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We continue in this paper the study of bounded functions in the
abstract Hardy space theory in our former work [19]. The situation is
as follows: Let (X, X, m) be a probability measure space and H a weak*
closed subalgebra of the sup-norm algebra L* of the bounded m-measur-

able functions, satisfying 1 ¢ H and \ uvdm = Sudm S vdm for any u, ve H.

H?” is the L” closure of H (0 < p < ). We have shown in [19] that for
every non-constant w € H there corresponds a unique Carathéodory domain
A such that mix: u(x)e 4} =1, Sudme A and mix:|u@x) —a|<e >0
for any ¢ > 0 and any a € 0A. It is then natural to ask: Is the spectrum
of u contained in A? If f is a continuous function on A, holomorphic
in A, does the composed function f(u) lie again in H? Or, more gener-
ally, if f is in H”(A), does the appropriately defined composed function
f(u) lie in H?? We answer to the third question in the paragraph 2.
In the classical unit disc case these were studied by many mathematicians.
(See for details Ryff [15] or Nordgren [11].) We consider in Section 2 the
case where the essential range or the value carrier of u is contained in
the unit disc and in Section 3 the case where the value carrier of w is
contained in a more general domain, i.e., a Carathéodory domain. In the
paragraph 3 the first and second questions are answered also affirmative.
The second one is answered in somewhat different form: Let D be a
Carathéodory domain and f(z) a continuous function on D, holomorphic

in D. Then for every we H with m{x:u(x)e D} =1 and SudmeD it

holds f(w) e H and O(f(u)) = f(D(u)) for all non-zero multiplicative linear
Sunctional @ on H (Theorem 4.2). Some problems related to it are also
discussed there. One of them is, roughly speaking, the following: Let
D be an open set in the complex plane. Then, if a measurable function
f on D operates on H, f is necessarily holomorphic in D (Corollary 4.4).
This is an analogous result to a familiar one in group algebras. Prelimi-
naries and some remarks on conformal mapping are given in the next

* This work was in part supported by the Alexander von Humboldt Foundation.
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paragraph.

1. Preliminaries, notation and some remarks on conformal map-
ping.

1. Let D be an arbitrary simply connected domain in the complex
plane with at least two boundary points. There is no difficulty in defining

the space H*(D) of bounded holomorphic functions in D; it is a Banach
algebra under the norm

[[flle = sup [ f(z) | -

For 0 < p < «, a function f holomorphic in D is said to belong to the
class H”(D) if the subharmonic function |f(z)|” has a harmonic majorant
in D. The norm can be defined as

[ fllzroy = ([ Flle = [u(z)]'”

where z, is some fixed point in D and # is the least harmonic majorant
of |f|. It is easy to see that the space H?(D) is comformally invariant.
That is, if fe H?(D) and if 2z = g(w) is a conformal mapping of a domain
D* onto D, then f(g9(w)) e H?(D*). Furthermore, if the norm in H?(D¥)
is defined in terms of the point w, = g7'(2,), this correspondence f— fog
is an isometric isomorphism. If 1 < p < -, || ||, is a genuine norm, i.e.,
the triangle inequality holds:

Nf+ gl =Fll+ gl .
This ceases to be true if 0 < p < 1; in that case we have, however,

WF+gllz=IA1E+ gl -

For the unit disc U the above definition of H?(D) coincides with the clas-
sical one, i.e., f€ H?(U) if and only if

s ) <

In that case each f in H*(U) has non-tangential boundary values a.e. on
the unit circle 7T, which determine a well-defined element f* of the space
L*(T) with respect to the normalized Lebesgue measure L on T and the
mapping f— f* is an isometry of H?(U) onto a subspace of L*(T). We
denote this space as H”(T). H®(T) is an example of our space H.
Next we recall the definition of the following familiar uniform alge-
bras, which we shall use frequently. Let K be a compact set in the
complex plane. The algebra C(K) consists of the continuous functions on
K, endowed with the supremum norm. The algebra P(K) is the set of
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all uniform limits of polynomials in z. The algebra R(K) is the set of
all uniform limits of rational functions with poles off K. The algebra
A(K) is the set of all functions in C(X), holomorphic in the interior of K.

Now let {G,} be a sequence of simply connected domains in the com-
plex plane, each containing a fixed disc ¥ with center z,. Let E be the
set of all points z with a neighborhood N(z) contained in all the domains
G, starting from some value of n (depending on z). Obviously E is non-
empty, since k c E. Moreover E is open, and hence E is the union of
countably many disjoint domains, namaly the connected components of E.
Of these components, let G, be the one containing z,. Then G, is called
the kernel of the sequence {G,} (relative to the point z,). It is a fortiori
simply connected.

DEFINITION 1.1. Let {G,} be a sequence of simply connected domains,
with kernel G,, relative to the point z,. Then {G,} is said to converge to
G,, if every subsequence of {G,} has the same kernel G, (relative to z,)
as {G,} itself. Otherwise, {G,} is said to diverge.

DEFINITION 1.2. By a Jordan domain, we mean a domain which is
the interior of a closed Jordan curve.

DEFINITION 1.3. Let G be a bounded simply connected domain, and
let G, be the component of (G)° containing the point at infinity. Then G
is said to be a Carathéodory domain if G and G,, have the same boundary.

In particular, every Jordan domain is a Carathéodory domain. A
sequence of bounded simply connected domains {G,} is said to be strictly
decreasing if G,.,cG, m=1,2 --.). If G is a Carathéodory domain,
then there exists a strictly decreasing sequence of bounded simply con-
nected domains with smooth boundaries, converging to G as its kernel
(relative to any point z,€ G). Conversely, if G is a kernel of a strictly
decreasing sequence of bounded simply connected domains {G,}, then {G,}
converges to G (relative to any point of G) and G is a Carathéodory
domain.

We state first a sharpened result of a Carathéodory’s theorem in
the case of strictly decreasing sequence.

THEOREM 1.1. Let {D;} be a strictly decreasing sequence of bounded
stmply connected domains and let D be a kernel of {D;}. Fix a point
acD. Let ¢, ¢; be the conformal mappings of U onto D, D; (respectively)
such that ¢(0) = ¢;(0) = a and ¢'(0), $5(0) > 0. Then we have

H¢J - ¢”HP(U)'_’0
as j— oo, for every 0 < p < oo.
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To prove this, we need the following lemma which can be proved
with a slight modification of the proof of Lemma 9.1 of Gamelin [3, p. 35].

LemMA 1.1. Let K be a compact set of the complex plane. Let K,
be compact sets of the complex plane such that 0K, consists of a finite
number of Jordan curves, K, .,C K,, and ;- K, = K. Suppose u is a
real-valued continuous function on a neighborhood of K, with piecewise
continuous partial derivatives of first order and w, s the harmonic ex-
tension of wlsx, to the interior of K,. If every zc 0K satisfies Lebesgue’s
condition, then w, converges to w uniformly on oK.

Here a point z € 0K is said to satisfy Lebesgue’s condition if S @nr)/r =
S

+ oo, where S consists of all », 0 < r <1, such that the circle of radius
r and center z meets the complement of K.

ProOOF oF THEOREM 1.1. We suppose first the boundaries 0D; are
smooth. Put K = | D;. Then we note first that K is compact and K°
is connected, and hence every point of 0K satisfies Lebesgue’s condition.
Clearly we have 0DcC0K. Let u;(z) be the least harmonic majorant of |z|*
in D;. Then we have [u;(a)]'* = 12llaro; = ll$illzran = ||¢51l>. Since |2|”
is continuously differentiable on C\{0}, u;{z} is also the harmonic extension
of |2|”|op, to D; and so we can apply Lemma 1.1 to |z|°. Thus we see
that u;(2) converges to |z|® uniformly on 0K and hence on ¢D. Hence
u;(z) converges to a continuous function u(z) uniformly on D. This
function is harmonic on D and satisfies % |sp = |2|® |ap. One can thus
easily deduce that » is also the least harmonic majorant of |z|* in D.
In particular, u;(a) tends to u(a), that is,

Wil —1lells  (F— o).

Next we have already noted that D; converges to D in the sense of
Carathéodory. Hence in virtue of Carathéodory’s theorem, ¢;(z) converges
to #(z) uniformly on compact sets of U. For 1 < p < oo this implies that
$; tends to ¢ weakly in L°(T). Since || ¢;|/, tends to || ¢]|l,, we have
thus || ¢; — ¢||» — 0 by the well-known property of L’(1 < p < ). Hence
we have || ¢; — ¢]],— 0 for any 0 < p < . Next we shall prove in the
general case. When 0D; are not smooth, we can choose a strictly de-
creasing sequence of bounded simply connected domains {G;} with smooth
boundaries such that D;,cG,cG,cD; (j=1,2, ---). Then {G,;} also
converges to D and we have ”z”m’(aj_l) = || z”Hp(Dj) = || z”HP(G’j)' By the
above argument ||2||zrq,) tends to ||z||z»py and hence ||z ||zrp; tends to
|2 ||lzpy. Again by the above argument we have ||¢; — ¢, >0 as j— .
This completes the proof. :
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COROLLARY 1.1. Let D, D;, a be as in Theorem 1.1 and 0 < p < oo.
Further suppose f(z) is holomorphic on a neighborhood of [\ D;. Then
Sor sufficiently large j f(z) € H*(D;) and || f|arw,) converges to || f|lasw).

The proof follows along the same lines as in the proof of Theorem 1.1.
Further, for the inverse conformal mappings we have an analogous result
to Theorem 1.1.

THEOREM 1.2. Let D be a bounded simply connected domain and
{D;} a sequence of wuniformly bounded simply connected domains, con-
verging to D and satisfying Dc D;. Let a point a€ D be fixed. Let
9, 9; be conformal mappings of D, D; onto U respectively such that
g(a) = g;(a) = 0 and g'(a), gi(a) > 0. Then we have g;— g in H?(D) for
wany 0 < p < oo,

PrROOF. Since D c D;, we have first for any 0 < p < oo

(*) 1 9illaroy = 1195°97 vy S L =929 laran = || 9 | zomy -

(i) Case p > 1. Since g; — g uniformly on compact sets in D by
Carathéodory’s theorem, we have g;og~'(w) — w for all we U and hence
g;o 9 (w) — w in the weak topology of L”(T). Hence we have

(%) lirﬁ’inf 19007 larwy = | W [|apwy = 1.

Combining (x) and () we see that || g;°97"||zrw, converges to ||w||urw).
Since g;o g '(w) — w weakly in L?(T), we have again as in the proof of
Theorem 1.1 that g;og '(w)— w in the strong topology of L%, i.e.,
195097 — 9o g™ lapan = |95 — 9llgppy — 0 a8 J— oo,

(ii) Case 0 <p=1. Since ||f]|lurws = || flluzpy, for any fe H*(D),
we have from (i) that g;— ¢ in H?(D). This completes the proof.

In the same way we can show the following

COROLLARY 1.2. Let D, D;, a, g and g; be as in Theorem 1.2 and
1< p < . Then, for any f(z)e H*(U) it holds fog;— fog in H?(D).

PROOF. For 1 < p < o the proof follows along the same lines as in
the proof of Theorem 1.2. For p =1 that fog;og™'— f uniformly on
compact sets implies that fog;og~'— f in the weak* topology as the sub-
space of the dual space of C(T'). Hence we have liminf,.. || fog;00™"||urwr =
|| fllzpw) and as before lim; .., || fog;°97"||zrw) = || f||zpan- Now, using the so-
called pseudo-uniform convexity of H'(U) we have the desired conclusion.

Now let K be a fixed compact set in the complex plane with con-
nected complement. In this case we have R(K) = P(K) and hence R(K)
is a Dirichlet algebra on 6K. For ze K° m, will denote the unique
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representing measure for 2z on dK, that is, m, is the harmonic measure
for z on OK.

Let D be a component of K°. A point z€0dD is said to be accessible
from D if z is the endpoint of a continuous curve which has its other
points in D.

Since K° is connected, D is a bounded simply connected domain and
there is a conformal mapping f of U onto D. Let S be the subset of T
at which f has non-tangential boundary values. Then S is a Borel set,
and f extends to be a Borel function on S. The extension of f to S will
also be denoted by f. We note that every point of f(S) is an accessible
point of dD. Since K° is connected, we have f(2,) # f(z.) if 2, # 2., 2y,
2, € 8.

Let p, be the harmonic measure on T for we U. Then we can
formulate Lemma 4.3 in Gamelin [3, p. 149] as follows.

LemmA 1.2. Let K, D, f, tt, and m, be as above. Then there exists
a Borel set Ec€ T such that

(i) f has non-tangential boundary values at every point of E, i.e.,
EcS.

(ii) f 1s one to one on E, f(E) c0oD is a Borel set, and f™ is a
Borel function on f(E).

(iii) g, s supported on E for all we U.

@(iv) m, is supported on f(E) for all z€ D. In particular, m, is
supported on the set of points of 0D accessible from D.

(v) For all bounded Borel function g on 0D,

Sgdm,=§gofd#w, weU, z=fw).

REMARK. Let & be another conformal mapping of U onto D. Then,
if we replace (f, S, T, E, f(E)) in Lemma 1.2 by (k, b~ f(S), h™' o f(T),
hto f(E), f(E)), Lemma 1.2 is still valid.

2. Holomorphic functions of functions in H. Our purpose in this
paragraph is to generalize the classical results on composed functions of
bounded holomorphic functions in the unit disc. We devide this para-
graph into two sections.

2. Disc case.

By elementary calculation we obtain the following lemma.

LEMMA 2.1. Let ue H, |u| < 1, = ¢*(a: real), and b = Sudm. Then
we have
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S}ﬂdm—}_ﬂ Jor 0<r<1i, eleT.

Iew___,,.ulz - ]eio_,rblz

Using this equality one can prove the following lemma, a generali-
zation of the classical Lowner’s lemma.

LemMMA 2.2 [18]. Let u,b be as in Lemma 2.1. Then for any Lebesgue
measurable set E on the unit circle T, we have

1— [u@) 49 1— |u(x)f?
Slu(z)l<1 am(x) SE | e — u(x) [Zda - SE db Slu(z)l<1 |e? — u(x) lzdﬂ

_ S 1= 18P 36— onmie: uw(z) e B} .
5 [e7 — b

In particular, we have

. 1+ 6]
mix: u(x)e B} < T |blL(E) .

Further, if |u| =1, we have

1—1b]| . 1+ /0]
i lblL(E)gm{x.u(x)eE}gl__ IbIL(E').

Using this lemma we have the following result on composed functions.

THEOREM 2.1. Let 1 < p < . Letue H, non-constant, || =1 and
b =s udm. Then for any fe L®(T) the composed function f(u(x)) s

well-defined and we have
(i) foue) =lim=|" L=

-1 2T S“"mf (€%)d0 a.e. and in LP-means.

(i) S fw)dm = L S 11_—lbif(ew)d0 .

2w )= | € — b

oo (1 — B\ < < (LA [B]\"”

G (35g7) 11k = 1l = (FEgr) 11 -

(iv) The above constants in both sides are the best possible ones.

ProOF. By Lemma 2.2 f(u(x)) is well-defined. (i) Let f(r, ¢'’) be the
Poisson integral of f, i.e., f(r, ¢’) = 1/(27) S 1 — r?) e — re* |72 fef)dg.
Then it is well-known that f(r, ¢Y) tends to f(¢’) almost everywhere as
r— 1. Hence again by Lemma 2.2 f(r, u(x)) tends to f(u(x)) a.e. as
r— 1. We write next the Poisson integral of f(r, ¢'%) as f(s, r, ¢'’). Then,
since f(s, r, €'%) = f(sr, €¥) (0 < s, » < 1), we have f(r, u(x)) = f(s, r/s, u(x))
if r <s<1. Hence it holds for 0 <r,s<t<1
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Sr, w(@)) — f(s, u(®)) = f(¢, /¢, w(x)) — £, s/t, w(@))

- 1 1— ¢ o v
a ‘2?5_,, T — tugm P b € — Fls/t, €0

Therefore, we have by Cauchy-Schwarz inequality and by Lemma 2.1

| £, w(@)) — (s, w(@) |l» < (i—f-{—zpw | Fr/t, €9) — Fsft, &) I,

1+ 1b]\"” 0 0

< (=T 191 _
s (F5g0) 1 ) = S, )l
Since f(r, ¢¥’) tends to f(¢?) in L*(T) as r—1, f(r, u(x)) also tends to
f(u(z)) in L°(m). Thus we have proved (i). (ii) follows immediately from
(i), and (iii) follows immediately from (ii). We shall show next (iv). That
the constant ((1 — |b|)/(1 + |b]))"* is the best possible one in the left
inequality can be shown for example as follows: Consider the functions
F€?)=[1—7r)0|b|™" + re?)*]'>. Then by Lemma 2.1 we have

1—7b _1—17b] _1—17[b] 0\ 11
oo +rb|* 1+ r|b| 1+r|b|"f’(e I -
Letting r — 1, we see that the constant is the best possible one. In the .

same way we see that the constant in the right side is also the best
possible one. We have thus completed the proof.

| Fr(u(@)) |15 =

REMARK 2.1. The equality (ii) itself can be derived as a special case
from the more general result on composed functions by Mirmann [9].
But it seems to us that (i) is often useful.

REMARK 2.2. Under the situation of Theorem 2.1 it holds || f||, =
[| flu(x)) ||, for all fe H?(T) for some 0 < p <o if and only if Sudm =0.
In fact, we have f(z) = (1 + bz/|b|)**c H?(U) and ||f(u)||2 =2+ 2|b| >
2= ||F|2 if b= gudm ~ 0. This shows the only if-part. The if-part is
immediate from (iii).

We reformulate (iii) in Theorem 2.1 (p = 2) as a result on [* sequences
as follows.

COROLLARY 2.1. Let b be a complex number with |b| < 1. Then we
have for any {a}el®

T er) s

where b* =b if 1 =j and = b if 1 <j.

£ a0,

1,5=—
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We next consider the case |u| < 1. We formulate as follows.

THEOREM 2.2. Let 1< p < . LetucH, |u|=<1, # e(a:real) and
b= Sudm. Suppose further fe L*(T) and let f(r,e?) be its Poisson
integral. Then the composed function f(|u(x)|, w(x)/|uw(x)]) s well-defined
and we have

1

(1) AQu@], v@) u@) =lim = | Lo WO re0q0

-1 2 J-z | e — ru(x) [
a.e. and in L*-means.

@) 1Al wiw Dl < (G 11,
1+10]
1—1b|

ProoF. The proof of (i) follows along the same lines as that of
Theorem 2.1 (i). (ii) Set

1/»
(iii) The constant < ) 18 the best possible one.

T l— 2 u) ]

=1 i0
rute) = 5|7 LD roa

Then we have by Cauchy-Schwarz inequality

| fr(u()) |

1 (" 1—ru@)] iypgoe( L (51— u@)® , \'""
< ( o L T —rag) €N a0 (27[ S_z T [2d0> ,

where 1/p + 1/p’ = 1. Since the last term is equal to 1, we see in virtue
of Lemma 2.1 and Fubini’s theorem that

[1f+ () I

1 g" 1— 7|0 0y |? 1/p 1+lb|\1lf’
<(=—\ 2=riof oy < (=101 .
—anwumwm”d’—Q_ww””
Letting » — 1 we have (i) by Fatou’s lemma. (iii) Consider the functions
F€) = [ —r)/b|b]™ — re’ F]'*. Then we have f,(lul],u/|u])=
[A— r|u|®)/|b|b]™" — ru|*]"" and hence via Lemma 2.1

el l, w/lwl) |3
_(1—7ul dm = L= 7bf _ 1+ 7b] »
SIb/lbl —ruf? " [0/|b] —rb[* 1—7[b] 1711
Letting r — 1, we see that the constant ((1 + |b[)/(L — |b]))"/* is the best
possible one. This completes the proof.

Now restricting Theorem 2.2 to the spaces H?(T) or H*(U) we have
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THEOREM 2.3. Let 0 < p < . LetuecH, |u| =<1, # ¢*(a: real) and
b= gudm. Then for any f(z)e H*(U) we have
(i) f(u(x)) s well-defined and in H”.

@) el = (FE51) 171

r

(i) If1=p= o, Kf(u)dm = J) .

PROOF. (1) The case 1 £ p < . By Theorem 2.2 f(u(x)) is well-
defined and |[f(w)l, =< (1 + [6)/(L — [b)))*[| fll. Now clearly f(ru)e H
and we have '

forwy = =7 o penap
T J-z|e* — ru|

Hence by Theorem 2.2 f(ru) tends to f(x) in L” and so f(u) is in H” by
definition and further

Sf(u)dm = 1715{1 Sf(ru)dm = lri_I’ll'lf<’r' S udm) = f(S udm) ,

since b = Sudme U (this follows from |u| =<1 and w # ¢** (a:real)).

(2) The case p = « is clear from (1). (3) The case 0 < » < 1. We have
by the classical inner-outer factorization theorem f(z) = g(2)h'"(z) for
some inner function g(z) and some outer function h(z) € H'(U). Then by
Lemma 2.2 f(u), g(«) and h(u) are well-defined and it holds f(u)=g(u)h'/"(u).
Hence we see easily that f(u)e H” and

111 = § 11y dm < 158, = 1B

This completes the proof.

REMARK 2.3. If |u| =1, we have the same inequality as in Theorem
2.1 (iii) and the constants are the best, which is known in the classical
case [11]. Indeed, since the positive valued function f,(¢*’) in the proof
of Theorem 2.1 (iv) is in L?(T) and log f, is in LY(T), we have f,(¢') =
| 9.(¢*’) | for some g,€ H*(U) as is well-known. The rest of the proof
follows along the same lines as that of Theorem 2.1 (iv).

REMARK 2.4. If Sudm = 0, the constant in (ii) in Theorem 2.3 is the

best possible one. If Sudm # 0, we do not know whether that constant
is the best. But the following example shows that the best possible con-
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stant is greater than 1. Example: Let b = S udm %= 0 and a be a positive
number satisfying 2a¢ |b| = 1. Put f(z) = (@ + bz/|b|)**. Then we have
f(z)e H*(U) and ||f(w)];= S la + |b] + bu/|b| — b [fdm = (a+ |b]? +

S|5u/|b]—]b||2dm>a2+2a|b|+1b|2>a2+1=||fng.

We note next that we have also a generalization of a theorem of
Ryff with a slight modification of his proof. We state it without proof.

THEOREM 2.4. Let 0< p < co. Let ue H, |u| <1 and Sudmzo.

Then in order ||f(w)ll, = ||fll» for some mnon-constant fe H*(U) it is
necessary and sufficient that |u| = 1.

From the above theorem and Remarks 2.8 and 2.4 we can deduce
the following.

COROLLARY 2.2. Let 0 < p< oo. Let ueH, |u|=1 and u # ¢
(a: real). Then in order ||f(w)l|l» = ||fll, for all fe H(U) it is mneces-

sary and sufficient that |u| =1 and Sudm = 0.

3. General case.
_ Let D be a Jordan domain and g a conformal mapping of D onto U.
Then g can be extended continuously to D and if we denote this extended
function also by g, g maps D onto U topologically. Hence if we H and
m{x: w(x) € D} = 1, the composed function g(u(x)) is well-defined. Further
g(u) lies in H. In fact, by Walsh’s theorem or by Mergelyan’s theorem,
there is a sequence of polynomials P,(z) such that P,(z) — g(z) uniformly
on D. Hence P,(u) tends to g(u) in L® norm. Since clearly P,(u)c H,

we have g(u)€e H and Sg(u)dm = g(S udm). Hence using Theorem 2.3

we can state the following lemma.

LEmMMA 3.1. Let D be a Jordan domain and let an ac D be fixed.
Let f(z)€ A(D). Then if we H satisfies m{x: u(x) € D} = 1, the composed
function f(u) lies in H and we have for any 0 < p < o

[ f) ], = C || fllaroy »
and

~‘f‘(u)alm = f(s udm) ,

where C depends only on a and wu.
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PrOOF. We may assume that w is not constant, since otherwise
the conclusion is trivial. Now let g(z) be the conformal mapping of D
onto U satisfying g(a) = 0 and ¢'(a) > 0. Then we have by the above

argument g(u)€ H and \ g(u)dm = g<§ udm) Let b = Sudm Now as
fw) = fog'(g(w)) and fog~'e A(U) we get by Theorem 2.3 f(u)e H and

L 10O gt = (ELIOLY" gy,
170l = (FE201) 17207 v = (T4 257) 17 1leon

Here g(b) depends only on @ and 4. Next by Theorem 2.3 (iii) we have

Sf(u)dm =f °g“<g g(u)dM> =f 09“(g<gudm)) = f(Sudm) .

This completes the proof.

LEMMA 3.2. Let D be a Carathéodory domain and D the polynomial
convex hull of the closure of D. Letan a€ D be fixed and g a conformal
mapping of D onto U satisfying g(a) = 0. Further suppose u € H with

mix: w(w) e D} = 1 and S udm e D. Then for any f€ A(ﬁ) it holds f(u) € H,
Sf(u)dm = f(g udm) and for every 0 < p < oo

17 @)l < (T 15 o

where b = Sudm.

PrOOF. Since (IA))c is connected, we have A(ﬁ) = P(ﬁ). Hence we
may assume f is a polynomial. Then f(u)€ H and S fw)dm = f(‘ udm)
are obvious. Now there exists a strictly decreasing sequence of Jordan

domains {D;} converging to D. Let g; be the conformal mappings of D;
onto U such that g;(@) = 0 and gj(a) > 0. Then by Lemma 3.1 we have

176 1 = (TN £l

Since g,(z) converges to g(z) | 9'(a)|/g’(@) by Carathéodory’s theorem, and
since || fllzrp;) tends to || f||ze(m) by Corollary 1.1, we obtain

176 s = (FEHZE) ™ Sl

That completes the proof.

LEmMMA 3.8. Let D, a, g, w be as in Lemma 3.2. Further let g'(a) >0
and {D;} be a strictly decreasing sequence of bounded simply connected
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domains converging to D and g; the conformal mappings of D; onto U
such that g;(a) =0 and gj(a) > 0. Then {g;(u)} is a Cauchy sequence in
L? for every 1<p < . In particular, gj(u) converges to the same
element of H for every choice of {D;}. If we write this element as glul],

it holds S gluldm = g(s udm).
ProoF. By Lemma 3.2 we have

A [19;) — g:(w) |l = C'" |l 9; — 9illar) »
since D;> D and g;€ A(D,;). Hence by Theorem 1.2 {g,(u)} is a Cauchy
sequence in L* for any 1 < p < . Let us write its L” limit as g[u].
Then, since || g;(%)|l. =1 we have g[u]€ H and |g[u]| < 1. Clearly g[u]
is independent of the choice of {D,;}. Now we have

Sg[u]dm = lim S g;(w)dm = lim g,-<gudm) = g(Sudm) ,
pan e
which completes the proof.

LEMMA 3.4. Let D, a, g, w be as in Lemma 3.3. Further let ¢ be
the inverse conformal mapping of U onto D satisfying ¢(0) = a and
#'(0) > 0. Then for the composed function ¢(g[u]) it holds

#glul) = w .

PrOOF. Let {D;}, g; be as in Lemma 3.2. Then by Lemma 3.2 we
get for 1 < p <

(=) 16(9;(m)) — wll, < C'? || $°9,(2) — 2|l

=C" |[gog; — d°9|larw) -
By Corollary 1.2 ¢og; converges to ¢og in H?(U). Hence by () ¢(g;(u))
converges to « in H” and boundedly. On the other hand, since g;(u) —
g[u] in H®, g;(u) — g[u] a.e. by taking a subsequence if necessary. Hence

#(9;(w)) converges to ¢(g[u]) a.e.. Therefore we have ¢(g[u]) = u. That
proves the lemma.

Now noting that (IA))c is connected and D is a component of (]A))0 for
a Carathéodory domain D, we are in the position to state the following
theorem.

THEOREM 3.1. Let D be a Carathéodory domain and an a€ D be
fizxed. Let ¢ be the conformal mapping of U onto D satisfying ¢(0) = a
and ¢'(0) > 0 and g its inverse conformal mapping of D onto U. Further
let E be a set defined in Lemma 1.2 for ¢. Then if we H is mot con-

stant, m{z: u(x)e D} =1 and b = S udm € D, we have
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(i) m{xz:u(x)e DU (E)} = 1.
(ii) For every m, (the harmonic measure with respect to a)-measur-
able set G on 0D it holds

miz: w(z) € G) < galgl—(;-‘__gg’()_bl;_lzdm,,(z) < %ma(G) :

In particular, if m{x: u(x) € 0D} = 1, it holds

. _{ 1—-190 -1 1—-[g®
miz: (@) € G} = Sc 0@ — o) P = 5 Sg(an«ﬁ(E)) T = gy F
and

1— 9] i 1+ 9]
T ]g(b)lm“(G) = m{z: u(®) e G} =< 1 lg(meu(G) .

(iii) The composed function g(u) ts well-defined and coincides with
the function glu] in Lemma 3.3, and hence lies in H.

(iv) If h is another conformal mapping of D onto U, h is extend-
able to DU ¢(E) in the semse of Lemma 1.2 and the composed function

h(u) also lies in H and it holds h(w) = h o ¢(g(w)) and Sh(u)dm = h(S udm).
We remark first that g(u) is independent of the choice of set E.
Proor. Since L(T\E) = 0, we have by Lemma 2.2

mix: glulx)e UUE}=1.

Since ¢(g[u]) = v by Lemma 3.4, we get thus

mix: u@)e DU g(E)} = 1.

Now for any harmonically measurable set G 9D we have
mix: u(x) € G} = m{x: u(x) € G N ¢(E)} = m{x: g[u](x) € 9(G N 4(F))} .

Hence by Lemma 2.2 we have setting F = g(G N 4(E))

. 1 1—1g() 1+ |g()]
mie: u) e G} < —— SF s < TELIGLL

In particular, if m{x: u(x) € 0D} = 1, we have

w061 = 2, Ao

Since the function (1 — | g(d) |)/| 9(z) — g(b) |* is a bounded Borel function
on ¢(E), we have by Lemma 1.2 (v)

L { 1=1OF g5 - 1= 19O P gy = | L= 1a®F 4
2r SF [e“’ - g(b) |2 o SGM‘(E) ] g(z) — g(b) Iz m“(z) SG I g(z) __"g'——(b) Iz ma(z)
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for a Borel set G and hence for any measurable set G. We have also

m(G) = m(G N §(B)) = |

GNg(E)

dm,(z) = ?17{ SF a6 = L(F) .

Next by (ii) the composed function gowu is defined almost everywhere,
and it holds m{x: g(u(x)) e EUU} =1. By Lemmas 1.2 (i) and 3.4 we
have 9(g[u]) = ¢(g(w)). Since ¢ is one to one on E U U, we have g[u] =
g(u) a.e.. The proof of (iv) is clear from the remark to Lemma 1.2. This
establishes the theorem.

Now we can sharpen Lemma 3.2.

THEOREM 3.2. Let D be a Carathéodory domain. Then if ue H
with m{x: w(x) € D} = 1 is mon-constant and | udm e D, and if fe A(D),
the composed function f(u) is in H and it holds § Sfw)dm = f(S udm).

Further if we fix a point a€D and g is a conformal mapping of D
onto U satisfying g(a) = 0, then we have for any 0 < p < o

11l = (LY 7,

PrOOF. We suppose first g'(a) > 0. Let S udm = b. Then by Theorem

3.1 we have f(u(x)) = fog ' (9(u(x))) a.e.. Since g(u)e H, |g(u)| <1 and
fogte H*(U), we have by Theorem 2.3 f(u)e H and for 0 < »p <

1+ [g®]\"” -1
< (=T 1909)] o
176l = (F501) 17207 vy
which gives the desired inequality for this special g, since || fo g™ |luzrwr =
USflzppye Now if g, is a conformal mapping of D onto U satisfying
g.(a) = 0, then we have g, = ¢’*g for some real @ and hence we have
the desired inequality. This completes the proof.

From this theorem one can easily deduce that the spectrum of w is
contained in D. But on the consequences of this type we shall discuss
in the next section. Another consequence is the following.

THEOREM 3.3. Let 0 < p < . Let D be a Carathéodory domain
and an a€D be fired. Let g be the conformal mapping of D onto U
satisfying g(a) = 0 and g'(a) > 0. Further suppose u € H is non-constant,
m{z:u(x)e D} =1 and b = §udme D. Define T as a linear mapping

Jfrom HP(D) into H® by: ©(f) = fo97(9(w)). Then T is a bounded linear
operator from HT(D) into H®, more precisely we have
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126 s = (320 1l -

If in particular p = o, this s an algebraic homomorphism from H*(D)
nto H.

The proof is clear.

3. Spectrum and operating functions. In this paragraph we shall
investigate the spectrum of a w € H and then give an anologous result
on operating functions to the case of group algebras. In our case,
however, if K is compact in C, K° = @ and K° is connected, and if we H
satisfies m{x: u(x) € K} = 1, then u is necessarily constant by Corollary 1
in [19]. Hence we consider the case when the domain of an operating
function is open or a compact set with non-empty interior.

4. On the spectrum of a non-constant v € H we have the following
result by combining Theorem A in [19] and Theorem 3.2.

THEOREM 4.1. Let we H be non-constant. Then there is a unique
Carathéodory domain A such that m{x: w(x)e A} =1, Sudme A, and for
any €>0 and acdA it holds mix: Ju@) — a| < e} > 0. Further the
spectrum o(u) of u is contained in A and every point of 0A belongs to
a(u).

PROOF The first assertion is a version of Theorem A. It holds
further 3A = 0A, since A is a Carathéodory domain. Hence we get
(A)°\A A\A Let a € C\A. Then the function (z — @)™* is holomorphic
on a neighborhood of A. Hence by Theorem 3.2 we obtain (v — a)™ ¢ H.
This means that @ is a point of the resolvent, and hence it follows
o(w)c A. The last assertion follows from the first one. This establishes
the theorem.

In the same way we can show the following

COROLLARY 4.1. Let D be a Carathéodory domain and we H with
m{x: w(x)e D} = 1. Then if Sudmeﬁ, the spectrum of u ts contained

wm D.

The case Sudme D and w is non-constant is clear from the proof of

the above theorem. In the other case u must be constant by Lemma 1
of [19], and the assertion is obvious.

REMARK 4.1. From the assumption m{x:u(xr)e D} =1 we can con-
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clude only that the spectrum is contained in D. In the above corollary
the condition Sudmeﬁ is not superfluous. For instance, let D be the

cornucopia, which is a ribbon winding the outside of the unit circle and
accumulating on that circle. Then D is a Carathéodory domain. Let H
be H*(T) and wu(z) the identity function. Then L{u(¢*’)e D} =1 and

SudL — w(0) = 0, and that o) = {|z| < 1}.

Next we give a definition.

DEFINITION 4.1. Let I% = IM(H) be the maximal ideal space of H.
Let D be a set in the complex plane and f(z) an everywhere defined
function on D. f(z) is said to operate on H (with respect to D) if for
every we€ H with m{z: u(x)e D} =1 the composed funection f(u) belongs
to H and O(f(w)) = f(@(w)) for any @M. We say that f(z) operates
conditionally on H (with respect to D) if for every w e H with m{x: u(x) €

D} =1 and gudmeD the composed function f(u) belongs to H and
O(f(w)) = f(@(u)) for any @ e IN.
We are now able to state another consequence of Theorem 3.2.
COROLLARY 4.2. Let D be a Carathéodory domain. Then every
f(z) € A(D) operates conditionally on H.

PrOOF. Sinpe Dis a Carathéodory domain, D, = (l%)e is simply con-
nected, and P(D) = R(D) is a Dirichlet algebra, and so R(D) is also a
Dirichlet algebra on 4D, since R(D)DR(ﬁ) |3. Hence we have R(D) = A(D).
Now let @ € M, f(2) € A(D) and u € H with m{x: u(x) € D} =1 and S udm € D.

Then there is a sequence of rational functions {f.(z)} with poles off D
converging to f(z) uniformly on D. For every rational function A(z) with
poles off D we have by a well-known theorem h(u)e H and ®(h(u)) =
h(®(w)), since the spectrum of u is contained in D by Corollary 4.1.
Again by Theorem 3.2 we get f(u)e H. Therefore we have

0(fw) = lim 0(f,(w)) = lim £,(0)) = FOW)) -

If w is constant, then we have trivially f(u)e H and @(f(u)) = f(P(u)).
If % is not constant, we have SudmeD by Lemma 1 in [19]. Hence the
proof is completed.

We shall next state a similar result to the above as a lemma which
we shall use later.
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LEMMA 4.1. Let K be a compact set in the complex plane whose
complement is connected and whose interior K° is mon-empty. Let D be
a component of K°. If f(z) is bounded and holomorphic in D, then it

holds f(u) € H and g flu)dm= f(g udm> for all we H with miz: w(x) € D)=1.

ProoF. Let we H with m{x: u(x) e D} = 1. Then by Lemma 2 of our
former work [19] we have Sudme D. Now by Farrell-Rubel-Shields
theorem (Gamelin [3, p. 154]) there exists a sequence of polynomials

{P.(2)} such that P,(z) — f(z) for all ze D and | P,(2)| < sup.p | f({)| for
all ze D. Since clearly P,(u) € H and H is weak* closed, we have f(u)c H

and also S f(u)dm.= f(S udm). This completes the proof.

When D is a bounded simply connected domain, the boundedness of
an operating function will be shown.

LEMMA 4.2. Suppose H== C. Let D be a bounded simply connected
domain. Then if f(z) is holomorphic on D and f(w)e H for all we H

with m{x:u(x) € D} = 1 and S udm € D, it follows that f(z) is bounded on D.

ProoF. Combining Theorem 8.3 and Theorem 4.1, for _every
Carathéodory domain G there exists a € H such that m{x: u(x) e G} = 1,

SudmeG, and for any € > 0 and any a €dG it holds m{x: |u(®) — a| <
€} > 0. Now let g be a conformal mapping of U onto D. We assume
that the conclusion is false, i.e., f(2) is unbounded. Then fog(z) is also
unbounded in U. Hence there is a point ac€dU and a Jordan curve
J = J, + J, such that J, J, are Jordan arcs with common endpoint ¢ and
(*) lim sup | o g(2) | = oo .

zed;

Let G be the Jordan domain bounded by J and % a corresponding we H
pointed out above. Since g is bounded and holomorphic on U, g(u) is in H

by Lemma 4.1 and further m{x: g(u(x)) € D}=1 and S g(uw)dm= g(Sudm) e D.
Hence we have f(g(u))e H by the assumption. On the other hand, by

the third property of # and () the function f(g(u)) is not bounded,
which contradicts f(g(w)) e H. That proves the lemma.

When there exists a non-constant we€ H with |u4| =1 we can show
a converse of Lemma 4.1.

THEOREM 4.2. Let D be an open set in the complex plane, f(z) an
everywhere defined locally integrable function on D and suppose there



BOUNDED FUNCTIONS IN THE ABSTRACT HARDY SPACE 531

exists a non-constant w € H with |u| = 1. Then, if f(v)€ H for allve H
with m{z:v(x)e D} =1 and S'vdmeD, it follows that f(z) is Lebesgue-
almost everywhere equal to a function holomorphic on D.

PrOOF. Considering the function (u — Sudm) / (1 — U S iidm), we may
assume S udm = 0. Hence by Lemma 2.2 we have for any Lebesgue

measurable set E on the circle T (1) m{x: w(x)e E} = L(F). By assump-
tion f(2) is locally integrable. Now let @ be a rectangle with its sides
parallel to the axes such that its closure lies in D and

[, 17 [1d2] < = .

Further let g be a conformal mapping of U onto @. Then, since 0Q is
a rectifiable curve, we have ¢’(z)e H'(U) and hence by Theorem 2.3
9'(w) e H'. Next we have the following equality.

[ 7@z = | otongardw = i | oo eean
Combining this with (1) we obtain further
Swf (2)dz = 2mi Sf(g(u))g'(u)udm = 2mi S Flgw))g’ (w)dm S wdm =0,

since g(u) € H, ¢'(w) € H' and hence by assumption f(g(x)) € H. Hence by
a generalization of Morera’s theorem (Royden [12]), f(2) is almost every-
where equal to a function holomorphic in D. That proves the theorem.

The next corollary is then trivial.

COROLLARY 4.3. Let D be an open set in the complex plane, f(z) a
continuous function on D and suppose there exists a non-constant wec H
with |u| = 1. Then, if f(v)€ H for all ve H with m{x: v(x) € D} = 1 and

SvdmeD, it follows that f(z) is holomorphic on D.

Under the following additional assumption on f the local bounded-
ness of f follows and one can show the continuity of f.

COROLLARY 4.4. Let D be an open set in the complex plane, f(z) an
everywhere defined measurable function on D and suppose there exists
a non-constant w€ H with |u| = 1. Then, tf f(v)e H and S J(wydm =
f(S 'vdm) for all ve H with m{x: v(x)e D} =1 and Svdme D, it follows

that f(z) is holomorphic on D.
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ProoF. We may assume S udm = 0. We have only to show that f(z)

is continuous on D. Now fix a point z,€ D arbitrarily and let 2R be the
supremum of radii » such that the discs C(z,; ) with radii » and centers
2, are contained in D. For every ac U we set u, = (u + a)/(1 + aw).
Then by Lemma 2.2 we get for every Lebesgue measurable set E on the
unit circle

. 1—la] . 1+ |al
(*) 1+lGblL(E)ém{oc-ua(oc)el‘i’}é1_|GLIL(E),

since u,€ H, |u,]=1 and Suadm = a. Since mix:z, + Ru,(x) € D} =
mix: |u,(x)] =1} =1 and S (2o + Ru,)dm = z, + Rac D, we have by as-
sumption f(z, + Ru,) € H and

gf(z0 + Ru,)dm = f(g(z0 + Ru,,)dm) = f(z, + Ra) .

Hence we have
[f(z, + Ra)| = || f(z, + Ru,) |l -

By (x) we see that || f(z, + Ru.)|l. = || f(z, + Ru)||l.. Hence f(z) is bounded
on C(z,; R). Since f is measurable on D, f is integrable on C(z,; R), and
so by Fubini’s theorem f(z, + re¢¥’) is df-integrable for almost all 0 < r < R.
For such r we have as in the proof of Theorem 4.2

EJ‘;'Z_’ Szx f(z, + re?)do = Sf (20 + ru(@))dm(x) = f (S (=0 + 'ru)dm) = f(z) .

By integrating this equality with respect to rdr we have

flzo) = L

Ts?

S f(z, + re®yrdrdd
C(zp:8)
for all 0 < s < R. The continuity of f then follows immediately from
this expression. This completes the proof.
Combining Corollary 4.2 with Corollary 4.3 we have

THEOREM 4.3. Suppose there exists a non-constant w € H with |u|= 1.
L_et D be a Carathéodory domain. Then a continuwous function f(z) on
D operates conditionally on H if and only if f(z) is holomorphic on D.

Combining Lemma 4.1 with Lemma 4.2 and Corollary 4.4 we have

THEOREM 4.4. Suppose there exists a non-constant w € H with |u|=1.
Let D be a Carathéodory domain. Then an everywhere defined measurable
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Junction f(z) on D satisfies f(v) € H and S fydm = f <§ vdm) for all ve H
with m{x: v(x)€ D} = 1 and Svdme D, if and only if f(z) is bounded and
holomorphic on D.
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