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PICARD PRINCIPLE AND RIEMANN THEOREM

MITSURU NAKAI

(Received March 20, 1975)

Consider the punctured unit Euclidean m-ball B:0 < |z| < 1(x = (a%,
«+o, ™), m = 2) and a harmonic function u(x) on B, ie. Au = 0(A =
0%0%/ox'0x) on B. The additional requirement that wu(x) has an upper
or lower bound implies that u(x) = ¢S(x) + h(x) where ¢ is a constant,
h(x) a harmonic function on |z| <1, and S(x) the fundamental sin-
gularity |z|* ™(m = 3) or —log |x|(m = 2). This classical result, the so
called principle of positive singularity, originally obtained by Picard
for m = 2, is reformulated by Bouligand under the name Picard principle
as follows: The dimension of the half module of nonnegative harmonic
functions on B with vanishing boundary values zero on |x| =1 is one.
As a result the Riemann theorem on removable singularities follows,
the weak form of which states that the boundedness of u(x) on B yields
the existence of lim,_,u(x). Conversely the Picard principle can be derived
from the Riemann theorem as the original proof of Picard on Picard
principle suggests, and therefore the Picard principle and the Riemann
theorem are equivalent in essence. The primary purpose of this paper
is to discuss this duality relation between the Picard principle and the
Riemann theorem if the base region B and the operator A are generalized
to C~-manifolds 2 and second order elliptic differential operators L.

Consider an m-dimensional separable connected orientable C~-manifold
M(m = 2). A regular subregion N of M is a relatively compact subregion
whose relative boundary 0N consists of a finite number of disjoint (m — 1)-
dimensional closed simple hypersurface of class C®. If in addition M — N
has no compact component, then N will be referred to as a normal
subregion. We always assume that M has a single ideal boundary
component 6, i.e. the directed net .+ (M) = {N} of normal subregions N
of M is nonvoid and M — N is connected for every N in .+ (M). In
this case @ = M — N(N € .+"(M)) is called an end of M. Then the directed
net w(M) = {2} of ends of M forms a base of punctured neighborhood
of 6. Clearly B can be viewed as an end of a suitable admitted manifold.
Consider an elliptic differential operator L on an end £ defined by

(1) Lu@) = A 2 {VaGe ) Lu@) + b2

w(x) + e(x)u(x)



278 M. NAKAI

for w e C*Q) where (a(x)) and (b'(x)) are contravariant tensors of class
C* on R, ¢(x) is a function of class C' on 2, (¢“(x)) is symmetric and
strictly positive definite for each x €2, and a(x) = det (a'(x))™'. After
Bouligand we say that the Picard principle is valid for L if the dimension
of the half module of nonnegative solutions of (1) on 2 with vanishing
boundary values on 02 is one. We also say that the Riemann theorem
is valid for L if lim, ., u(x) exists for every bounded solution of (1) on
2 with continuous boundary values on 09.

In the case when L is defined on 2 = 2U 02 and 2 tolerates the
Green’s function Gy(-, ¥) with pole at any point ¥ in 2 with respect to
L, we associate an elliptic differential operator L with L defined by
(2) Foue) = 1751—(90_) .;?(Va(x)aﬁ(x)a_‘i;u(x)) - b"(ac)gi—iu(x)

+ 20,”(90)—3,— log eg(x)—a_—u(x)
ox’ ox?
for uw e C*2). Here the function ey(x) is given by

(3) eaw) = | 2

Go(=, y)dS,

where 0/0n denotes the inner normal derivative and dS the surface element
with respect to the Riemannian metric defined by the tensor (a,;(x)) =
(a'(x))"*. The primary purpose of this paper is to prove the following
duality relation:

THEOREM. The Picard principle 1s valid for an operator L if and
only if the Riemann theorem is valid for the associated operator L.

This was originally obtained by Heins [3] for the case when 2 is an
end of a parabolic Riemann surface M and L = A. Hayashi [2] removed
the parabolicity assumption on the Heins result and generalized A to
A—PP=0). If 2=B and L = A, then L = A and the above theorem
assures the equivalence of the classical Picard principle and the classical
Riemann theorem. In this connection we add here the following remark
on the Picard principle. Consider an operator L; on the punctured unit
disk 0 < |#2]| < 1 on the complex plane defined by

Lyu(z) = Au(z) — |z *u(z)

where we take 2z =0 to be 6. Then the Picard principle is valid for L,
if and only if Me[—co, 2] (Nakai [6]). In view of this one might get
the feeling that in order the Picard principle to hold for an operator
Lu = Au + b-Vu + cuw on 0 < |[2] <1 at z = 0 the singularities of b and
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¢ at z = 0 must be ‘naive’. However this is not the case. For example
consider the operator
Lyu(z) = Au(z) + V(2log ex(2))- Vu(z) + P(z)u(z)

where P(z) is an arbitrary nonnegative C'-function on 0 < |z| <1 and
¢p»(z) is the unique bounded solution of Awu(z) = P(z)u(z) on 0 < |z| <1
with the boundary values 1 on |z2| = 1. We shall see as an application
of the above that the Picard principle is valid for L, for any P=0
which may behave as wildly as we wish at z = 0.

1. Elliptic dimensions.

1. With respect to the Riemannian metric ds* = a;;(x)dx‘dx’ on an
end @ the Laplace-Beltrami operator A takes the form

RN Ny
Au(x) = VT -ax—i<l/a(x)a (x)wu(x)>

for u e C*(2). Let b(x) = (by(x), + -+, bn(x)) and b(x) = (b)), *--, b.(x)) be

covariant tensors on £2. The inner product b-b with respect to the
metric ds is given by

b(x)-b(x) = a*i(2)b(x)b,() .
Using the contravariant tensor (b*(x)) in (1) we form the covariant tensor
b(x) = (b'(x), -+, b"(@))(@:s(x)) .
We denote by Vu(x) be covariant tensor (ou(x)/ox!, ---, ou(x)/ox™). With
the aid of these notations (1) can be represented as
(4) Lu(x) = Au(x) + b(x): Vu(x) + c(x)u(x) .
The adjoint operator L* of L then takes the form
(5) L*u(x) = Au(x) — b(x) - Vu(r) + c*(x)u(x)

where the function ¢* is given by
I

6 c*(x) = ¢(®) — —— 2V a(x) 2 (2)b;(x)) .
(6) (x) = c(z) Va(x)axt( (x)a'(x)bs(x))
In case L is defined on 2, which we shall assume throughout this paper
unless the contrary is stated, and 2 torelates the Green’s function for
L, the function ey(x) in (3) is a positive solution of L*uA =0 on 2 with
boundary values 1 on 02, and the associated operator L to L is repre-
sented as

(7) Lu(x) = Au(x) + (2V log e.(x) — b(x))- Vu(x) .
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2. We denote by #(2; L) the half module of nonnegative solutions
of (4) with vanishing boundary values zero on 02. We also denote by
& (2; L) the linear space generated by #(2; L), i.e. £(2; L) = ZF(2; L)O
P2, L) = {u, — uyy u; € P2; L) (1 =1, 2)}). Then & (2; L) is a metrizable
locally convex linear space with the topology induced by convergence on
every compact subset of 2. Let

(8) ow) = | =L-u()as,

22 0m,
for u e & (2; L) which defines a continuous linear functional on & (2; L),
i.e.ceZ(2; L)*. Consider the set

F(2; L) = {ue P L), o(u) =1},

which is convex and also compact in &(2; L) by the Harnack principle.

Observe that (2; L) is contained in the closed hyperplane {u € & (2; L);

o(w) = 1} which misses the origin. Since o(u) = 0 for w € Z(2; L) implies
that

0

on,

on 082, o(u) = 0 is equivalent to v = 0 on 2 (cf. e.g. Miranda [5]). There-
fore #(2; L) is the base of the cone #(2; L), i.e. for any ve F(2; L)
there exist a unique u € 2(2; L) and a unique nonnegative number \
with » = M. The cone F#(2; L) induces an order w = v on & (2; L) by
% — ve.P(RQ; L), which is the usual pointwise function ordering u(x) =
v(x) on 2. We maintain that #(2; L) is a simplex, i.e. &£ (2; L) is a
vector lattice, which is equivalent to that Z2(2; L) is a lattice. This is
clear if “#(2; L) = {0} and we suppose that Z2(2; L) contains an % > 0.
Let v and v be in &(2; L). For each Ne 4+ (M) with NoM — @,
there exists a unique solution w, of (4) on NN 2 with boundary values
zero on 02 and max (u(x), v(x)) on oN. The unique existence of w, follows
from the existence of h. Observe that

w(x) = u(x) =0

Uy V=Wy=U+

on NN Q. Therefore wy < wy if NCN' and w = lim,., wy exists on
2 which belongs to “#(2; L). If an se &?(2; L) dominates both % and
v, then wy <s on NNQ2 and a fortiori w <s on 2. This means that w
is the least upper bound of # and ». Similarly we can see the existence
of the greatest lower bound of w and v and thus .Z#(2; L) is a lattice.

3. We denote by Ex. Z#(2; L) the set of extreme points of Z#(2; L).
Since F#(2; L) is a compact convex subset of &(2; L) and is also a
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simplex, the Choquet theorem (cf. e.g. Phelps [8]) assures that there
exists a bijective correspondence u «— v between Z#(2; L) and the set of
regular Borel measures on Ex. <#(2; L) such that

(9) u = SE BCZOR

We define the elliptic dimension of (2; L), dim (2; L) in notation, by
the dimension of the half module &#(2; L). In view of (9) we thus define

(10) dim (2; L) = #(Ex. Z(2; L))

where # denotes the cardinal number. We say that the Picard principle
is valid for (2; L) if dim (2; L) = 1.

2. Principal functions.

4. In nos. 4-5 we assume that the operator L in (4) is defined only
on an end 2, of M, not necessarily on 2,, and that there exists a strictly
positive solution & of (4) on 2, with vanishing boundary values on 04,.
Observe that v is a solution of (4) on an open subset of 2, if and only
if 4 = v/h is a solution of

(11) Lyu(z) = Au(x) + (2V log h(x) + b(x))-Vu(x) .

Since the Dirichlet problem for (11) is uniquely solvable for any normal
subregion of 2, the same is true for the operator (4). Let Ne_+ (M)
with NOM — 2,. Even if L is defined on 2, L, need not be defined on
2,. Therefore the solvability of the Dirichlet problem for L on NN £,
may not be assured.

Let 2 be an end of M with 2c 2,, Take Ne _#"(M) so large that
N> M — 2. Consider a solution By® of (11) on NN 2 with boundary
values zero on 0N and @ € C(02) on 02. Set k = max,y|®|. Observe that
|By®|<kon NNQ2. If =0, then Byp < B, ® (N N’). Therefore
(12) Bp = lim B,®

N-M

exists on 2. The same is true for general @ by considering ¢ = @+ — @~
with @* = max(£+®, 0). Then B = B(R2; 02) defines a positive linear
operator from C(02) into C(Q2) such that B is a solution of (11) on 2 and

(13) Bp|oR =9, IBévlémagXI@!-
Set Dy® = hBy(®/h) which is a solution of (4) on NN 2 with boundary
values zero on 6N and @ on 02. As a counter part of (12) we have
(14) Do = lim Dy®

N-M
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on 2. Then D = D(2; 02) defines a positive linear operator from C(69)
into C(2) such that Dp is a solution of (4) on 2 and, as a counterpart
of (13),

(15) DploR =9, |Do|= (max|p/hih .

Next take an N,e€ _+#"(M) such that N,o (M — 2,) U (62). Let N¢€
A (M) with M — 2,c Nc Nc N, and B,® be the solution of (11) on
N, — N with boundary values @ € C(6N,) an N, and zero on oN. Similarly
as (12) we have the existence of

(16) Bp = lim B,

NoM—2,
on N,N 2. Then B = B(N,N 2,; dN,) is a positive linear operator from
C(6N,) into C(N, N 2,) such that Bp is a solution of (11) on 2 and

7) Bp|oN, = ¢, IB¢I§I?3XI¢]-
(1]

Set Dp = hB(®/h). Then D = D(N, N 2,; 0N,) is a positive linear operator
from C(6N,) into C(N, N 2,) such that Do is a solution of (4) in N, N 2,
and, as a consequence of (17),
(18) Dp|oR, =0, Dp|oN,=@.

5. Suppose seC(N, N 2,) is a solution of (4) on N, N 2,. According
to Sario (cf. e.g. Rodin-Sario [9]) we say that a function » on 2, is a
principal function relative to (s, D(N, N 2y; 0N,), D(2; 02)) if
(19) D(N,N 2 N)(p —s)=»—s, D@;0dp=np.
On setting ¢ = s/h, p is a solution to (19) if and only if ¢ = p/h is a
solution to
(20) B(N,N Qy; 0N))g —0)=q —0, B(R;02)q =q.
We shall show that (20) has a unique solution. For this purpose we
consider an operator T: C(02) — C(6f2) defined by

T = B(N, N 2y; ON)(B(2; 02)P) .

In view of (13), (17), and the Harnack principle, we see that T is a
compact operator. Again by (18), (17), and the maximum principle, we
deduce that Te = @ implies @ = 0, i.e. 1 is not the proper value of 7.
Therefore the Riesz-Schauder theory (cf. Yosida [11]) assures the exist-
ence of @€ C(092) with

(I - T)@ = 0,
where 0, = ¢ — B(N, N 2,; 0N,)o. We define ¢ on 2, by
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_ (B35 09)p)(x) (xe2);
(B(N, N 255 ON)B(2; 02)P))(x) + 0i(x) (€N, N 2,) .

It is easy to see that ¢ is well defined on 2, and satisfies (20). The

uniqueness of ¢ follows from (13), (17), and the maximum principle.

Let Ne _+ (M) be so large that NDO N,. By exactly the same method
as above we see that there exists a unique solution » on NN 2, to

q(x)

(21) D(Ny N 25; ON)(p —8) =0 —s, DINNDop=p,
and ¢ = p/h is a unique solution on NN 2, to
(22) B(N,N 2; 0N)g —0)=q—0, BNNZNg=q.

6. We now assume that L is defined on 2,, We assert that the
existence of a solution u, of (4) on NN 2, with boundary values @€
C(092,) on 02, and zero on oN for every Ne 4" (M) with NODM — Q,.
Let N,e 4+ (M) with M — 2,c N,c N,c N. If the measure of N,N 2,
is sufficiently small, then there exists a unique solution s of (4) on N, N 2,
with boundary values ® on 62, and zero on oN, (cf. e.g. [5]). Then the
principal function satisfying (21) is the required w. We denote by
D(N N Q,, 02,)? the so constructed u,. We also denote by u the principal
function on 2, satisfying (19). Suppose ® = 0 and thus s = 0. We main-
tain that » = 0 and u, = 0, or equivalently v = u/h = 0 and vy = uy/h = 0.
Suppose min;y, v < 0. Then

min v = min (6 + B(N, N 2y; 0N,)(v — 0)) = minv .

NoN % NoN 2 Ny
Therefore min;ov < 0 and ming » = min,, v = min;y, v. These mean that
v considered on 2, takes its minimum on 6N, which contradicts the min-
imum principle. Thus v =0 on 2, and similarly v, =0 on NN 2,. A
fortiori uy < uy, < u for Nc N’ and we conclude the existence of
(23) Do = lim D(N N 2,; 02,)P

N—-M

on 2,. This is also true for general @ since we only have to consider
@ = ¢+ — @~. Therefore D = D(2,; 02,) is a positive linear operator from
C(092,) into C(2,) such that Do is a solution of (4) on 2, and

(24) Dp|ag, =9 .
The operator D(2Q,; 02,) will play an important role in our discussions.

7. We shall prove that the Picard principle as well as the elliptic
dimension is the property of ideal boundary d. Let £2, be an end of M
such that L is defined on 2,, We maintain (cf. Ozawa [7]):
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ProposiTiON. If dim (2, L) > 0, then dim (2; L) = dim (2,; L) for
every end 2 of M with 2 c Q,.

Since dim (2,; L) > 0, we fix an he &(2,; L) with h > 0 on 2,. Con-
sider a mapping 7: FP(2,; L) — P(2; L) defined by nu = u — D(2; 02)u.
To see that z is injective, let wu, = wu, for w; € F(2; L) ( =1,2). On
setting v = (4, — u,)/h, we see that B(2; 02)v = v and clearly B(2, — 2;
02)v = v. Therefore v considered on 2, takes its maximum on 02 and
a fortiori v is a constant. Thus

D(N,N 2y; N = h , D(2; 0Q)h =h,
where N,€ 4" (M) with M — Qc N,c Nyc M — 2. This means that &
is a principal function with respect to (0, D(N, N 2,; ON,), D(2; 02)), and
by the uniqueness of a principal function, 2~ = 0, which is a contradiction.
To prove that mw is surjective, let se ZF(2; L). We wish to show the
existence of a p on 2, with

(25) D(N, " 2y; 0No)p = p, D(2;09)(p —s)=p —s,
where this time we take N,e _#"(M) so large that M — 2 N,. Then

we can conclude that p € &?(2,; L) as in (6) and np = s. The principal
function problem (25) is equivalent to find ¢ = p/h with

(26) B(N,N ;0N =¢q, B(2;00(q—0)=q—0
with ¢ = s/h. As in 5, (26) is equivalent to finding @ € C(6N,) such that
I-Tp=0

where T, = B(22; 02)(B(N, N 2,); dN,)p). By the same method as in 5
the above Fredholm equation is solved.

3. Green’s functions and Martin kernel.

8. Fix an end 2 of M and take an Ne _#" (M) with M — QC N.
The Green’s function Gyno(x, y) on NN R for L with pole ye NNR is a
solution of L on NN G — {y}, i.e. L,Gyqe(2, ¥) = 0, with vanishing boundary
values on (N N £2) such that the unique solution u of the Dirichlet pro-
blem for Lu = f, f being Holder continuous on N N 2, with u|[o(N N 2) =
peCOIN N Q) is given by

@ w@) = — | Gunda, ) WVa@)dy - dy”

S 0Gyno(2, ¥) P(y)dS
aNND) on, Y

(cf. e.g. Miranda [5]). The function Gyo(x, +) is also the Green’s function
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on NN 2 for L* with polexe NN 2. If dim(Q; L) > 0, then the Green’s
function Gyo(x, ) exists for any N and

(28) DN 8 09)p = | 2 W) pyas,

ae on,
for pe C(02). If Gyno(x, y) exists for every N, then {Gy.ox, )}y is an
increasing net. In case it is convergent we call

(29) G.O(xy y) = I]\}l_g} GNnﬂ(x’ y)

the Green’s function on 2 for L with pole ye 2. If dim(2; L) > 0,
then (23) and (28) imply the existence of (29) and

(30) D(@; 09)p = | 292V oy,

for p e C(022). Actually the converse is also true:

PROPOSITION. The Green’s function Gg(x, y) exists on 2 for L if
and only if dim (2; L) > 0, which is equivalent to dim (2; L*) > 0.

Suppose dim (2; L) > 0 and let h € Z#(2; L) with » > 0 on 2. For
an arbitrary point y € NN 2 we take punctured parametric balls U: 0 <
e —y|<a and V:0<|z —y|<b (0<a<b) such that Vc Nn®R. If
V is sufficiently small, then s(x) = G,(x, ¥), the Green’s function on V
for L, exists. The principal function p on NN 2 — {y} with

D(V;oV)Yp—s)=p—s, DINNQ-U;3Up =p

is seen to exists asin 5, and clearly p(x) is the required G, (2, ¥). From
this as above the existence of Gy(x, y) follows. Conversely suppose the
existence of Gy(x, y) on 2 for L, fix a point x,€ 2 and consider u,(x) =
Go(x, ¥)/Go(x,, y). Since u, =0 and wu,(x,) =1, the Harnack principle
assures that {u,(x); ¥y — 0} forms a normal family and thus we can find
a sequence {y,} converging to § such that w(x) = lim,.. %, (¥) exists on
Q2. Then u >0 and € P(Q; L), i.e. dim (2; L) > 0. Similarly Gu(x, v)
exists if and only if dim (2; L*) > 0. A fortiori dim (2; L) > 0 is equi-
valent to dim (2; L*) > 0.

9. If dim (2; L) > 0, then dim (2; L*) > 0, and as in 6 we can define
D*(2 N N; 0R2) and D*(2; 0R), i.e. D*(2 N N; 02)® is a solution of L*u =0
on 2N N with boundary values @ € C(022) on 92 and zero on 6N, and

(31) D*(@; 92)p = lim D*(2 N N; Q)9

exists on 2. Then
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(32) DH@ N N; 0Q)p = Swhg;(x'—im)dsz
and similarly as in (80) we deduce
(33) D*(2; 62)p = gwa—Gg%‘—)q)wdsz :

10. We assume that dim (2; L) > 0 or equivalently there exists the
Green’s function Gy(z, y) on 2 for L. The function

(39 es(w) = (D*(@; o)) = | PGB W gg,

2 on,
is a positive solution of L*u = 0 on 2 with boundary values 1 on 0Q.
Using the function e, we define the Martin kernel K. (x, y) on 2 by

(35) K, y) = G, y)/e(y)

for (z,y)eR x 2 with # y and Ky(x, ) = + o for x€2. Define a
metric o(y, ¥.) on 2 given by

(36) 0w, ¥) = 35 60| K@, 1) — K, 1)

where ¢, > 0 with 32, ¢, = 1, {%,}.>:; a countable dense subset of 2, and
la|* = |a|(1 + |a|)™ for real numbers a« and |+ co|* = 1. The metric
space (2, o) is homeomorphic to the original topological space 2. Let &'
be an end of M with 2'c 2. By (29) and (81), inf,., K(x, y) > 0 for
every x€2 — 2'. In view of this, o-Cauchy sequences {y,} in 2 are
divided into three categories: {y.} —d®2, {y,} —vy <, and {y,} — 0. Let
2* = Q% be the space obtained from 2 = (62) U 2 by adding all p-Cauchy
sequences {y,} — 0. By virtue of the Harnack principle, 2* is compact,
and for this reason, 2* = 2% is referred to as the Martin compactification
of Q2 with respect to L. We call 8 =5, = 2* — 2 the Martin ideal
boundary of £2. The identity of 2 onto 2 is extended to a continuous
map of 2 U B onto 2 U 4.

The Martin kernel K.(x, ¥) can be extended continuously to 2 X
(RUPB). Let yefR. From (34) it follows that

S 0Kz, y) ds. =1
22 on, e :

Therefore if y* € B, then

oEul(-, v = || kLW g, — jm | PEABY) g, —
’ a0 on, ¢ v-ur Joo  on, :
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and thus (cf. no. 2)
(37 (2 L) ={Ku«-, y*); y*eBlC F(% L) .

11. We denote by co{ % (2; L)} the closed convex hull of the
set 97°(2; L) in &(2; L). We shall show that

(38) co{ (2 L)} = A2 L) .

For this purpose it is sufficient to show the existence of a unit regular
Borel measure v on B for any fixed u € .&#(R2; L) such that

(39) w@) = | Ko, y7)as(w") -

Let N and N, be in .7 (M) with M — 2c Nc Nc N, and consider v, =
D(N, — N; 6N)u and v = D(2 — N; 0N)u. By the Green formula

0Go(x, ¥) >dS
a Y

Y

o) u@) = |, (Guta, 24D ~ ugy)
v ony
for ® € NN 2, where d/on denotes the outer normal derivative with respect

to the region NN 2. Again by the Green formula

_ W) _ 4y ()G, 1)
0= |, (Grosto, 1) 23 — (320l W)as,

On letting N, — M we obtain

_ ov(y) _ 0Go(x, y)
(41 0= LN<G_(_(90, 05l u(y)-—am/———>dsy .

Since 4 —», =20 on N, — N and u — v, =0 on oN, v, —v implies that
u —veP(@— N; L). A fortiori

“2) (W) = etz —(uly) — (@) 2 0

on dN. Therefore the subtraction of (41) from (40) gives
“3) w@) = | K@, 9)dvs(v)

where dv,(y) = vy(¥)dS, on ON. Observe that

S'?NdVN(y) - o(u) - SaN{Saﬂ az Kg(x, y)ds"}dvi‘/(y) =1.

Hence there exists a subset {N,}C_#"(M) such that dv,, = dvy, converges
vaguely to a unit regular Borel measure dv on Q*. Clearly dv is a
measure on B and (43) implies (39).
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12. Since B 2* is homeomorphic to .#(2; L)C &(2; L) by the
natural correspondence y* — Ky(-, y*), #°(2; L) is compact and hence
closed. By the Milman theorem (cf. e.g. Dunford-Schwartz [1]), (38) as-
sures that Ex. ZA(2; L) is contained in the closure of 27 (2; L) which is
92 (2; L). Therefore if we set

B: = {y*ep; K-, y*) e Ex. #(2; L)},
then we conclude that
(44) Ex. (2 L) = {Kd(+, y*); y* € B} -
Since : Kg(-, y*) — y* is a homeomorphism from Ex. #(2; L) onto B,
ap(y*) = dv(Ko(-, y*))

is a regular Borel measure on B, if dy is on Ex. Z(Q; L). Therefore
by (9) in no. 3 we deduce the fundamental theorem of Martin: there
exists a bijective correspondence u — ¢ between .Z7(2; L) and the set of
regular Borel measures on G, such that

(45) u(z) = |, Kz, y")dp(w”)

for x e @ (cf. Itd [4], Sur [10], etc.). In particular we have
(46) dim (2; L) = 8, .

Suppose dim (2; L) = 1. By (37) and (46) we see that £#8 = 1. Conversely
#58 = 1 implies that #3, = 1 which in turn implies dim (2; L) = 1. Thus

PROPOSITION. If dim (2; L) > 0, then the Picard principle is valid
if and only if the Martin ideal boundary B, consists of a single point.

4. Riemann theorem; Proof of the main theorem.

13. We denote by <& (2; L) the vector space of bounded solutions
of (4) on 2 with continuous boundary values on 02. We say that the
Riemann theorem is valid for (2; L) if

lim w(x)

z—3

exists for every w e <Z(2; L). It is clear that if the Riemann theorem
is valid for (2, L), then it is also valid for (2, L) with 2502, We
shall discuss the Riemann theorem for (2, L). So far as we can consider
L we have to assume dim (2, L) > 0 or equivalently dim (2, L*) > 0.
Using the operator D* = D*(2; 02) in (33) we maintain

(47) B (Q; L) = (D*9leq; € C(52)) .
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To prove this first observe that  is a solution of L*u = 0 on an open
subset of 2 if and only if v = wu/e, is a solution of Lv =0. Therefore
v = D*®[ey is a solution of Lv = 0. If @ = 0, then D*(N N 2; 02)p < keq
with & = max,,® (cf. no. 9) and a fortiori D*®/e, < k, i.e. D*plege
Z(2; L). The same is true for general @ by considering @ = ¢+ — @~
with @* = max (+®, 0). Conversely, let v € <#(2; L). Take an Ne _+"(M)
with M — 2 C N and let w, be a solution of (7) on N N 2 with boundary
values 1 on 02 and 0 on oN. Then e;wy, = D*(N N 2; 02)L. Thus

e limwy = lim D*(N N 2; 02)1 = ¢, ,

N N
ie.limy,wy =1. If v|02 =0 and % = supy|v|, then
lv] < k(1 — wy)
on NN 2. On letting N— M we conclude that v = 0. For general v, let
v, = v — D*v/eg .

Then v, € & (R2; L) and v,/02 = 0. Therefore v, = 0 on 2, i.e. v = D*vle,
and we deduce (47).

14. Take any v e .Z(Q, I:). By (47) we have e,v = D*(2; 02)v. In
view of (33) we have

ead(y)(y) = Swﬁ%%’—l)—v(x)dsz )

A fortiori, using the Martin kernel (35), we deduce the following repre-
sentation

(48) oy) = Sagﬂgjﬂmmsﬂ, :

Clearly the right hand side of the above is continuous on 2 U B8, and so
is v. Since v is continuous on 2, we conclude that v is continuous on Q%:

(49) B (2; L)o@ .
In particular, Z(2; L)|8, c C(B.). We maintain

PROPOSITION. The family <#(82; f/)lﬁL separates points in B, t.e.
for any pair (yF, ¥y5) of distinct points in B, there exists a v € <& (2; L)
such that v(y}) = v(yy).

Observe that, by (48), v(y¥) = Sw(aK,,(x, y)on)u(x)dS, (G = 1, 2) for
every v € Z(2; f). If the assertion were not true, then
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g K@) o )dS, = 0
2 on,

for every @eC(0R2), where k(x)= Koz, y}) — K.z, y¥). Therefore
ok(xz)/om, = 0 on 02. We thus have

Likx) =0 (e®), k) =a_;°% — 0 (o).

This implies that k(x) = 0 on 2, i.e. ¥y = yJ, a contradiction.

15. PROOF OF THE THEOREM IN INTRODUCTION. We are ready to
prove the theorem stated in the introduction. Since the identity of 2
can be continuously extended to a map of 2UB onto 2 Ué with 8 lying
over 0,

(50) lim sup w(x) = max w(B.), liminf u(x) = min u(B;)
z— -0
for every u e Z(Q, ﬁ). In view of Proposition 14, lim,_,u(x) exists for

every u € Z (L2, L) if and only if 8, consists of a single point, which is,
by Proposition 12, equivalent to dim (2, L) = 1. This completes the proof.

16. Suppose that the Riemann theorem is valid for (@, ﬁgo). Let
2 be any end of M with 2c@,. By Pr(lposition 7 and the main Atheorem,
the Riemann theorem is valid for (2, L,). Since e, /e, € (2, Ly),

lin} eo,(¥)/e(w) = a >0

exists. If v is a bounded solution of ﬁgov =0 on a subend of 2, con-
taining 2, then u = e, is a bouAnded solution of L*u =0 on 2. Since
ufe, = (g /ea)v, w = ufe, € Z(2, Ly) and

lim v(z) = (1333 w(x)) / (1351 (ego(x)/eg(x)> = o lim w(a)

T3

Thus we see that the Riemann theorem for (2, L) is the property of
ideal boundary 6 in the following sense:

PROPOSITION. The Riemann theorem is valid for (2, L) if and only
if lim,_, w(x) exists for every bounded solution w of Lu =0 on any
subend of £.

5. An example.
16. We take B: 0< |z| <1 (2 =z + 1y) as 2 with : 2 = 0 and consider

Lu(z) = Au(z) + b(z)-Vu(z) + c(z)u(z)

on B:0 < |z| £1 with the plane metric. First we remark that the
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mapping L — L is not injective. For the purpose consider

(51) Lou(z) = Au(z) + 2V log ex(z)-Vu(z) + P(z)u(z)
where P(z) = 0 is of class C* on B and ep(z) is a bounded solution of
(52) Au(z) = P(2)u(z)

on B with boundary values 1 on 0B:|z| =1. The existence and the
uniqueness of such an ¢, can be seen as follows. Let u, be a solution
of (52) on 1/n < |2z| <1 with boundary values 1 on |z2|=1 and 0 on
|z| = 1/n (n = 2). Since u, is increasing and 0 < u, <1, w = lim,_... %,
exists on B and is a required. If v is another such solution, then w =
(w — v)* satisfies Aw = 2P* + 2(Vw)* = 0 and a fortiori w is subharmonic
on B with w = 0 on dB. By the minimum principle applied to the super-
harmonic function —elog 2| — w(z) (¢ > 0), we conclude that w = 0. The
adjoint L% of L, is given by

Liu(z) = Au(z) — 2V log ex(2)-Vu(z) + (2| V log ¢x(2)|* — P(z))u(z) .
By a direct calculation we see that Ljey(z) = 0 on B. We wish to show
that
(53) ¢» = D*(B; 0B)L = ¢ .
Since D*(B,; 0B)l < e, with B,: 1/n < |z| <1, we see that w = ez/e, =
lim,_.. D*(B,; 0B)l/e, < 1. Since L}(wep) = L%ez = 0 and L}e, = 0, a direct
calculation shows that Aw = 0. Therefore w is a bounded harmonic
function on B with boundary values 1 on 0B. By the classical Riemann
theorem, w =1 on B, i.e. (53) is valid.

17. In view of (53), we can rewrite L, as

Lou(z) = Au(z) + 2V log ex(2)- Vu(z) + P(z)u(z) .

Therefore the associated operator L, to L, on B is, by )
(54) Lou(z) = Au(z) .

Clearly A on B is A. Thus we see that L — L is not injective. Since
the Riemann theorem is valid for (B, A), by our main theorem we con-
clude that the Picard principle is valid for (B, L), i.e.

(55) dim (B, L) = 1

for every P(z) =0 on B: 0 < |z| <1 of class C'. Since we have a feeling
that dim (B, L) = 1 can occur if L is, in a sense, close to A, (55) is a
rather unexpected phenomenon because L, may be viewed far distant
from A if the singularity of P at z = 0 is ‘wild’. This pathology pro-
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vably cannot occur if we require L to be self-adjoint.
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