TRANSVERSALITY THEOREM FOR HOMOLOGY MANIFOLDS AND REPRESENTATION OF HOMOLOGY CLASSES OF HOMOLOGY MANIFOLDS

AKINORI MATSUI

(Received July 2, 1974)

1. Introduction. Martin showed the transversality theorem for homology manifolds. ([4])

THEOREM. ([4]) Let M^m , $N^n \subset P^p$ be properly contained homology manifolds, where M is PL. Suppose that $\partial N \perp F/L$ for a normal bundle F over a cell subdivision L of ∂M . Then, if $r \geq 2m + 1$, we can make $N \times I^r$ transverse to M in $P \times I^r$, such that making transverse is relative to ∂M in that $\partial N \times I^r \perp F \bigoplus \theta^r$.

In this theorem, he assumes that one submanifold M is a *PL*-manifold. We will show an improvement of this.

THEOREM. Let M^m , $N^n \subset P$ be properly contained homology manifolds. Suppose that $\partial N \perp F/L$ for a normal bundle F over a cell subdivision L of ∂M . Then, if $r \geq 2m + 1$, we can make $N \times I^r$ transverse to M in $P \times I^r$ such that the making transverse is relative to ∂M in that $\partial N \times I^r \perp F \bigoplus \theta^r$.

In Section 3, we will apply this for representation of homology classes. Similar results have been obtained by Adachi. ([3])

2. Transversality theorem. An ND(r)-space is a polyhedron X such that Link (σ^k , X), for every $k \leq r$, is (r - k - 2)-connected. X is an ND(r)-manifold if X is a homology manifold and an ND(r)-space, and if ∂X is an ND(r - 1)-space.

If $f: X \to Y$ is a non-degenerated map, $S_2(f)$ is the closure of the set of points, $x \in X$, such that $f^{-1}(f(x))$ contains more than one. Then we have the next proposition.

PROPOSITION. (See [4], [8]) Let Y be an ND(r)-space, let $X \subset P^p$ be polyhedra with $p \leq r$ and let $f: P \to Y$ be a map such that $f \mid X$ is non-degenerated with dim $(S_2(f \mid x)) \leq 2p - r$. Then there exists an arbitrary close non-degenerated apploximation g to f such that $g \mid X = f \mid X$ and dim $(S_2 \mid g) \leq 2p - r$.

If M is a closed homology *n*-manifold, and if $H_*(M; Z) \cong H_*(S^*; Z)$, we call M a homological homology *n*-sphere. A homological homology *n*-disk is an orientable homology *n*-manifold M with boundary, such that $\widetilde{H}_*(M; Z) = 0$. An ND(r)-manifold M is called an ND(r)-homology sphere or disk if M is a homological homology sphere or disk.

We call a cone of homological homology sphere $v \cdot M$ a homology cell. A simplicial complex K is called a homology cell complex if it is a union of homology cells, such that:

(1) each simplex is the interior of exactly one cell;

(2) if $a \cdot M$ is a cell, then $a \cdot (\partial M)$ and M are union of cells;

(3) there exists a total ordering of the vertices of K such that if $a \cdot M$ is a cell and $b \in M$ then b < a.

Let K be a homology cell complex. A polyhedron E is called a space over K if E is the union of compact polyhedra E(C), for each cell C of K, such that:

(1) if $C \subset D$ are cells of K, then E(C) is a PL-subspace of E(D);

(2) for cells C, D in K, $E(C) \cap E(D) = \bigcup E(B)$, where B run over all cells in $C \cap D$.

DEFINITION. (See [5]) A space E over K is an S^n -homology or homotopy cobordism bundle, if

(1) for m-cell C in K, E(C) is an (m + n)-homology manifold with boundary $E(\partial C)$, where $E(\partial C) = \bigcup E(D)$, for all $D \subset C$, $D \neq C$;

(2) for each cell C, there is a space G over K such that G(C) is an H-cobordism or h-cobordism between E(C) and $C \times S^{n}$.

Similarly, we define a D^{n} -homology or homotopy bundle over K,

(1) for m-cell of K, E(C) is an (m + n)-manifold, whose boundary contains $E(\partial C)$ as a submanifold of codimension 0;

(2) there is a space G over K such that, for each m-cell C of K, G(K) is an H-cobordism or h-cobordism of triads between $(E(C); E(\partial C), \overline{E}(C))$ and $(C \times D^n, \partial C \times D^n, C \times S^{n-1})$ where $\overline{E}(B) = \text{cl.}(\partial E(B) - E(\partial B))$.

We can define an oriented bundle too.

Let BHML(k) be the classifying space of D^k -homology bundles and BSHML(k) be a classifying space of oriented D^k -homology bundles. EHML(k) is the total space of the universal bundle $\gamma(k)$ over BHML(k) and ESHML(k) is the total space of the universal bundle over BSHML(k). Maunder proved the next theorem. ([6])

THEOREM. Let M be a homology m-manifold. Then there exist a homology m-manifold N, which is an ND(m-3)-space and has $\partial M = \partial N$, and a homotopy resolution $f: N \rightarrow M$ such that $f \mid \partial N$ is the

identity.

We prove the next lemma from this theorem.

LEMMA. Let E^k and E'^k be S^k -homology or homotopy bundle over a homology manifold M^m and G be an isomorphism between E and E'. If $E^k(\sigma^i)$ and $E''^k(\sigma^i)$ are ND(r - m + i)-manifolds for all $i \leq m$ where $r \leq m + k - 2$, there exists an isomorphism G' between E and E' such that $G'(\sigma^i)$ is an ND(r - m + i + 1)-manifold for all $i \leq m$.

This lemma is induced by next lemmas.

LEMMA_(j) $(j = 0, \dots, m)$. Let E^k and E'^k be S^k -homology or homotopy bundles over a homology manifold M^m and let G be an isomorphism between E and E'. If $E^k(\sigma^i)$ and $E'^k(\sigma^i)$ are ND(r - m + i)-manifolds for all $i \leq j$ where $r \leq m + k - 2$ and $j \leq m$, there exists an isomorphism G_j between E and E' such that $G_j(\sigma^i)$ is an ND(r - m + i + 1)-manifold for all $i \leq j$ and there exists a space J_j over M such that $G_j(\sigma^i) \subset J_j(\sigma^i)$ is homotopy equivalent and the next conditions are satisfied;

1)
$$E(\alpha) \cap J_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} E(\tau)$$

 $E'(\alpha) \cap J_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} E'(\tau)$
2) $G(\alpha) \cap G_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} (E(\tau) \cup E'(\tau))$
3) $G(\alpha) \cap J_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} G(\tau)$
4) $G_{j}(\alpha) \cap J_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} G_{j}(\tau)$
5) $G_{j}(\alpha) \cap G_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} G_{j}(\tau)$
6) $J_{j}(\alpha) \cap J_{j}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} J_{j}(\tau).$

We will prove the lemma $_{(0)}$ by the induction. We divide the proof into two step.

1-st step. $G(\sigma^0)$ is k-dimensional homology manifold with boundary $E(\sigma^0) \cup E'(\sigma^0)$ which is an ND(r-m)-manifold. By Maunder's theorem and $r-m \leq k-2$, there exists a homotopy resolution

$$f: G'_0(\sigma^0) \to G(\sigma^0)$$

such that $G'_0(\sigma^0)$ is ND(r-m+1)-manifold and the restriction of f to the boundary is an identity map. We define $J_0(\sigma^0)$ by the mapping cylinder of f. We put

$$G_{\scriptscriptstyle 0}(\sigma^{\scriptscriptstyle 0}) = \partial J_{\scriptscriptstyle 0}(\sigma^{\scriptscriptstyle 0}) - ext{Int.} \ G(\sigma^{\scriptscriptstyle 0})$$
 .

 G_0 is an isomorphism between E and E' over a 0-skelton M^0 of Mand J_0 is a space over M^0 such that $G_0(\sigma^0) \subset J_0(\sigma^0)$ is homotopy equivalent for $\sigma \in M^{\circ}$. For any cells $\alpha \in M$ and β , $\gamma \in M^{\circ}$, the next conditions are satisfied,

 $1) \quad E(\alpha) \cap J_{0}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} E(\tau);$ $E'(\alpha) \cap J_{0}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} E'(\tau);$ $2) \quad G(\alpha) \cap G_{0}(\beta) = \bigcup_{\tau \in \alpha \cap \beta} (E(\tau) \cup E'(\tau));$ $3) \quad G(\alpha) \cap J_{0}(\beta) = \bigcup_{\tau \in \beta \cap \gamma} G(\tau);$ $4) \quad G_{0}(\beta) \cap J_{0}(\gamma) = \bigcup_{\tau \in \beta \cap \gamma} G_{0}(\tau);$ $5) \quad G_{0}(\beta) \cap G_{0}(\gamma) = \bigcup_{\tau \in \beta \cap \gamma} G_{0}(\tau);$ $6) \quad J_{0}(\beta) \cap J_{0}(\gamma) = \bigcup_{\tau \in \beta \cap \gamma} J_{0}(\tau).$

2-nd step. We assume G_0 is an isomorphism between E and E' over s-skelton M^s of M and J_0 is a space over M^s such that $G_0(\sigma) \subset J_0(\sigma)$ is homotopy equivalent for any $\sigma \in M^s$. And we assume that next conditions are satisfied for any cells $\alpha \in M$ and β , $\gamma \in M^s$,

1)
$$E(\alpha) \cap J_0(\beta) = \bigcup_{\tau \in \alpha \cap \beta} E(\tau);$$

 $E'(\alpha) \cap J_0(\beta) = \bigcup_{\tau \in \alpha \cap \beta} E'(\tau);$
2) $G(\alpha) \cap G_0(\beta) = \bigcup_{\tau \in \alpha \cap \beta} (E(\tau) \cup E'(\tau));$
3) $G(\alpha) \cap J_0(\beta) = \bigcup_{\tau \in \alpha \cap \beta} G(\tau);$
4) $G_0(\beta) \cap J_0(\gamma) = \bigcup_{\tau \in \beta \cap \gamma} G_0(\tau);$
5) $G_0(\beta) \cap G_0(\gamma) = \bigcup_{\tau \in \beta \cap \gamma} G_0(\tau);$
6) $J_0(\beta) \cap J_0(\gamma) = \bigcup_{\tau \in \beta \cap \gamma} J_0(\tau).$
We put $J_0(C) = \bigcup_{\sigma \in C} J_0(\sigma)$ and $G_0(C) = \bigcup_{\sigma \in C} G_0(\sigma)$ for $(s + 1)$ -cell $v \cdot C$.
We define
 $J_0(v \cdot C) = (G(v \cdot C) \bigcup_{G(C)} J_0(C)) \times I$
 $= \bigcup_{\sigma \in C} (G_0(C) \cup E(v \cdot C) \cup E'(v \cdot C)) \times I$
 $= \bigcup_{\sigma \in C} (G_0(C) \times \{1\} \cup G(v \cdot C) \times \{1\} \subset J_0(v \cdot C)$.

We identify $J_0(C)$ to $J_0(C) \times \{0\}$ and we put $J_0(\sigma) \cap J_0(\delta) = \bigcup_{\tau \in \sigma \cap \delta} J_0(\tau)$ for any (s + 1)-cells σ and δ .

Let α , $u \cdot C$, $v \cdot D$ be cells. 1) If dim $u \cdot C = s + 1$, we have $E(\alpha) \cap J_0(u \cdot C) = E(\alpha) \times \{0\} \cap (G(u \cdot C) \cup J_0(C)) \times I$ $= (E(\alpha) \cap (G(u \cdot C) \cup J_0(C))) \times \{0\}$ $= \bigcup_{\tau \in \alpha \cap u \cdot C} E(\tau) \bigcup_{\tau \in \alpha \cap C} E(\tau) = \bigcup_{\tau \in \alpha \cap u \cdot C} E(\tau)$.

Similarly we have

$$E'(\alpha) \cap J_0(u \cdot C) = \bigcup_{\tau \in \alpha \cap u \cdot C} E'(\alpha)$$
.

2) If dim
$$u \cdot C = s + 1$$
, we have

$$G(\alpha) \cap G_0(u \cdot C) = G(\alpha) \times \{0\} \cap \{(G_0(C) \cup E(u \cdot C) \cup E'(u \cdot C)) \times I \cup J_0(C) \times \{1\} \cup G(u \cdot C) \times \{1\}\}$$

$$= \{G(\alpha) \cap (G_0(C) \cup E(u \cdot C) \cup E'(u \cdot C))\} \times \{0\}$$

$$= \bigcup_{\tau \in \alpha \cap C} E(\tau) \bigcup_{\tau \in \alpha \cap C} E'(\tau) \bigcup_{\tau \in \alpha \cap u \cdot C} (E(\tau) \cup E'(\tau))$$

$$= \bigcup_{\tau \in \alpha \cap u \cdot C} (E(\tau) \cup E'(\tau)) .$$

3) If dim $u \cdot C = s + 1$, we have

$$G(\alpha) \cap J_0(u \cdot C) = G(\alpha) \times \{0\} \cap (G(u \cdot C) \cup J_0(C)) \times I$$

= $\{G(\alpha) \cap (G(u \cdot C) \cup J_0(C))\} \times \{0\}$
= $\bigcup_{\tau \in \alpha \cap u \cdot C} G(\tau) \bigcup_{\tau \in \alpha \cap C} G(\tau)$
= $\bigcup_{\tau \in \alpha \cap u \cdot C} G(\tau)$.

4) If dim
$$u \cdot C = s + 1$$
 and dim $v \cdot D \leq s$, we have
 $G_0(u \cdot C) \cap J_0(v \cdot D)$
 $= ((G_0(C) \cup E(u \cdot C) \cup E'(u \cdot C)) \times I \cup J_0(C) \times \{1\} \cup G(v \cdot C) \times \{1\})$
 $\cap J_0(v \cdot D) \times \{0\}$
 $= \{(G_0(C) \cup E(u \cdot C) \cup E'(u \cdot C)) \cup J_0(v \cdot D)\} \times \{0\}$
 $= \bigcup_{\tau \in u \cdot C \cap v \cdot D} G_0(\tau) \bigcup_{\tau \in u \cdot C \cap v \cdot D} (E(\tau) \cup E'(\tau))$
 $= \bigcup_{\tau \in u \cdot C \cap v \cdot D} G_0(\tau) .$

If dim $u \cdot C \leq s$, dim $v \cdot C = s + 1$, we have

$$G_0(u \cdot C) \cap J_0(v \cdot D)$$

$$= G_0(u \cdot C) \times \{0\} \cap (G(v \cdot D) \cup J_0(D)) \times I$$

$$= \{G_0(u \cdot C) \cap (G(v \cdot D) \cup J_0(D))\} \times \{0\}$$

$$= \bigcup_{\tau \in u \cdot C \cap v \cdot D} (E(\tau) \cup E'(\tau)) \bigcup_{\tau \in u \cdot C \cap D} G(\tau) = \bigcup_{\tau \in u \cdot C \cap v \cdot D} G(\tau) .$$

If dim $u \cdot C = \dim v \cdot D = s + 1$, we have

$$G_0(u \cdot C) \cap J_0(v \cdot D) = G_0(u \cdot C) \cap J_0(u \cdot C) \cap J_0(v \cdot D)$$

= $G_0(u \cdot C) \cap \bigcup_{\tau \in u \cdot C \cap v \cdot D} J_0(\tau)$
= $\bigcup_{\tau \in u \cdot C \cap v \cdot D} G_0(\tau)$.

5) If dim
$$u \cdot C \leq s$$
 and dim $v \cdot D = s + 1$, we have
 $G_0(u \cdot C) \cap G_0(v \cdot D) = G_0(u \cdot C) \cap J_0(u \cdot C) \cap G_0(v \cdot D)$
 $= G_0(u \cdot C) \cap \left(\bigcup_{\tau \in u \cdot C \cap v \cdot D} G_0(\tau)\right)$
 $= \bigcup_{\tau \in u \cdot C \cap v \cdot D} G_0(\tau) .$

If dim
$$u \cdot C = \dim v \cdot D = s + 1$$
, we have

$$\begin{aligned} G_0(u \cdot C) \cap G_0(v \cdot D) &= J_0(u \cdot C) \cap G_0(u \cdot C) \cap J_0(v \cdot D) \cap G_0(v \cdot D) \\ &= (G_0(u \cdot C) \cap J_0(v \cdot D)) \cap (G_0(v \cdot D) \cap J_0(u \cdot C)) \\ &= \left(\bigcup_{\tau \in u \cdot O \cap v \cdot D} G_0(\tau) \right) \cap \left(\bigcup_{\tau \in u \cdot O \cap v \cdot D} G_0(\tau) \right) \\ &= \bigcup_{\tau \in u \cdot O \cap v \cdot D} G_0(\tau) \ . \end{aligned}$$

6) If dim
$$u \cdot C \leq s$$
 and dim $v \cdot D = s + 1$, we have

$$J_0(u \cdot C) \cap J_0(v \cdot D) = J_0(u \cdot C) \times \{0\} \cap (G(v \cdot D) \cup J_0(D)) \times I$$

$$= (J_0(u \cdot C) \cap (G(v \cdot D) \cup J_0(D))) \times \{0\}$$

$$= \bigcup_{\tau \in u \cdot C \cap v \cdot D} G(\tau) \bigcup_{\tau \in u \cdot C \cap D} J_0(\tau)$$

$$= \bigcup_{\tau \in u \cdot C \cap v \cdot D} J_0(\tau) .$$

We have homology or homotopy equivalent maps

$$egin{aligned} E(v \cdot C) &= E(v \cdot C) imes \{0\} \ &\subset E(v \cdot C) imes \{0\} \cup G_0(C) imes \{0\} \ &\subset (E(v \cdot C) \cup G_0(C)) imes I \ &\subset (E(v \cdot C) \cup G_0(C)) imes I \cup J_0(C) imes \{1\} \ &\subset (E(v \cdot C) \cup G_0(C)) imes I \cup J_0(C) imes \{1\} \cup G(v \cdot C) imes \{1\} \ &\subset (E(v \cdot C) \cup G_0(C) \cup E'(v \cdot C)) imes I \cup J_0(C) imes \{1\} \cup G(v \cdot C) imes \{1\} \ &= G_0(v \cdot C) \ . \end{aligned}$$

Then $E(v \cdot C) \subset G_0(v \cdot C)$ is homology or homotopy equivalent.

Similarly $E'(v \cdot C) \subset G_0(v \cdot C)$ is homology or homotopy equivalent. Then G_0 is extended to an isomorphism E and E' over M^{s+1} . We have homotopy equivalent maps

$$egin{aligned} G(v \cdot C) &= G(v \cdot C) imes \{0\} \ &\subset (G(v \cdot C) \cup J_0(C)) imes \{0\} \ &\subset (G(v \cdot C) \cup J_0(C)) imes I = J_0(v \cdot C) \;. \end{aligned}$$

Then $G(v \cdot C) \subset J_0(v \cdot C)$ is homotopy equivalent.

Similarly $G(v \cdot C) \times \{1\} \subset J_0(v \cdot C)$ is homotopy equivalent. We have homotopy equivalent maps

$$egin{aligned} G(v \cdot C) imes \{1\} \subset \{G(v \cdot C) \cup J_0(C)\} imes \{1\} \ &\subset (G(v \cdot C) \cup J_0(C)) imes \{1\} \cup (G_0(C) \cup E(v \cdot C) \cup E'(v \cdot C)) imes I \ &= G_0(v \cdot C) \;. \end{aligned}$$

We have $G(v \cdot C) \times \{1\} \subset G_0(v \cdot C) \subset J_0(v \cdot C)$. Then $G_0(v \cdot C) \subset J_0(v \cdot C)$ is homotopy equivalent. By the induction of s, we have an isomorphism $G_0 = \bigcup_{\alpha} G_0(\alpha)$ between E and E' and we have a space J_0 over M. Thus we have proved lemma₍₀₎.

We prove that $lemma_{(j)}$ implies $lemma_{(j+1)}$.

1-st step. We put $G_{j+1}(\sigma^i) = G_j(\sigma^i)$ and $J_{j+1}(\sigma^i) = J_j(\sigma^i)$ for $i \leq j$. $G_j(v \cdot C^j)$ is a homology manifold with boundary $E(v \cdot C^j) \cup E'(v \cdot C^j) \cup G_j(C^j)$ which is an ND(r - m + j + 1)-manifold. By Maunder's theorem and $r - m \leq k - 2$, there exists a homotopy resolution

$$f: G'_{j+1}(v \cdot C^j) \to G_j(v \cdot C^j)$$

such that $G'_{j+1}(v \cdot C^j)$ is an ND(r - m + j + 2)-manifold and the restriction of f to the boundary is an identity map. We define $J_{j+1}(v \cdot C^j)$ by the mapping cylinder of f. We put $G_{j+1}(v \cdot C^j) = \partial J_{j+1}(v \cdot C^j)$ - Int $G_j(v \cdot C^j)$. Similar conditions of the first step of lemma₍₀₎ are satisfied.

2-nd step. G_{j+1} and J_{j+1} are constructed by similar way of 2-nd step of lemma₍₀₎. Then lemma_(j+1) is induced. By the induction of j, we have an isomorphism $G_m = \bigcup_{\sigma} G_m(\sigma)$ between E and E' such that $G_m(\sigma^i)$ is an ND(r - m + i + 1)-manifold for $i \leq m$. Thus we have proved the lemma.

DEFINITION. (See [4].) Let P^p be a homology manifold and let M^m , and N^n be homology manifolds properly *PL*-embedded in P^p . Let *E* be a normal homology bundle for *M* in *P* over a homology cell subdivision *K* of *M* such that $E(\partial M) = E \cap \partial P$. Then we say that *N* is block transverse to the bundle E/K if $M \cap N$ is a cell subcomplex of *K* and $N \cap E =$ $E(M \cap N)$. We write $N \perp E/K$.

DEFINITION. (See [4].) Let M and N be proper homology submanifolds of P. We say that we can make N transverse to M if there exists a triple of h-cobordism (W; $M \times I$, V) between (P; M, N) and (P'; M, N'), where M and N' are proper homology submanifolds of a homology manifold P', $N' \perp E/K$ for some normal bundle E of M in P' over a homology cell subdivision K of M, and $M \times I$ and V are proper submanifolds of W. If we already know that $\partial N \perp F/L$ for a normal bundle F of M in P over L ($|L| = \partial M$), we say that we can make N transverse A. MATSUI

to M relative to the boundary if $(W; M \times I, V)$ restricts to the product *h*-cobordism $(\partial P \times I; \partial M \times I, \partial N \times I)$ on the boundary and if we can choose K to extend L such that $E \mid L = F$. In this case we write

$$(W; M \times I, V)_{\mathrm{rel}\vartheta}: (P; M, L)_{(F,L)} \xrightarrow{t} (P'; M, N', E, K)$$
.

We have next propositions. We show that Proposition $1_{(p-1)}$ implies Proposition $2_{(p)}$ and that Proposition $2_{(p)}$ implies Proposition $1_{(p)}$ by a similar way to Martin. ([4])

PROPOSITION $1_{(p)}$. Let M^m and N^n be proper submanifolds of an ND(r)-manifold P^p , $p-m \ge r \ge 2m+1$, and $\partial N \perp F/L$ for a normal D^{p-m} -homotopy bundle F over ∂M in ∂P . Suppose that cl. $(\partial P - F)$ is as ND(r-1)-manifold. Then there exists

$$(W; M \times I, V)_{\text{rel}\vartheta}: (P; M, N)_{(F,L)} \xrightarrow{t} (P'; M, N'; E, K)$$

such that W is an ND(r + 1)-manifold, E is a D^{p-m} -homotopy bundle over K.

PROPOSITION $2_{(p)}$. Let Σ^p be a 1-connected ND(r)-homology sphere. Let Σ^m and Σ^n be homological homology spheres PL-embedded in Σ^p , with $p-m \geq r \geq 2m+3$. Suppose that $\Sigma^n \perp F/L$ for a normal homology bundle F over a homology cell subdivision L of Σ^m . Then Σ^p spans a 1-connected ND(r+1)-homology ball B^{p+1} which contains a homology ball D^{m+1} define by a cone of Σ^m and a contractible homology manifold C^{n+1} spanning Σ^n , both properly PL-embedded in B^{p+1} such that $C^{n+1} \perp E/K$ for a normal homotopy bundle E over a homology cell subdivision K of D^{m+1} extending L and with $E \mid L = F$.

Since $P^{p} \times I^{r}$ is ND(r+2)-manifold, and M^{m} and $N^{n} \times I^{r}$ are proper submanifolds of $P^{p} \times I^{r}$ with $r \geq 2m + 1$, Proposition 1 implies the next transversality theorem of homology manifolds.

THEOREM. Let M^m , $N^n \subset P^p$ be properly contained homology manifolds. Suppose that $\partial N \perp F/L$ for a normal bundle F over a cell subdivision L of ∂M . Then, if $r \geq 2m + 1$, we can make $N \times I^r$ transverse to M in $P \times I^r$ such that the making transverse is relative to ∂M in that $\partial N \times I^r \perp F + \theta^r$.

We now prove that Proposition $2_{(1)}, \dots, 2_{(p-1)}$ imply Proposition $1_{(p)}$. Let J be a simplicial complex such that |J| = P and let K be a subcomplex such that |K| = M. Let \overline{K} be a dual cell complex of K. Let E_0 be a normal bundle over K induced by the dual cell complex \overline{J} of J.

Then $\partial E_0(\sigma^i) \cap N = \emptyset$ or $\partial E_0(\sigma^i) \cap N$ is an (n - m + i - 1)-dimensional homological homology sphere. We have $\partial E_0(\sigma^0) \cap M = \emptyset$. We assume that (P; M, N) and $(P_k; M, N_k)$ are *h*-cobordant and E_k is normal bundle over M in P_k such that $\partial E_k(\sigma^i) \cap N_k = \emptyset$ or $\partial E_k(\sigma^i) \cap N$ is an (n - m + i - 1)-dimensional homological homology sphere for any $i \leq m$, and $E_k(\sigma^i \cap N_k) = E_k(\sigma^i) \cap N_k$ for $i \leq k$.

If $\sigma \neq E_k(\tau)$ for $\tau \in k$, then we define

 $W(\sigma) = \sigma \times I$, $P_{k+1}(\sigma) = \sigma \times \{1\}$, $N_{k+1}(\sigma \cap N_k) = (\sigma \cap N_k) \times \{1\}$ and $V(\sigma \cap N_k) = (\sigma \cap N_k) \times I$. We identify σ to $\sigma \times \{0\}$. If $\sigma \in K^k \cup \partial M$, we define

$$W(E_k(\sigma)) = E_k(\sigma) imes I$$
, $P_{k+1}(E_k(\sigma)) = E_k(\sigma) imes \{1\}$
 $N_{k+1}(\sigma \cap N_k) = (\sigma \cap N_k) imes \{1\}$ and $V(\sigma \cap N_k) = (\sigma \cap N_k) imes I$.

We identify σ to $\sigma \times \{0\}$. If $v \cdot C \in K^{k+1} - K^k$, there exists a contractible disk triple $(A; v \cdot C, \tau)$ with boundary $(\partial E_k(v \cdot C); C, D)$ where $D = \partial E_k(v \cdot C) \cap N_k$ and there exists a normal bundle E_{k+1} over $v \cdot C$ in A extending $E_k | C$ such that $E_{k+1}(v \cdot C) \cap \tau = E_{k+1}(v \cdot C \cap \tau)$, by Proposition $2_{(p-m-k-1)}$. We put

$$P_{k+1}(E(v \cdot C)) = A$$
, $N_{k+1}(E_k(v \cdot C) \cap N_k) = au$,
 $V(E_k(v \cdot C) \cap N) = ext{cone of } ((E_k(v \cdot C) \cap N_k) \cup V(\partial E_k(v \cdot C) \cap N) \cup au)$

and

$$W(E_k(v \cdot C)) = ext{cone of } (E_k(v \cdot C) \cup W(\partial E_k(v \cdot C)) \cup A)$$

Now suppose that we have $W(E_k(\sigma))$, $V(E_k(\sigma) \cap N_k)$, $P_{k+1}(E_k(\sigma))$ and $N_{k+1}(E_k(\sigma) \cap N_k)$ for each $\sigma \in K$ and dim $\sigma < t$ (t > k) such that $(W(E_k(\sigma)); \sigma \times I, V(E_k(\sigma) \cap N_k))$ is an *h*-cobordism $(E_k(\sigma); \sigma, E_k(\sigma) \cap N_k)$ and $(P_{k+1}(E_k(\sigma)); \sigma, N_{k+1}(E_k(\sigma) \cap N_k))$ and that for $\tau \in P_k$, $E_k(\sigma) \neq \tau$ we have $P_{k+1}(\tau)$ and $W(\tau)$. If dim $\sigma = t$ we define

$$egin{aligned} P_{k+1}(E_k(\sigma)) &= ext{cone of } P_{k+1}(\partial E_k(\sigma)) \ , \ &W(E_k(\sigma)) &= ext{cone of } (E_k(\sigma) \cup W(\partial E_k(\sigma)) \cup P_{k+1}(E_k(\sigma))) \ &N_{k+1}(E_k(\sigma) \cap N_k) &= ext{cone of } N_{k+1}(\partial E_k(\sigma) \cap N_k) \end{aligned}$$

and

$$V(E_k(\sigma)\cap N_k)= ext{cone of } ((E_k(\sigma)\cap N_k)\cup V(\partial E_k(\sigma)\cap N_k)\ \cup N_{k+1}(E_k(\sigma)\cap N_k)) \;.$$

By the induction of t we have an h-cobordism $(W; M \times I, V)$ between $(P_k; M, N_k)$ and $(P_{k+1}; M, N_{k+1})$ such that $E_{k+1}(\sigma^i \cap N_{k+1}) = E_{k+1}(\sigma^i) \cap N_{k+1}$ for $i \leq k+1$. By the induction of k, we can make N transverse to M in P.

A. MATSUI

Now we prove that Proposition $1_{(p-1)}$ implies Proposition $2_{(p)}$.

Let Σ^p be a 1-connected ND(r)-homology sphere. Let Σ^m and Σ^n be homological homology spheres embedded in Σ^p with $p - m \ge r \ge 2m + 3$. Σ^n is transverse to E/Σ^m which is normal bundle over Σ^m in Σ^p . By the lemma, there exists an ND(r + 1) - h-cobordism G between E and $\Sigma^m \times D^{p-m}$ which is a trivialization of E. We can properly embed $\Sigma^m \times [1, 2]$ in G such that $\Sigma^m \times \{1\}$ is embedded in E and $\Sigma^m \times \{2\}$ is embedded in $\Sigma^m \times D^{p-m}$. We have $\Sigma^p \times [0, 1] \bigcup_f G$, $f: E \subset \Sigma^p = \Sigma^p \times \{1\}$ and $\Sigma^n \times [0, 1] \bigcup_g G \mid (\Sigma^m \cap \Sigma^n)$, $g: E \mid (\Sigma^m \cap \Sigma^n) \to \Sigma^n \times \{1\}$. We put

$$ar{\Sigma}^n=\partial(arsigma^n imes$$
 $[0,\,1]igcup_{g}G\,|\,(arsigma^m\cap\,arsigma^n))-arsigma^n imes$ $\{0\}$,

and

$$ar{\Sigma}^{p}=\partial(arsigma^{p} imes$$
 [0, 1] $igcup_{f}G)-arsigma^{p} imes$ {0} .

We define the normal bundle of $\Sigma^m \times \{2\}$ in $\overline{\Sigma}^p$ by E'. Then $\overline{\Sigma}^n$ is transversal to $E'/\Sigma^m \times \{2\}$. We can embed $\Sigma^m \times [2, 3]$ in $\overline{\Sigma}^p$ such that $\overline{\Sigma}^n$ is transversal to $\Sigma^m \times [2, 3]$ in $\overline{\Sigma}^p$ and that $\Sigma^m \times \{3\}$ is embedded in $\partial E'$. We put $X = \overline{\Sigma}^p$ - Int E' and $Y = \overline{\Sigma}^n$ - Int E'. Since X is (p - m - 2)-connected and ND(r + 1)-manifold, a cone of $\Sigma^m \times \{3\}$ can be embedded in X. ∂Y is transversal to $\Sigma^m \times \{3\}$ in ∂X . By Proposition $1_{(p-1)}$, there exists an ND(r + 1) - h-cobordism (A; B, C) we can make transverse $\overline{\Sigma}^n$ to cone of $\Sigma^m \times \{3\}$ in ∂X by ND(r + 1) - h-cobordism (A; B, C). We have the triple $(\Sigma^p \times [0, 1] \bigcup_f G \cup A \cup$ cone of $\widetilde{\Sigma}^p; \Sigma^m \times [0, 3] \cup$ cone of $(\Sigma^m \times \{3\}), \Sigma^n \times [0, 1] \bigcup_g G \mid (\Sigma^m \cap \Sigma^n) \cup C \cup$ cone of $\widetilde{\Sigma}^n$ '), where

$$\widetilde{\Sigma}^{p}=\partial({\Sigma}^{p} imes [0,1]\cup G\cup A)-{\Sigma}^{p} imes \{0\}$$

and

$$\widetilde{\Sigma}^n = \partial(\varSigma^n imes [0,1] \cup G \,|\, (\varSigma^m \cap \varSigma^n) \cup C) - ar{\varSigma}^n imes \{0\}$$
 .

This is a disk triple required. Thus we have showen Proposition $2_{(p)}$.

3. Representation of homology classes.

DEFINITION. We say that s cohomology class $u \in H^k(M; Z_2)$ of a homology manifold M is HML-realizable if there exists an h-cobordism (W; M, M') and there exists a map $f: M' \to T(EHML(k))$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class U_k of the Thom complex T(EHML(k)). We say that a cohomology class $u \in H^k(M; Z)$ of an oriented homology manifolds M is SHML(k)realizable if there exists an h-cobordism (W; M, M') and there exists a maps $f: m \to T(ESHML(k))$ such that u is the image, for the homomor-

phism f^* induced by f, of the fundamental class U_k of the Thom complex T(ESHML(k)).

THEOREM. Let M be a closed homology manifold of dimension m.

a) In order that there may exist an H-cobordism (W; M, M') such that a homology class $z \in H_{m-k}(M, Z_2)$ k > 0, can be realized by a homology submanifold N^{m-k} which has a normal homology bundle in M', it is necessary and sufficient that the cohomology class $u \in H^k(M; Z_2)$, corresponding to z by Poincaré duality, is HML(k)-realizable.

b) Let M be oriented. In order that there may exist an H-cobordism (W; M, M') such that a homology class $z \in H_{m-k}(M; Z)$ k > 0, can be realized by an oriented homology submanifold N^{m-k} which has an orientable normal homology bundle in M', it is necessary and sufficient that the cohomology class $u \in H^{k}(M; Z)$, corresponding to z by Poincaré duality, is SHML(k)-realizable.

We will prove the case a) of the theorem. The case b) can be proved by the same way.

PROOF. i) Necessity. Suppose that there exists a homology submanifold N^{m-k} in M which represent z and has a normal homology bundle of dimension k. There exists a map $g: N \rightarrow BHML(k)$ such that $G: \cong g^*\gamma(k)$. We define W by $M \times I \bigcup_{E(\ell)} G$; such that (W; M, M') where $M' = \partial M - M$ and (V; N, N'), where $N = \partial V - N'$ are H-cobordisms. Then we have a map $f: M' \rightarrow T(EHML(k))$. And we have a following diagram.

and

$$H_{m-k}(E(g^{\sharp}(\gamma)); Z_2) \xrightarrow{p_3} H^k(E(g^{\sharp}(\gamma)), \partial E(g^{\sharp}(\gamma)); Z_2)$$

are isomorphisms by Poincaré duality.

$$H^{k}(M', M' - E(g^{\sharp}(\gamma)); Z_{2}) \xrightarrow{p} H^{k}(E(g^{\sharp}(\gamma)), \partial E(g^{\sharp}(\gamma)); Z_{2})$$

is an isomorphism by the excision theorem.

A. MATSUI

$$H_{m-k}(N'; Z_2) \xrightarrow{i_*} H_{m-k}(E(g^*(\gamma)); Z_2)$$

is an isomorphism induced by the inclusion maps.

$$H^{k}(T(BHML(k); \mathbb{Z}_{2}) \xrightarrow{t_{1}} H^{0}(BHML(k); \mathbb{Z}_{2})$$

and

$$H^{k}(M', M' - E(g^{*}(\gamma)); Z_{2}) \xrightarrow{t_{2}} H^{0}(N'; Z_{2})$$

are Thom isomorphisms.

 α is a generator of $H^{\circ}(BHML(k); Z_2)$ and β is a generator of $H^{\circ}(N'; Z_2)$ such that $\beta = g^*(\alpha), \ \beta = p_1([N'])$ and $U_k = t_1^{-1}(\alpha)$.

We have,

$$u = p_2 \circ i_*([N]) = p_2 \circ i_* \circ p_1^{-1}(eta) = p_2 \circ i_* \circ p_1^{-1} \circ g^*(lpha) \ = f^* \circ t_1^{-1}(lpha) = f^*(U_k) \;.$$

Then we have $f^*(U_k) = u$.

ii) Sufficiency. By the transversality theorem of homology manifolds, we have a homology submanifold N^{m-k} realizing the homology class z.

REFERENCES

- M. ADACHI, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J. (1967), 67-74.
- [2] M. ADACHI, Topological submanifolds and homology classes of a topological manifold, J. Math. Kyoto Univ. 12 (1972), 87-94.
- [3] M. ADACHI, Homology submanifolds and homology classes of a homology manifold, J. Math. Kyoto Univ. 13 (1972), 117-121.
- [4] M. MARTIN, Cobordism of homology manifolds, Proc. Camb. Phil. Soc. 71 (1972), 247-270.
- [5] M. MARTIN AND G. R. F. MAUNDER, Homology cobordism bundle, Topology 10 (1971), 93-110.
- [6] G. R. F. MAUNDER, Improving the general position properties of homology manifolds, Proc. London Math. Soc. 25 (1972), 689-700.
- [7] R. THOM, Quelques proprietes globales des varietes differentiables, Comment. Math. Helv. 28 (1954), 17-86.
- [8] J.R. STALLINGS, Lecture on polyhedral topology, Tata Institute of Fundamental Research, Bonbay (1968).

Mathematical Institute Tôhoku University Sendai, Japan