓ2e0 + + λ ^ ^ A + λ Λ

where eo(z) = 1. Let .^T = V {Γ?/: ^ ^ 0} and let ^ r = {ge iϊ2: T ^ =
0}, then, if {Tzf:n^ 0} is not included in ^V, then there is a positive
integer n0 such that Γ^T?*/ = λe0, λ ^ 0. Since H2 = y {Tn

ze,: n ^ 0},
is dense in H2 and hence TΦH2 is dense in ίί 2 . This implies that
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{g e H2: T$g = 0} = {0} and contradicts with 0 e σp(T$). Therefore,
because Λ" is clearly a closed subspace. Since ^ Φ {0} and since
is invariant under Tz, by Theorem 2, ^ = TψH2 where ψ is some inner
function. And hence ^£ c^Ϋ" implies TΦT+ = 0 and we have Tφ = 0
because ψ is inner. Therefore, by Theorem 1, φe H°° f] I P = {λl}. This
contradicts with the hypothesis.

COROLLARY 5. ([3]) The only idempotent Toeplitz operators are 0
and I.

PROOF. Since σp(Tφ)Γ)σp(Tf)z){0, 1}, by Theorem 7, Tφ = XI such as
λ2 = X. Therefore Tφ = 0 or Tφ = I.

COROLLARY 6. i^or α non-constant function φ in L°°, if Tφ is hy-
ponormal, then σP{Tφ) = 0 . And, as a special case, for a non-constant
function φ in L°°, if Tφ is self-adjoint, then σp(Tφ) = 0 ([5]).

PROOF. If Tφ is hyponormal, then Tφ — XI is also hyponormal and
hence Tφf = \f implies that T%f = λ/ Therefore, by Theorem 7,
<7,(T,) = 0 .

COROLLARY 7. ([2]) /f Tφ is non-zero, partially isometric, then φ or
φ is inner.

PROOF. In the case where φ is constant, Tφ = λJ, |λ | = 1 and, by
Theorem 5, φ is inner. In the case where φ is non-constant, by Theorem
7, if 0eσp(Tφ), then 0$σp(T$) and hence T£ is isometric. Therefore, by
Corollary 3, φ is inner. Similarly, if 0eσp(Tφ), then φ is inner.

In [7], we proved the following result: Let A be a nearly normal
operator on a Hubert space K (i.e., A commutes with A*A) with the
polar decomposition A = V\A\ and let Wbe an isometry on K. Then, if W
commutes with A, then W commutes with V and |A| also. From this
and by Theorem 1 and Corollary 7, we have

COROLLARY 8. ([6]) If Tφ is nearly normal, analytic, then φ is a
scalar multiple of an inner function.

PROOF. Let Tφ = V\TΦ\ be the polar decomposition of Tφ, then, by
above result and by Theorem 1, Tz commutes with V and \TΦ\ and
hence V and | Tφ\ are analytic Toeplitz operators on H2. Since \TΦ\ is
self-ad joint, \TΦ\ = λ/ and Tφ = XV. Therefore, by Corollary 7, φ or φ
is a scalar multiple of an inner function because V is a partial isometry.
Since Tφ is analytic, φ is a scalar multiple of an inner function.
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Misonou kindly communicated to the author the following result concerning
our Theorem 7 (essentially, same as Theorem 7) was proved in the proof
of Theorem (4.1) of L. A. Coburn [8], using the functional method: If,
for a non-zero essentially bounded function φ, there exist functions / and
g in H2 such that Tφf = 0 and T-Φg = 0, then either / = 0 a.e. or g =
0 a.e. .
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