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0. Introduction. As is shown in [6] and [8], the following nonlinear

differential equation:
d’x dx \?

(E) na(l — 2) 2L + <Et'> +(1—a)nat—1)=0,
where n(> 1) is a real constant, is the equation for the support function
2(t) of a geodesic in the 2-dimensional Riemannian manifold O, with the
metric:
(0.1) dst = (1 — u® — )" (1 — v)du® + 2uvdudv + (1 — u*)dv?}
in the unit disk: %* + v* < 1. O can be regarded as a surface of re-
volution in the 4-dimensional Lorentzian space punctured at a point from

a closed one [10].
Any non constant solution x(¢) of (E) such that

x? 4+ (—diy <1

dt
is periodic and its period T is given by the improper integral:
0.2) T—2 § do _,
*Ji-o—o(E - 1)
x
where
0.3) C = (a)*(1 — a) = = (a)*(1l — a})™*

O<ag,<Va<a <1, a=1/n)
is the integral constant of (E) and 0 < C < A = a*(1 — a)'™°.

By means of the above mentioned geometrical meaning of x(t), T
represents the angular period of a geodesic of O? in the unit disk. The
following was proved in [4]:

(i) T is differentiable with respect to C,

(ii) T'>mr,

(iii) limge T = 7 and lim,., T =V 2 7;
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and then the following inequality:
U T<Va2r

was conjectured in [5] and [11] by means of a numerical analysis of (E)
done by M. Urabe [11]. This inequality has been proved recently in [8]
and [9] in cases of n = 3 and 1 < n < 8 respectively.

In [6], the author conjectured also that T is @ monotone increasing
Junction of C which will imply (U). He will prove this conjecture by
means of an analysis on a related Riemann surface with OZ.

1. Preliminaries. The differential equation of geodesics of O is

ngi :n( v—i—u%){l v+2u'v——+ 2)( )}

in the coordinates (u, v), which can be written as

dr dr\*
E 1—17 + + 2 2(—— + 1 - r)(nr*—1) =
E)  ( )daz {(n + 2)yr* — 2} do) (L — r)mr* —1) =0

in the polar coordinates (7, 6) in the (u, v)-plane, i.e. u = rcosf, v =
7 sin 4.
The differential equation (E’) has the following first integral:
2
(3—2) =Crl —r) —rQ —1r),

where C, is a positive integral constant. Any solution 7(f) of (E’) such
that » # 0, 0 < <1, is periodic and its period @ is given by the im-
proper integral:

(L1 6 = 2["[Crt — v — L — ) dr

1 —

where
il -t =r@d - ) =1/C,,
O<r<Va<r<l.

If we put C, =1/C", then we get r,=a, and r, = a,, and we can
prove the equality:
o=T
by making use of the properties of the solution x(t) and its geometrical
meaning. Furthermore, if we change the integral variable in (1.1) from
r to © by nr* = x, then we obtain easily

da
22V (n — x){w(n — x)*™* — ¢}

’

1.2) T =T(c) = 1/nc§



GEODESICS OF 0% 413

where
(1.3) c=(n0)" = x(n — x)" ' = 2(n — x)"*,
(1.4) <, <l<z, <m.

Now, we try to express T(c) by means of complex analysis. If we
take a piecewise smooth, oriented, simple close curve 7 in the complex
z-plane such that x, and x, and 1 are inside of ¥ and the zero and » and
the other solutions than z, and z, of the equation:

(1.5) 2(n—2)t—c=0

are all outside of 7, and the orientation of v is coherent to the canonical

Yy
(n _l)n—-l

y=a(n—z)""L

FiGuUrE 1.

one of the z-plane, then T'(¢c) can be written by the integral along 7 as
follows:
V' ne S dz

1.6 T(c) = — .
(1.6) (©) 2 Jrzv(m — 2){z(n — 2)"* — ¢}
This expression of T(c) sets the integral (1.2) free from the improper
property based on the interval (x,, «,) of integration and shows that T'(c)
is analytic in ¢ for 0 < ¢ < (n — 1)*%.

Differentiating (1.6) with respect to ¢, we obtain

T = - %\/% Sr{ 2V — z){z(];z e L

C
i zT/(n —2)z(n — 2)" " — ¢P }dz ’
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i.e.

, _ _1‘ E (,n — z)n—S/zdz
(1.7) T(C) - 4 e STV{Z(’N; — z)'n——l — 0}3 ‘

Now, we set

(1.8) I(c): = g

(n — 2)"dz
"V 7{g(n — 2" " — ¢
If we can prove the following inequality:
I(¢)<0 for 0<c<(m—1)*,
then the period T given by (0.2) is monotone increasing as a function
of C for 0 < C < A.

2. A Riemann surface related with the integral I,(c). Now, we define
a Riemann surface F = F,(c¢) in C* with the coordinates (z, w) by the

equation:
2.1) zZ(in — )t —w=c,

which is an algebraic curve when % is an integer. The closed curve 7

in (1.8) can be considered as an oriented closed curve on the surface and

the integral (1.8) as an integral along 7 on % . Therefore the value of

I,(c) does not change even if we replace ¥ by another piecewise smooth

closed curve through a piecewise smooth homotopy on .&# whose projec-

tion on the z-plane avoids the roots of the equation (1.5) and z = .
Let b > 0 be a real constant such that

(2.2) b=vm -1 —¢,

then the projection 7, and 7, of the curve ¥ on # onto the z-plane and
the w-plane respectively may be illustrated as in Fig. 2, taking into
consideration of the transition of integrals from (1.2) to (1.6).

, z-plane w-plane u

l.(?

FIGURE 2.
In fact, since we have
(2.3) ' {z(n — 2)"YY = n(@l — 2)(n — 2)"*

and
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(2.4) {#(n — 2)"7}" = — n(n — 1)(2 — 2)(n — 2)"°,
we obtain easily from (2.1) around z = «;, (+ = 0, 1)
n(l — z)(n — )"z — x) + O((z — @.)) = w*,

from which we get the relation

— w? 4.
(2.5) z2— 2, = W — 2)m = 7) + O(w*);

and we obtain around z =1
o M1 D" — 13 + 0z — 1)) = w?
or

2D 1 + O — 1) = B — wt

= F 2b(w F b) — (w F b)*,

from which we obtain the relation:

(2.6) wFb=TF ”‘(”—Zbll"—_i(z 1P 4 Oz — 1))
These relations implies the correspondence between 7, and 7, as is shown
in Fig. 2.

Now, differentiating (2.1) we have n(l — z)(n — 2)"*dz = 2wdw and
using this the integrand of (1.8) can be written as

(n — 2)"**dz _ (n =23 2wdw

Vien — 2" — ¢cf® w® w1l — 2)(n —2)~ 2’
hence we get the expression of I, by

S (n — 2)"*dw
r (1 — 2w

@2.7) L) = %

Next, we need the following lemmas with regard to the integrals
(1.8) and (1.6).
LeEmMMmA 1. If n> — 1, then
li (,n _ z)n—3/2dz _ 0

pae Slzl=r'|/{z(n — 2"t — ¢p

ProoF. Setting z = re¢*’, for sufficiently large r there exists a posi-
tive constant K, such that
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(n — 2)"**dz

V{z(n — 2)*" — ¢ = Kprtritad)

Hence we have

(n — 2)"*"*dz ] < O K.p—(nir2
§1z1=r1/{z(n s C L ’
which implies this lemma. g.e.d.

REMARK 1. Let A, be a set of subarcs on the circle |z| = » with
a bounded angular measure from 0, then we have also
S (n — 2)»3dz —0
41V {z(n — 2)* " — ¢ )
LEMMA 2. If n > 1/2, then

. . n—3/2dz

lim § (n — 2) =0.
le-ni=rV{2(n — 2)"* — ¢}

PROOF. Setting z = n + 7¢', for sufficiently small r there exists a
positive constant K, such that

(n — 2)"*%dz

VV{iz(n — 2)" ' — ¢f

lim

r—00

r—0

= K™% |do| .

Hence we have

(’n — Z)n-s/zdz l< o K.o-H/2pn1/2
SIz—nI:r'[/{z(n — 2"t —cF = 26 T ,
which implies this lemma. Led.

REMARK 2. Let B, be a set of subarcs on the circle |z — n| = r
with a bounded angular measure from =, then we have also

lim (n — 2)"**dz

r=0 SBrl/{z(n — 2" —cf
Finally, let £ be a solution of the equation (1.5) other than x, and «,.

LEMMA 3.
dz _

1i S =0
i le—ti=r 2V (0 — 2){2(n — 2)"* — ¢}
ProoF. It is clear that { # 0, 1 and n and { is simple by (2.8).
Setting z = { + re?, for sufficiently small r there exists a positive con-
stant K, such that
! dz < Kn= 22| d6|
2V(m—2)e(n —2)" " —c} |~ LV —-On—0)
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Hence we have

'g dz S 277.'K37’b_1/2’l'l/2
—ti=r2V/ (n — 2)#(n — 2)" " — ¢} | ~ |CVT = Qn — O]

which imply this lemma. q.e.d.

REMARK 3. Let C, be a set of subarcs on the circle |z — {| = » with
a bounded angular measure from ¢, then we have also

. dz —
1:_1}01 SI:—CI='r 2V — 2)z(n — 2" — ¢} 0

3. Changes of the curve of integration. In order to find a suitable
change of the curve 7 of integration on the Riemann surface .#,(c), we
shall investigate the correspondence between z and w on this surface.

By the argument in §2, we see that the singular points on & ,(c) C
C*? are

(i) (=, 0), (2, 0) and (£, 0), where { are the solutions of the equa-
tion (1.5) other than z, and x,;

(11) (1’ b) and (1: - b)y

(iii) (n, iV ¢) and (n, — iV ¢), if n > 2.

The reasons of singularity are that w = V'2(n — 2)*~! — ¢ vanishes
at z = x,, 2, and £, and {2(n — 2)"™* — ¢}’ vanishes at 2z =1 and n (when
n > 2).

(2.5) and (2.6) show the state of .#,(c) around the points (zx,, 0),
(x, 0), (1, 0) and (1, — b).

In the following, we suppose » = 2 and investigate the state of .#,(c)
around the points (n, 71 ¢) and (n, — i1V ¢ ). Setting

z=n+re? (r>0) and w= 1V ¢ + te* (t > 0)

and substituting these into (2.1), we have

(n + re?){ret@tmmrt — ¢ = — ¢ £ 211V ¢ e’ + ¥,
where m is an odd integer, hence
—1,%(n—1)(0 i{nd - — ol i
nr*le (n—1) (6 +mm) + ,r'nez(n +(n—1ymr} 2'[/6156”‘”‘”/2’ -+ tzezw ,
which implies

— n n—1 n
(3.1) b= 0=+ O

and
gv:(n—l)(ﬁ+mn)$—;”—+0(r).
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From the above relation between the arguments § and @, we get espe-
cially for ==

@zM—Mm+M$%+Mﬂ.

Considering the correspondence between 7, and 7, as is shown in Fig. 2,

we may put m = — 1 for our purpose. Therefore we have the relations
(3.2) ¢=M—Dw—w—gw%M0ammdeV7)

and

(3.3) ®=m—1)0 — 7) + —725 + O(r) around (n, — i1V ¢c).

Now, for sufficiently small » > 0 we can choose two angles 6, = 6,(7)

and 6, = 6,(r) around (n, 217 ¢) such that
(i) 60, < m and the value @, of ® in (3.2) for 6 = 4, is —3x/2

and
(ii) 6, > m and the value @, of @ in (3.2) for ¢ = 6, is =w/2.
Since we have for § = 7w the equality ¢ = — 7/2, we may put
(8.4) T —0,= ”1+om
and
(8.5) 0, — 1 = ”1+0m.
If ni> 2, we may consider for sufficiently small » as
(3.6) 0<b,<rm and w<0,<2rm.
z-plane w-plane
¢
AL WT
02
Ficure 3.

Using the above argument, we shall firstly deform the original curve
¥ in the integral (1.8) to a curve 7, on #,(¢) as is shown in Fig. 4,
t =1, 2, without through the singular points described in this section.
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z-plane
—/\«M
T —

| ———————
NS\ "

FIGURE 4;.

w-plane

FIGURE 4,.
Now, we consider the point
w=1iVe+y (y>0)
in the w-plane. If y is sufficiently small, then we can choose uniquely
the points o,(y) = n + 76" and 0,(y) = n + 7,62 around z = % in the z-
plane such that
(0.(¥), iVe + y), (0y), iV'ec + y)e F,(c) and 6, = 6,(ry), 6, = O,(r) .

Since we have from (2.3)

to
z-plane 1
ay(yy)
o/
[ = = - _/-\4'__/\ /-\ 2 </’
n G DEN
0'3(7/2)
~
P2LS

FIGURE 5;.
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We +Y;

We + Yy

[\
Kb/ 0 K \J
w-plane

(g=VeFpmTar) | Ve

)-ig
FI1GURE 5,.
'h/c + ?/1
Wety,

1
A 3w
'l
I’

/ iv'e

\lfz(yz) ( w-plane
‘\
\
\
\%

¥ -
\

FIGURE 6.

nw(l — 2)(n — z)** dz _ 2w
dw

and so for w = iVec + y (¥ > 0) we have dz/dw # 0. Therefore, if we
vary ¥ in the interval 0 < y < o, then we obtain two curves o(y) and
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0,(y) starting from the point z = n and diverging to the infinity.

Then, we shall deform the curve 7, to a curve 7, on #,(c) as is
shown in Fig. 5,, 1 = 1, 2, without through the singular points.

Finally, we take sufficiently large positive numbers y,, ¥, and p such
that

loy,)| = loxy:)| = p > sup {[C]}

where { are the solutions of the equation (1.5). This choice of y, and
Y, is assured by means of the above consideration about #,(c). Then, we
deform the curve 7, to a curve 7, on .%,(c) as is shown in Fig. 6.

In this deformation from 7, to v,, we admitted that the intermediate
piecewise smooth curve passes through the singular points (¢, 0) € F.(c),
where { are solutions of (1.5).

LEMMA 4.

Vne S dz
T) = — 7w — .
(©) 4 2 Jnzt/(n — 2){z(n — )" — ¢}
PrROOF. By the method of the construction of the curves 7, and 7,
we get easily for sufficiently small » > 0
S dz _ S dz
nzV'(n — 2){z(n — 2)** — ¢} rzV/ (n — 2){z(n — 2)"" — ¢}

dz
+ §|z|=rz1/('n —2){ez(n — 2)" ' —¢)

On the 2nd term of the right handside, 2 = 0 corresponds to w = — iv'e
from the arguments in §1 and this section. Hence we obtain easily

* dz _ _ 2w
lei=r 21/ (n — 2){z(n — 2)" " — ¢} Vne

Furthermore, we have

S dz _ S dz
nzV'(n — 2){z(n — 2)"* — ¢} eV (1 — 2) 2 — 2" — ¢

and in the right hand side we can also replace v, with 7, by virtue of

Lemma 3. Hence we obtain the formula expressed in this lemma.
q.e.d.

LEMMA 5.
_ (n — 2)" 2z _2( (n—2)"dw
L) Srﬂ/{z(n —2)" P —¢cf n Sra 1 — 2w

Proor. By (1.6), (1.7) and Lemma 4, we obtain




422 T. OTSUKI

I(c) = —4\/£T'(c)
n
=_4\/£—L1_{__V”“’S dz }
n de 2 Jnzv(m—2)zn — 2" — ¢}
By the analogous computation to that of (1.7), we obtain the formula
expressed in this lemma. q.e.d.
4. Proof of I,(c) <0, when n > 2.

LEMMA 6. When n > 2, the curve o,(y) (0 < y) lies in the wpper
half plane and the curve oly) (0 < y) in the lower half plane of the
real axis of the z-plane.

ProOF. For the real variable x, we have

(i) 2(n—2)" ' —c=0for xS 2 < o5

(ii) —c¢c=22xn—a2)" ' —ec<0for 0= <w,and o, < x = n;

(ii) z(n —2)" ' —ec< —¢ for <0
and

(iv) z(n — )" — ¢ = " Vg(x — n)" ™ — ¢ for n < 2.

Now, for sufficiently small y > 0, the statement is true by (3.6).
From the above property of the function x(n — x)*™* — ¢, we see that if
the curves o,(y) or o,(y) meet with the real axis of the z-plane, the co-
ordinate xz* of the meeting point must be z* < 0 or n < x*.

If «* < 0 and o,(y*) = z*, then the curve o,(y) must lie on the real
axis around y* since {z(n — 2)"'},_, # 0 for # < 0, in another words, a
small neighborhood of z = z* corresponds regularly to a small neighbor-
hood of w = — iV'¢ + y* through the Riemann surface .#,(c). Hence,
continuing this process, we can take x* sufficiently near 0, then we ob-
tain a contradiction, because y* becomes then sufficiently small. We
shall obtain also a contradiction in case o,(y*) = x*.

Next, n < z*, from (iv) of the above mentioned facts, it must be

ei(fn—l)n — 1 — eir: ,
i.e. n = even. If n = even, then we have
2n—2x2) 't —c=—{c+2(x—n)"'} for n<¢g
and
c+ax(x—n)t>ec.

By an analogous argument to the case z* < 0, we can show that the
both curves o,(y) and ox(y) can not meet with the real axis on the in-
terval n < & < . q.e.d.
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PROPOSITION 1. When n > 2, we have I,(c) <0 for 0 < ¢ < (n — 1)*.

PrROOF. By Lemma 5, we have
In c) = g (n — Z)”_s/zdz .
©) iV {z(n — 2)""" — cf
By means of Remark 1 on Lemma 1 and Remark 2 on Lemma 2, we
obtain easily
I(c) = S (n — 2)***dz _ (n — 2)" ¥z
() aV{z(n — 2" — ¢ Saﬂ/{z(n — 2zt —cp

_2 S (n—2)*dw [ (n—2)*dw

{5 L et

n 1 — 2)w? 1 — z2)w?

Now, along the curves o,(y) and o.,(y) we can set

z=0,y) =n+ riyeliv, j=12,
and
(4.1) 0<6(y)<m and 7 < 6(y)<2r

by Lemma 6. Since we may put w = i1 ¢ + y, we have for the curve
o\(¥)

4.2) (n—2)"dw _ _  iVrer  d(iVie + y)
' 1 — 2)w? (n — 1) + re —(c+v)
_ V7re(n — 1) + r, e} dy

T 2(n — 17 + 7 + 2(n — Lyrgcosg} Vi + 9y
here we have used the expression
n—z=reftmm  m=—1,

in the argument of the beginning of §3. Hence we obtain

4.3) (n — 2w _ _ {(n — 1)V7r + V73 cos 6,/2 . dy
) 1 — 2)w? 2((n — 1P + 72 + 2(n — L)r,cos6} V'(c + y)°

+ {imag. part},
in which the real part of the right hand side < 0 by (4.1).
Analogously, along the curve o,(y) we have
(n —2)%dw _ _ {(n — D)V'r, + V/r}} cos 6,/2 . dy
1 — 2)w? 2((n — 1P + 72 4+ 2(n — 1)r,cos6,} V(e + y)
+ {imag. part},

in which the real part of the right hand side > 0 by (4.1).
Since I,(c) is real valued, we obtain
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_ 2 (n — 2)"*dw (n — 2)"*dw
I%c——{g? = 2)%dw S_______} 0
(©) n Sal 1 - 2w’ # o (1 — 2)wk <
by means of the above mentioned facts. g.e.d.
PROPOSITION 2. When n = 2, we have IL(c) < 0 for 0 <c¢ < 1.

ProoF. In this case, .#,(c) is given by 2(2 — z) — ¢ = w* and its
singular points are (z, 0), (x, 0), (1, ) and (1, — b) in all, where b =
V1 —¢. We have

2" _ (@ "dw
1= | e ) e

Since the equation (1.5) has the only real roots z, and x,, we obtain the
equality as in case n > 2:

_ (2 — 2)dz _ (2 — 2)%dz
hle) = Sol V{22 — z) — ¢ Sﬂz V92— 2) — cf

On the other hand, since the point (2, ¢ ¢ ) is regular.on .#;(c) and
for real x > 2 we have

22—x)—c=—{c+a@@—2)}, xzx—2)>0,

we obtain easily that
(4.4) 0(r) =0 and 6,(r) =21 for 0 < 7.

Hence the both curves ¢,(y) and o.(y) (0 < y) coincides with the half line:
2 < x of the real axis, including their directions by y = z(x — 2).

Now, we shall compute the integrand of I,(c) along the curves o,(y)
and o,(y). In this case, we can also use (4.2) and (4.3), then by means
of (4.4) we obtain: (i) Along o,(y)

(2—2)"dz  _ _ Vir, . dy __Vz-—2 dy )
V{z(2 — 2) — ¢f° 20+ 7r) Vie+uyy 2 —1) V(e +y)®'
(i1) along o,(y)
@—2Vde  _ Vi, | dy _Vz—2 dy '
Vi@ —2)—c¢ 20+7r) Vie+yl 2x—1) Viic+ y)
Hence we obtain
* Ve —2 dy :_25"“ Ve — 2dx
o (x—1) V(e + y) : Ve + a(x — 2)P

I(c) = — S

q.e.d.
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5. Proof of I,(c) <0, when 1 <n < 2. In this section, we shall
prove indirectly the inequality I,(c) < 0 for 0 < ¢ < (n — 1)*}, when 1 <

n < 2.
Replacing na* and nC by x and C respectively, the period T given

by (0.2) can be written as:

(5.1) Te): = | s e o
where

(5.2) C=uxt(n—x) *“=a(n—z)*, a=1/n
and

(5.3) <, <1<, <n.

We shall denote anew the period given by (1.2) as

(5.4) 0,(c): = V'ne Sw o x){x?:: L
where

(5.5) c=0C"=x(n — x)"".

As is stated in §1, we have the equality [6]
T(x;) = 6,(c) .
The following was proved in [9].
LEmMMA 7. T.(z,) = T.(9,), where m = nj(n — 1), y, = m — (m — 1)x,.

PROPOSITION 3. When 1< n <2, we have I,(c) <0 for 0<c<
(n — 1)~

ProorF. By the above change of notation and (1.7), (1.8) and Lemma
7, we obtain

L@=-1S o0 =~ S drey— 4 [l
=—44%£ 2 0,m,
\/’n de (k)
where & = y(m — y,)"* by (5.5) replaced n, x, by m, y,. Hence, we have
(5.6) L =—4,2. 2. dgq
n C

Since 1 < n < 2, we see easily that 2 < m. Hence, by Proposition 1 and
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(1.7) we have

d
(5.7) —-6,(k) > 0.

On the other hand, from the equalities:
c = mo('n' - xo)n—1 = xl(n - x1)n_1 y Yo=m — (m - 1)“’1 ’

we get

dh _ dh dy, de dh | de
_ 11— — 1 Padhdy Bt
de  dy, dw,  de m =13 2.

_ _(m = 1)m@A — y)(m — y)"*
'n(l - m1)('”' - wl)n—z

hence by 1 <z, <% and 0 < y, < 1 we obtain
(5.8) dh/de > 0.
Thus (5.6), (5.7) and (5.8) imply I,(c) <O. q.e.d.

Finally, from (1.7), (1.8) and Propositions 1, 2 and 3, we obtain our
main theorem.

’

THEOREM. For any real constant m > 1, the period T of the non-
linear differential equation (E) given by

T — 250{1 - C(xl — 1)”"}_”20190 ,

where C = (a3)"(1 — ad) V" = (@)*A — a?) V" (0 < a, < Vin <a, <1),
18 increasing as function of the integral comstant C (0 <C < A=
1/n)" ™1 — 1/n)7H").
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