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PICARD PRINCIPLE AND RIEMANN THEOREM
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(Received March 20, 1975)

Consider the punctured unit Euclidean m-ball B: 0 < | x \ < l(x — (x\
• , xm), m >̂ 2) and a harmonic function u(x) on B, i.e. Au = 0(Δ =
δijd2/dxίdxj) on B. The additional requirement that u(x) has an upper
or lower bound implies that u(x) = cS(x) + h(x) where c is a constant,
h(x) a harmonic function on \x\ < 1, and S(#) the fundamental sin-
gularity |# | 2 ~ w (m^3) or — log \x\(m = 2). This classical result, the so
called principle of positive singularity, originally obtained by Picard
for m = 2, is reformulated by Bouligand under the name Picard principle
as follows: The dimension of the half module of nonnegative harmonic
functions on B with vanishing boundary values zero on \x\ = 1 is one.
As a result the Riemann theorem on removable singularities follows,
the weak form of which states that the boundedness of u(x) on B yields
the existence of limx^ou(x). Conversely the Picard principle can be derived
from the Riemann theorem as the original proof of Picard on Picard
principle suggests, and therefore the Picard principle and the Riemann
theorem are equivalent in essence. The primary purpose of this paper
is to discuss this duality relation between the Picard principle and the
Riemann theorem if the base region B and the operator Δ are generalized
to C°°-manifolds Ω and second order elliptic differential operators L.

Consider an m-dimensional separable connected orientable C°°-manifold
M(m ^ 2). A regular subregion iVof Mis a relatively compact subregion
whose relative boundary dN consists of a finite number of disjoint (m — 1)-
dimensional closed simple hypersurf ace of class C3. If in addition M — N
has no compact component, then N will be referred to as a normal
subregion. We always assume that M has a single ideal boundary
component δ, i.e. the directed net ^/K(M) = {N} of normal subregions N
of M is nonvoid and M — N is connected for every N in ^"(M). In
this case Ω = M — N(N e ^V(M)) is called an end of M. Then the directed
net ω(M) = {Ω} of ends of M forms a base of punctured neighborhood
of δ. Clearly B can be viewed as an end of a suitable admitted manifold.
Consider an elliptic differential operator L on an end Ω defined by

(x > L φ ) = v m h(yVW)aii{x)hu{x))+ bi{x)-hu{x) + c{x)φ)
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for u e C\Ω) where (aij(x)) and (b^x)) are contravariant tensors of class
C2 on Ω, c(x) is a function of class C1 on Ω, (aij(x)) is symmetric and
strictly positive definite for each x e Ω, and a(x) = det {ai3\x))~ι. After
Bouligand we say that the Picard principle is valid for L if the dimension
of the half module of nonnegative solutions of (1) on Ω with vanishing
boundary values on dΩ is one. We also say that the Riemann theorem
is valid for L if l i m ^ u(x) exists for every bounded solution of (1) on
Ω with continuous boundary values on dΩ.

In the case when L is defined on Ω = Ω U dΩ and Ω tolerates the
Green's function GΩ( , y) with pole at any point y in Ω with respect to
L, we associate an elliptic differential operator L with L defined by

for % e C2(i3). Here the function eΩ(x) is given by

(3) eΩ(y) = \ J-GΩ(x,y)dSx

J93 dnx

wτhere d/dn denotes the inner normal derivative and dS the surface element
with respect to the Riemannian metric defined by the tensor (ai3(x)) —
(aiS{x))~~ι. The primary purpose of this paper is to prove the following
duality relation:

THEOREM. The Picard principle is valid for an operator L if and
only if the Riemann theorem is valid for the associated operator L.

This was originally obtained by Heins [3] for the case when Ω is an
end of a parabolic Riemann surface M and L — Δ. Hayashi [2] removed
the parabolicity assumption on the Heins result and generalized Δ to
Δ — P(P ^ 0). If Ω = B and L = Δ, then L = Δ and the above theorem
assures the equivalence of the classical Picard principle and the classical
Riemann theorem. In this connection we add here the following remark
on the Picard principle. Consider an operator Lλ on the punctured unit
disk 0 < I z I < 1 on the complex plane defined by

Lλu(z) = Au(z) — \z\~xu{z)

where we take z = 0 to be d. Then the Picard principle is valid for Lλ

if and only if λe[— °o, 2] (Nakai [6]). In view of this one might get
the feeling that in order the Picard principle to hold for an operator
Lu = Au + b Vu + cu on 0 < \z\ < 1 at z = 0 the singularities of 6 and
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c at z = 0 must be 'naive'. However this is not the case. For example
consider the operator

LPu(z) = Au{z) + V(21ogβP(s)) Vtφ0 + P(z)u(z)

where P(z) is an arbitrary nonnegative Ĉ -f unction on 0 <\z\ <Ξ,1 and
eP{z) is the unique bounded solution of Au(z) = P(z)u(z) on 0 < | z | < 1
with the boundary values 1 on \z\ — 1. We shall see as an application
of the above that the Picard principle is valid for LP for any P ^ 0
which may behave as wildly as we wish at z = 0.

1. Elliptic dimensions.

1. With respect to the Riemannian metric ds2 = aij{x)dxidxj on an
end Ω the Laplace-Beltrami operator Δ takes the form

Au(x) =
Va{x) d

for u e C\Ω). Let b(x) = (b^x), , bm(x)) and b(x)_= ( 6 ^ ) , , bm(x)) be
covariant tensors on Ω. The inner product δ 6 with respect to the
metric ds is given by

b(x)-b(x) = a^

Using the contra variant tensor (&'(#)) in (1) we form the covariant tensor

b(x) = (b\x), •• >6-(a?))(α<i(a?)).

We denote by Vu(x) be covariant tensor (du(x)/dx\ •••, du(x)/dxm). With
the aid of these notations (1) can be represented as

( 4 ) Lu(x) = Au(x) + b(x)- Vn{x) + c(x)u(x) .

The adjoint operator L* of L then takes the form

( 5 ) L*u(x) = Au(x) - b(x)-Vu(x) + c*(x)u(x)

where the function c* is given by

( 6 ) c*(x) = c(x) - 4== ^
Va(x) dxι

In case L is defined on Ω, which we shall assume throughout this paper
unless the contrary is stated, and Ω torelates the Green's function for
L, the function eΩ(x) in (3) is a positive solution of L*u = 0 on Ω with
boundary values 1 on dΩ, and the associated operator L to L is repre-
sented as

( 7 ) Lu(x) = Au(x) + (2V log eΔ(x) - b(x))-Vu(x) .
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2. We denote by &(Ω\ L) the half module of nonnegative solutions
of (4) with vanishing boundary values zero on dΩ. We also denote by
ϊf(Ω; L) the linear space generated by ^(42; L), i.e. g"(42; L) = ^(42; L)Q
^(42; L) = K - u2; ut e ^(42; L) (i = 1, 2)}. Then if (42; L) is a metrizable
locally convex linear space with the topology induced by convergence on
every compact subset of Ω. Let

8 ) σ(u) = \ -JLu(x)dSx

J w dnx
dnx

for we if (42; L) which defines a continuous linear functional on if (42; L),
i.e. (7Gg?(β; L)*. Consider the set

^(42; L) = {u e &(Ω; L); σ(u) = 1} ,

which is convex and also compact in if (42; L) by the Harnack principle.
Observe that ^(42; L) is contained in the closed hyperplane {u e ξ?(Ω; L);
σ(u) — 1} which misses the origin. Since σ(u) = 0 for u e^(Ω; L) implies
that

a
dn,

-u{x) = u(x) = 0

on dΩ, σ(u) = 0 is equivalent to w = 0 on Ω (cf. e.g. Miranda [5]). There-
fore ^(Ω; L) is the base of the cone ^(42; L), i.e. for any ve<0*(Ω; L)
there exist a unique w e ^(42; L) and a unique nonnegative number λ
with v = Xn. The cone ^(42; L) induces an order u ^ v on ĝ (42; L) by
u — v e ^(42; L), which is the usual pointwise function ordering u(x) ^
v(x) on 42. We maintain that ^(42; L) is a simplex, i.e. if (42; L) is a
vector lattice, which is equivalent to that ^(42; L) is a lattice. This is
clear if ^(42; L) = {0} and we suppose that ^(42; L) contains an h > 0.
Let u and v be in ^(42; L). For each Ne^V*{M) with NIDM-Ω,

there exists a unique solution w^ of (4) on iV ΓΊ 42 with boundary values
zero on 342 and max (u(x), v{x)) on dN. The unique existence of wN follows
from the existence of h. Observe that

U, V ^ WN ^ U + V

on iV Π 42. Therefore wN<>wN, if NaN' and w ^ l i m ^ ^ w ^ exists on
42 which belongs to ^(42; L). If an se^(42; L) dominates both u and
ι;, then wN ^ s on iVΠ42 and a fortiori w ^ s on 42. This means that w
is the least upper bound of u and v. Similarly we can see the existence
of the greatest lower bound of u and v and thus ^(42; L) is a lattice.

3. We denote by Ex. ^(42; L) the set of extreme points of ^(42; L).
Since ^(42; L) is a compact convex subset of if (42; L) and is also a
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simplex, the Choquet theorem (cf. e.g. Phelps [8]) assures that there
exists a bijective correspondence u <-* v between &(Ω\ L) and the set of
regular Borel measures on Ex. ^(Ω; L) such that

(9) u = \ vdv(v) .

We define the elliptic dimension of (Ω; L), dim (42; L) in notation, by
the dimension of the half module &(Ω\ L). In view of (9) we thus define

(10) dim (Ω; L) = #(Ex. ^(Ω; L))

where # denotes the cardinal number. We say that the Picard principle
is valid for (Ω; L) if dim (Ω; L) = 1.

2. Principal functions.

4. In nos. 4-5 we assume that the operator L in (4) is defined only
on an end ΩQ of M, not necessarily on Ωo, and that there exists a strictly
positive solution h of (4) on Ωo with vanishing boundary values on dΩ0.
Observe that v is a solution of (4) on an open subset of Ωo if and only
if u = v/h is a solution of

(11) Lhu{x) = Au(x) + (2V log h(x) + b(x))- V φ ) .

Since the Dirichlet problem for (11) is uniquely solvable for any normal
subregion of ΩQ, the same is true for the operator (4). Let Ne^i^(M)
with Nz)M — ΩQ. Even if L is defined on Ωo, Lh need not be defined on
Ωo. Therefore the solvability of the Dirichlet problem for L on N f] ΩQ

may not be assured.
Let Ω be an end of M with ΩaΩQ. Take Ne^4^(M) so large that

Nz) M — Ω. Consider a solution BNφ of (11) on N Π Ω with boundary
values zero on dN and φ e C(dΩ) on dΩ. Set k = max3i2| <p|. Observe that
IJB^I ^ /c on JVn β. If 9> ̂  0, then BNφ ^ β^,^ (NaN'). Therefore

(12) Bφ = lim BNφ

exists on Ω. The same is true for general ψ by considering φ — φ+ — φ~
with φ± = max (±9>, 0). Then B = B(Ω; dΩ) defines a positive linear
operator from C(dΩ) into C(Ω) such that Bφ is a solution of (11) on Ω and

(13) Bφ\dΩ = φ , \Bφ\£m&x\φ\ .
dΩ

Set DNφ = hBN(φ/h) which is a solution of (4) on N Π Ω with boundary
values zero on dN and 9? on dΩ. As a counter part of (12) we have

(14) Dφ = lim DNφ
N-+M
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on Ω. Then D = D(Ω; dΩ) defines a positive linear operator from C(dΩ)
into C(Ω) such that Dφ is a solution of (4) on Ω and, as a counterpart
of (13),

(15) Dφ\dΩ = φ, \Dφ\ ^ (max\φ/h\)h .
dΩ

Next take an Noe^K(M) such that NOID(M - Ωo) U (dΩ). Let iVe
Λ\M) with M— ΩoczNc:NciNQ and i ? ^ be the solution of (11) on
No — N with boundary values φ e C(dN0) an 3iV0 and zero on dN. Similarly
as (12) we have the existence of

(16) Bφ = lim BNφ
N^M-Ω0

on iV0 Π Ωo. Then B = 5(iV0 Π Ωo; 3N0) is a positive linear operator from
C(dN0) into C(N0 Π i?0) such that Bφ is a solution of (11) on Ω and

(17) Bφ\3N0 = φ, \Bφ\ | |

Set Dφ = hB(φ/h). Then £) = Z)(iV0 n βo; 3iV0) is a positive linear operator
from C(3JVo) into C(N0 Π i30) such that Dφ is a solution of (4) in No Π Ωo

and, as a consequence of (17),

(18) Dφ\dΩ0 = 0, Dφ\dN0 = φ.

5. Suppose 8 e C(iV0 Π ώ0) is a solution of (4) on No Π ΩQ. According
to Sario (cf. e.g. Rodin-Sario [9]) we say that a function p on Ωo is a
principal function relative to (s, jD(i\Γ0 Π Ωo; dN0), D(Ω; dΩ)) if

(19) D ( N 0 Π i 2 0 ; i V o X p - 8 ) = p - 8 , D(Ω; dΩ)p = p .

On setting <7 = s/h, p is a solution to (19) if and only if q = p/fe is a
solution to

(20) E(iV0 Π ΩQ; 3N0)(q - σ) = q - σ , B(Ω; dΩ)q = q .

We shall show that (20) has a unique solution. For this purpose we
consider an operator T: C(dΩ) —> C(dΩ) defined by

Tφ - B(N0 Π Ωo; dN0)(B(Ω; 8Ω)φ) .

In view of (13), (17), and the Harnack principle, we see that T is a
compact operator. Again by (13), (17), and the maximum principle, we
deduce that Tφ = φ implies φ = 0, i.e. 1 is not the proper value of T.
Therefore the Riesz-Schauder theory (cf. Yosida [11]) assures the exist-
ence of φ e C(dΩ) with

(I - T)φ = σ0

where σ0 = σ — B(N0 Π ΩQ; dN0)σ. We define q on Ωo by
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UB(Ω; dΩ)φ)(x) (xeΩ);
Q{X) " \(B(N0 n Ωo; dNQ)(B(Ω; dΩ)φ)){x) + σo(x) (x eN0Π Ωo) .

It is easy to see that q is well defined on Ωo and satisfies (20). The
uniqueness of q follows from (13), (17), and the maximum principle.

Let Ne<yV (M) be so large that NZD NO. By exactly the same method
as above we see that there exists a unique solution p on N f] ΩQ to

(21) D(N0 n Ωo; 3N0)(p - s) = p - s , D(N Π Ω; dΩ)p = p ,

and q = p/h is a unique solution on N Π Ωo to

(22) B(N0 n Ωo; dN0)(q - σ) = q - σ , B(N Π Λ; dΩ)q = q .

6. We now assume that L is defined on Ωo. We assert that the
existence of a solution uN of (4) on N f) Ωo with boundary values ψ e
C(d420) on 3i20 and zero on 3iV for every Ne^V(M) with Nz)M-Ω0.
Let JV0e^T(Λf) with M - ΩQdNod NodN. If the measure of iV0 (Ί β 0

is sufficiently small, then there exists a unique solution s of (4) on No Π i20

with boundary values φ on 3i30 and zero on dNQ (cf. e.g. [5]). Then the
principal function satisfying (21) is the required u. We denote by
D(N Π Ωo, dΩ0)φ the so constructed uN. We also denote by u the principal
function on Ωo satisfying (19). Suppose φ ^ 0 and thus s ^ 0. We main-
tain that u ^ 0 and u^ ^ 0, or equivalently v = t̂ /fe ^ 0 and v^ = ^/fe ^ 0.
Suppose mina^0 v < 0. Then

min i; = min (σ + J5(iVo Π Ωo; dN0)(v — σ)) ^ min v .
^on??o dN°

Therefore min3i2 v < 0 and min^ v = min^ v ^ min3^0 v. These mean that
v considered on Ωo takes its minimum on dN0 which contradicts the min-
imum principle. Thus v ^ 0 on Ωo and similarly vN ^ 0 on N ΓΊ ΩQ. A
fortiori uN ^ uN, ^ ^ for NczN' and we conclude the existence of

(23) Dφ = lim ^(iV n βo; dΩQ)φ

on i20. This is also true for general φ since we only have to consider
φ — φ+ — φ". Therefore D = D(Ω0; dΩ0) is a positive linear operator from
C(dΩQ) into C(Ω0) such that Dφ is a solution of (4) on ΩQ and

(24) Dφ\dΩQ = φ .

The operator jD(i20; 5i30) will play an important role in our discussions.

7. We shall prove that the Picard principle as well as the elliptic
dimension is the property of ideal boundary δ. Let Ωo be an end of M
such that L is defined on Ωo. We maintain (cf. Ozawa [7]):
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PROPOSITION. If dim (Ωo; L) > 0, then dim (Ω; L) = dim (ΩQ; L) for
every end Ω of M with Ω c Ωo.

Since dim (Ωo; L) > 0, we fix an h e ̂ (Ωo; L) with h > 0 on fl0. Con-
sider a mapping π: ̂ (Ωo) L) —• ^(Ω; L) defined by πu = u — D(Ω; dΩ)u.
To see that π is injective, let πut = πu2 for ^ e έ^(Ω0; L) (j = 1, 2). On
setting v = {uι — u2)/h, we see that B(Ω; dΩ)v = v and clearly B(ΩQ — Ω;
dΩ)v = v. Therefore v considered on Ωo takes its maximum on dΩ and
a fortiori v is a constant. Thus

D(NQ Π Ωo; dN0)h = h , D(Ω; dΩ)h = h ,

where iV0e^Γ(M) with M - ΩdNo(zNoc:M - Ω. This means that h
is a principal function with respect to (0, D(N0 Π βo; dN0), D(Ω; dΩ)), and
by the uniqueness of a principal function, h = 0, which is a contradiction.
To prove that π is surjective, let s e έ^(Ω; L). We wish to show the
existence of a p on 42O with

(25) D(N0 Π βo; 3iV0)p = p , D(Ω; dΩ)(p - s) = p - s ,

where this time we take iV0 e^V*(M) so large that M — ΩdNo. Then
we can conclude that p e ̂ ( β o ; -ί') as in (6) and πp = s. The principal
function problem (25) is equivalent to find q = p/h with

(26) B(N0 Π Ωo; 3N0)q = q , B(Ω; dΩ)(q - σ) = q - σ

with tf = s/fe. As in 5, (26) is equivalent to finding φ e C(dN0) such that

(I - T)φ = σ

where TΨ = B(Ω; dΩ)(B(N0 f] Ωo); dN0)φ). By the same method as in 5
the above Fredholm equation is solved.

3. Green's functions and Martin kernel.

8. Fix an end Ω of M and take an Ne^Γ(M) with M-ΩaN.
The Green's function GNf]Ω(x, y) on NΓ\Ω for L with pole yeNΓ\Ω is a
solution of L on Nf] G — {y}, i.e. LxGNC]G(x, y) = 0, with vanishing boundary
values on d(N Π ώ) such that the unique solution u of the Dirichlet pro-
blem for Lu = f f being Holder continuous on N f) Ω, with u \ d(N Π Ω) =
φ e C(d(JV Π β)) is given by

(27) u(x) = - \ GNf]Ω(x,

x ^> φ(y)dS

(cf. e.g. Miranda [5]). The function GNf]Ω(x, •) is also the Green's function
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on NίΊ Ω for L* with pole xeNf]Ω. If dim(Ω; L) > 0, then the Green's
function GNnΩ(x, y) exists for any N and

(28) D(N Π Ω; dΩ)φ = \ dG™°(χ> V) φ(y)dSy ,
J 9Ω dUy

for ψ e C(dΩ). If GNΓ]Ω(x, y) exists for every N, then {GNf)Ω(x, y)}N is an
increasing net. In case it is convergent we call

(29) GΩ(x, y) = lim GNf]Ω(x, y)

the Green's function on Ω for L with pole y eΩ. If dim (Ω; L) > 0,
then (23) and (28) imply the existence of (29) and

(30) D(Ω; dΩ)φ = ( dG°^ y) φ{y)dSy
J SΩ dndny

for φeC(dΩ). Actually the converse is also true:

PROPOSITION. The Green's function GΩ(x, y) exists on Ω for L if
and only if dim (Ω; L) > 0, which is equivalent to dim (Ω) L*) > 0.

Suppose dim (Ω; L) > 0 and let h e &>(Ω; L) with h > 0 on Ω. For
an arbitrary point y e N Π Ω we take punctured parametric balls U: 0 <
\x-y\<a and V: 0 < \x - y\< b (0 < a < b) such that VaNf)Ω. If
V is sufficiently small, then s(x) = Gv(x, y), the Green's function on V
for L, exists. The principal function p on N f) Ω — {y} with

D(V; dV)(p -s) = p - s , D(Nf)Ω-U; dU)p = p

is seen to exists as in 5, and clearly p(x) is the required GNnΩ(xf y). From
this as above the existence of GΩ(x9 y) follows. Conversely suppose the
existence of GΩ(x, y) on Ω for L, fix a point x0 e Ω and consider uy(x) =
GΩ(xf y)/GΩ(x0, y). Since uy ^ 0 and uy(ίc0) = 1, the Harnack principle
assures that {uy(x); y ~* δ} forms a normal family and thus we can find
a sequence {yn} converging to δ such that u(x) — lim^̂ oo uVn(x) exists on
Ω. Then u > 0 and u e^(Ω; L), i.e. dim(β; L) > 0. Similarly GΩ(x, y)
exists if and only if dim (Ω; L*) > 0. A fortiori dim (Ω; L) > 0 is equi-
valent to dim (Ω; L*) > 0.

9. If dim (Ω; L) > 0, then dim (Ω; L*) > 0, and as in 6 we can define
D*(β Π N; dΩ) and D*(β; dΩ), i.e. D*(β D iSΓ; dΩ)φ is a solution of L*u = 0
on i3 Π N with boundary values φ e C(dΩ) on 3i3 and zero on dN, and

(31) D*(i2; ai2)^ = lim D*(Ω f] N; dΩ)φ
N-*M

exists on Ω. Then
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(32) D*(Ω n N; dΩ)φ = \ dG»^x> ') φ(χ)dSx

ho dnx

and similarly as in (30) we deduce

(33) D*(Ω; dΩ)φ = ( dG°(x> '> φ{x)dSx .
idΩ dnx

10. We assume that dim (Ω; L) > 0 or equivalently there exists the
Green's function GΩ(x, y) on Ω for L. The function

(34) ea(y) = (D*(Ω; dΩ)l)(y) = \ dG{x' »> dS.
J3Ω dnx

is a positive solution of L*u = 0 on Ω with boundary values 1 on dΩ.
Using the function eΩ we define the Martin kernel KΩ{x, y) on Ω by

(35) KΩ(x, y) = GfXx, y)/efχy)

for (x, y) e Ω x Ω with x Φ y and KΩ(x, x) = + oo for xeΩ. Define a
metric ^(j/i, /̂2) on Ω given by

(36) ^(ylf y2) = Σ εJ ίΓ^^, y j - KΩ(xn, yΛ)\
ιn=ι

where εn > 0 with Σ ϊ U ε^ = 1> ί̂  K î a countable dense subset of i2, and
\a\* = | α | ( l + l^l)"1 for real numbers α and | + oo|* = 1. The metric
space (β, p) is homeomorphic to the original topological space Ω. Let Ω'
be an end of M with i2'ci2. By (29) and (31), \τdyeΩ,K{x, y) > 0 for
every xeΩ — Ωf. In view of this, /O-Cauchy sequences {yn} in β are
divided into three categories: {yn} —• dβ, {τ/w} —+yeΩ, and {?/w} —>δ. Let
β* = Q\ be the space obtained from Ω = (9β) U β by adding all ^o-Cauchy
sequences {?/„} —* S. By virtue of the Harnack principle, i3* is compact,
and for this reason, 42* = 42J is referred to as the Martin compactification
of Ω with respect to L. We call /3 = βL = 42* - fl the Martin ideal
boundary of 42. The identity of β onto Ω is extended to a continuous
map of 42 U β onto β U λ

The Martin kernel KΩ(x, y) can be extended continuously to fix
(42 U β). Let y e 42. From (34) it follows that

dSm ± m

dnx

Therefore if y* e β, then

σ(KΩ(., y*)) = \ dKa(x'r)dSx = lim ( dK**> V)dS. = 1
J3Ω dnx v^y* JdΩ Snr
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and thus (cf. no. 2)

(37) J5T(β; L) = {KΔ( , y*); y*eβ}a ^(Ω; L) .

11. We denote by cδ {3ίΓ (Ω; L)} the closed convex hull of the
set 3f{Ω\ L) in if (β; L). We shall show that

(38) To{3Γ{Ω\ L)} = ^*(β; L) .

For this purpose it is sufficient to show the existence of a unit regular
Borel measure v on β for any fixed u e ^ ( β ; L) such that

(39) u(x) = \ KΩ(x, y*)dv(y*) .

Let N and iVΊ be in ^(M) with M — Ω dNcz NczN1 and consider vx =
D{N, - N; dN)u and v = D(i3 - ΛΓ; 3ΛΓ)̂ . By the Green formula

(40) u(x) = \

for x eNΓ) Ω, where d/dn denotes the outer normal derivative with respect
to the region N Π Ω. Again by the Green formula

o =

On letting Nι—>M we obtain

(41) 0 = ί fax. y)ψ> - u{y)dGf>yΆdSy .
J8N\ dUy dΠy I

Since u — vt ^ 0 on N1 — N and u — vx = 0 on dN, vι-^v implies that
u — ve^{Ω — N; L). A fortiori

(42) vN(y) = eΩ(y)^-(u(y) - v(y)) ^ 0
OUy

on dN. Therefore the subtraction of (41) from (40) gives

(43) u(x) = \ Kΰ(x, y)dvN(y)
JdN

where dvN(y) = vN(y)dSy on dN. Observe that

( dvN(v) = σ(u) =\ \\ -^-KQ(x, y)dSx\dvN{y) = 1 .
JdN JdNKJdΩ dUy )

Hence there exists a subset {Nm}d^4^{M) such that dvm = dvNm converges
vaguely to a unit regular Borel measure dv on £?*. Clearly dv is a
measure on β and (43) implies (39).
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12. Since /3 c 42* is homeomorphic to SΓ(Ω; L)a ξ?(Ω; L) by the
natural correspondence y*-+KΩ(-, y*\ 5$Γ(Ω; L) is compact and hence
closed. By the Milman theorem (cf. e.g. Dunford-Schwartz [1]), (38) as-
sures that Ex. ^(42; L) is contained in the closure of SΓ{Ω\ L) which is

; L). Therefore if we set

A = {y*eβ; K^9 f )eEx. &>(Ω; L)} ,

then we conclude that

(44) Ex. ^(42; L) = {KΩ( , y*); y* e/SJ .

Since ψ: KΩ{ , y*)—>y* is a homeomorphism from Ex. ^(42; L) onto βlf

= dv(KΩ(.,y*))

is a regular Borel measure on & if dv is on Ex. ^(42; L). Therefore
by (9) in no. 3 we deduce the fundamental theorem of Martin: there
exists a bijective correspondence u—»μ between ^(42; L) and the set of
regular Borel measures on βx such that

(45) u(x) = \ K(x, y*)dμ(y*)

for xeΩ (cf. Itδ [4], Sur [10], etc.). In particular we have

(46) dim(β; £) = # & .

Suppose dim (Ω; L) = 1. By (37) and (46) we see that #/3 = 1. Conversely
#/3 = 1 implies that #& = 1 which in turn implies dim (42; L) — 1. Thus

PROPOSITION. // dim (42; L) > 0, then the Picard principle is valid
if and only if the Martin ideal boundary βL consists of a single point.

4. Riemann theorem; Proof of the main theorem.

13. We denote by ^(42; L) the vector space of bounded solutions
of (4) on 42 with continuous boundary values on 342. We say that the
Riemann theorem is valid for (42; L) if

lim u(x)
x->δ

exists for every u e &{Ω\ L). It is clear that if the Riemann theorem
is valid for (Ωo; L), then it is also valid for (42, L) with 42 z> Ωo. We
shall discuss the Riemann theorem for (42, L). So far as we can consider
L we have to assume dim (42, L) > 0 or equivalently dim (42, L*) > 0.
Using the operator D* = J9*(42; 342) in (33) we maintain

(47) ^(42; L) = {D*φ/eΩ; φ e C(342)} .
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To prove this first observe that u is a solution of L*u — 0 on an open
subset of Ω if and only if v = u/eΩ is a solution of Lv = 0. Therefore
v = D*φ/eΩ is a solution of Lv = 0. If φ ^ 0, then D*(N Π fl; 5i2)<? ^ &βΛ

with A; = maxdΏφ (cf. no. 9) and a fortiori D*φ/eΩ ̂  &, i.e. D*φ/eΩ e
&(Ω\ L). The same is true for general φ by considering φ = φ+ — <p~
with <?* = max (±<p, 0). Conversely, let v e &(Ω; L). Take an N e ^Γ(M)
with M — ΩczN and let wN be a solution of (7) on NΠ Ω with boundary
values 1 on dΩ and 0 on dN. Then ê w^ = D^iV Π β; 3.0)1. Thus

lim wN = lim D*(iV n
N-*M

i.e. lim^^^w^ = 1. If v\dΩ = 0 and A; = sup^l^l, then

on N Π Ω. On letting N-+M we conclude that # = 0. For general v, let

vQ = v — D*v/eΩ .

Then voe&(Ω; L) and vo|3β = 0. Therefore v0 = 0 on β, i.e. v = D*v/eΩ

and we deduce (47).

14. Take any v e &(Ω, L). By (47) we have eΩv = D*(β; 3fl)v. In
view of (33) we have

en(y)v(y)=\ dGf'yK(x)dSx.

A fortiori, using the Martin kernel (35), we deduce the following repre-
sentation

(48) v(y) - ( dKί*x> yK(x)dSx .
J 9Ω dnx

Clearly the right hand side of the above is continuous on Ω U βL and so
is v. Since v is continuous on Ω, we conclude that v is continuous on Ωf:

(49) <S&(Ω; L) c C{Ω*L) .

In particular, ^(Ω; L)\βLd C(βL). We maintain

PROPOSITION. The family &(Ω; L)\βL separates points in βLf i.e.
for any pair (y?f yf) of distinct points in βL there exists a v e &{Ω\ L)
such that v(y*) Φ v(yf).

Observe that, by (48), v(yf) = \^JdKΩ(x, yf)/dnx)v(x)dSx (j = 1, 2) for

every v e &(Ω; L). If the assertion were not true, then
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dnx

for every φeC(dΩ), where k(x) = KΩ(x, yί) — KQ(xf y*). Therefore
dk(x)/dnx = 0 on dΩ. We thus have

Lfc(α ) = 0 (x e Ω) , Afa) = - ^ 1 = 0 (x e dΩ) .
dnx

This implies that k(x) = 0 on Ω, i.e. yf = y*f a contradiction.

15. PROOF OF THE THEOREM IN INTRODUCTION. We are ready to
prove the theorem stated in the introduction. Since the identity of Ω
can be continuously extended to a map of Ω (J β onto Ω [j δ with β lying
over δ,

(50) lim sup u(x) = max u(/3L) , lim inf u(x) = min
5 5x-><5

for every u e &(Ω, L). In view of Proposition 14, \\mx^δu(x) exists for
every u e &(Ω, L) if and only if βL consists of a single point, which is,
by Proposition 12, equivalent to dim (Ω, L) = 1. This completes the proof.

16. Suppose that the Riemann theorem is valid for (ΩQ, LΩQ). Let
Ω be any end of M with ΩaΩ0. By Proposition 7 and the main theorem,
the Riemann theorem is valid for (Ω, LΩ). Since eΩJeΩ e ^?(Ω, LΩ),

lim eΩo{x)/eL(x) = a > 0
x—*δ

exists. If v is a bounded solution of LΩQV = 0 on a subend of Ωo con-
taining Ω, then ^ = eΩov is a bounded solution of L*u = 0 on Ώ. Since
u/eΩ = (eΩJeΩ)v, w = u/βj e &(Ω, LΩ) and

lim ^0*0 = (lim w(x)) / (lim (eΩn(x)/eΩ(x)) = α" 1 l im^(x) .

Thus we see that the Riemann theorem for (β, L) is the property of
ideal boundary δ in the following sense:

PROPOSITION. The Riemann theorem is valid for (Ω, L) if and only
if l i m ^ u(x) exists for every bounded solution u of Lu = 0 on any
subend of Ω.

5. An example.

16. We take B: 0 < | z \ < 1 (z = x + iy) as Ω with δ: z = 0 and consider

Lu(z) = ΔM(S) + &(a;) Vi6(2;) + 0(2)^(2)

on B: 0 < | z | ^ 1 with the plane metric. First we remark that the
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mapping L —* L is not injective. For the purpose consider

(51) LPu(z) = Au(z) + 2V log eP(z) Vu(z) + P(z)u(z)

where P(z) ^ 0 is of class C1 on B and eP(z) is a bounded solution of

(52) Au(z) = P(z)u(z)

on B with boundary values 1 on dB:\z\ = 1. The existence and the
uniqueness of such an eP can be seen as follows. Let un be a solution
of (52) on 1/n < \z| < 1 with boundary values 1 on \z\ = 1 and 0 on
\z\ = 1/n (n ^ 2). Since un is increasing and 0 < un < 1, u = lim^oo un

exists on B and is a required. If v is another such solution, then w =
{u — vf satisfies Aw = 2P2 + 2(Vw)2 >̂ 0 and a fortiori w is subharmonic
on B with w = 0 on dB. By the minimum principle applied to the super-
harmonic function — εlog \z\ — w(z) (ε > 0), we conclude that w = 0. The
adjoint Lp of LP is given by

L%u(z) = Au(z) - 2VlogeP(z) Vu(z) + (21V log eP(z) |2 - P(^ )M^) .

By a direct calculation we see that L*eP(z) = 0 on 5. We wish to show
that

(53) eP = D*(B; 3B)1 = eB .

Since D*(Bn; dB)l ^ eP with Bn: 1/n < \z\ < 1, we see t h a t w = eB/eP =
lim^oo D*(Bn; dB)l/eP ^ 1. Since LP(weP) = L*eB = 0 and LPeP = 0, a direct
calculation shows that Δw = 0. Therefore w is a bounded harmonic
function on B with boundary values 1 on dB. By the classical Riemann
theorem, w = 1 on JS, i.e. (53) is valid.

17. In view of (53), we can rewrite LP as

LPu{z) = Au{z) + 2V log^OeO VΐφO + P(z)u(z) .

Therefore the associated operator LP to LP on B is, by (7)

(54) LPu(z) = Δ^(z) .

Clearly Δ on ΰ is Δ. Thus we see that L —• L is not injective. Since
the Riemann theorem is valid for (B, Δ), by our main theorem we con-
clude that the Picard principle is valid for (2?, LP\ i.e.

(55) dim (B, LP) = 1

for every P(z) ^ 0 on B: 0 < | z | <̂  1 of class C1. Since we have a feeling
that dim (J5, L) = 1 can occur if L is, in a sense, close to Δ, (55) is a
rather unexpected phenomenon because LP may be viewed far distant
from Δ if the singularity of P at z = 0 is 'wild'. This pathology pro-
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vably cannot occur if we require L to be self-adjoint.
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