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0. Introduction. In [8] and [3], W. F. Pohl and E. A. Feldman
have considered higher order tangent bundles of a smooth manifold M
and the higher order nondegenerate immersion of M into Euclidean spaces.
In [9], [10], [11] and [12], H. Suzuki obtained some higher order non-
immersion theorems of projective spaces into Euclidean spaces or projec-
tive spaces by means of characteristic classes, 7-operations and spin
operations.

In [14], C. Yoshioka obtained complete formulas of Stiefel-Whitney
classes of higher order tangent bundles of complex projective spaces and
Dold manifolds and he applied his results to higher order non-immersions
of these spaces. In [7], the complete formulas of higher order tangent
bundles of complex projective spaces and lens spaces in J£O-rings of these
spaces and the complete formulas of Stiefel-Whitney classes of higher
order tangent bundles of quaternion projective spaces are obtained. In
[5], J. A. Little studied singularities of submanifolds of higher dimentional
Euclidean spaces and he obtained many valuable results. In this paper,
we show that the well known embeddings of Grassmann manifolds in
hyperplane of Euclidean space of all hermitian matrices are inflection-
free, i.e., second order nondegenerate. Our result is a generalization of
J. A. Little's result on real projective spaces (Theorem 3.7 of [5]).

This paper is divided into three sections. In the first section we
give descriptions of osculating space, inflection point, inflection-free
immersion and first order normal form of immersion and we show
some examples on Klein bottle, the second section contains the main
result and its proof and in the final section we give an alternative
proof of the Theorem 1.1 in [4] and a remark on the Lemma 4.1 in the
same paper.

1. Preliminaries. Let X:Mn—+RN be an immersion of a smooth
manifold of dimension n into a Euclidean space of dimension N. Let
peMn, and uί9 ---,un local coordinates valid in a neighborhood of p,
with nγ — = un = 0 at p.
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Let

the derivatives being evaluated at p. By the (second order) osculating
space of X at p we mean the linear space through p spanned by the Xt

and Xi3 . If the osculating space at p has dimension (l/2)n(n + 1) + n or
N, the maximum possible, we say that X is second order nondegenerate
at p, and if not so, we say that p is an inflection point (first order
inflection point). It is not hard to see that these notions are independent
of the choice of the local coordinates u19 -- ,un. We say that X is
inflection-free or second order nondegenerate, if X is second order non-
degenerate at every p in M*. Let Tp and Np denote respectively the
tangent and normal spaces of X at p. For any vector v in RN let v1

denote the orthogonal projection of v into Np. Now let x(t) be a curve
on Mn such that x(0) = p. Then the orthogonal projection into Np of
the second derivative of X(x(t)) at 0 depends only on the first derivative
of X(x(t)) at 0, as is well known (at least in the case of curve on surface
in ordinary space, and as is proved in the same way in higher dimen-
sions). Thus we have a map vp: Tp —• Np which assigns to each v eTp

the orthogonal projection in Np of the second derivative vector of a
curve on Mn through p whose tangent vector at p is v. We say that
vp is the first order normal form or the second fundamental form of
X at p. To find an analytic expression for vp we consider the curves

Then
n n n

X (0) — 2 J %iXi t and Λ ((λr = 2-ι 2 J x^jXtj .

Hence

»p(Σ ViXi) = Σ tfXii + 2 Σ WiXii
vp is a vector-valued quadratic form. Then we may regard vp as

a symmetric bilinear form defined on Tp, valued in Np, i.e., vp\ O2(TP)-+NP

homomorphism, where O2(TP) is 2-fold symmetric tensor product of Tp,
as follows

ι>9(X<O Xi) = Xϊi

X is second order nondegenerate at p if and only if vp: O\TP) —* iV̂
is injective or surjective. If we regard vp: Tp-+ Np as a vector-valued
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quadratic form, X is second order nondegenerate at p if and only if linear
subspace generated by vp(Tp) is of dimension (l/2)n(n + 1) or equal to Np.

Now we give some examples on Klein bottle. Consider the equivalence
relation in R2 given by

(Θ + 2πm, (~l)mθ + 2πri) ~ (θ, θ) for ra, n = 0, ± 1 , ±2, .

The quotient space K under this relation is Klein bottle. For the
fixed real numbers R, r such that 0 < r < R, let X: R2 -> R\ X(θ, θ) =
(x, y, u, v) be as follows.

x — (R + r cos )̂ cos Θ y = (R + r cos 0) sin θ ,

u = r sinθ cos — ,
Li

v = r sin ^ sin — .

Then X induces a smooth embedding of K in i24. The following
map Y: R2 —* R* induces also a smooth embedding of K in R\ For the
fixed real numbers R, r such that 0 < r < R, let Y(θ, θ) = (as, 7/, w, v) be
as follows

x — f R + r sin 0 sin — j cos 0 , 2/ = ί i2 + r sin <9 sin — j sin θ ,

u = r sin 0 cos — , v = r cos

Set X(R2) = ίΓ* and Γ(iί2) = iί**. X, Y are universal covering maps
over K*f iί** respectively.

The set of all inflection points of iί* is a simple closed curve on iί*
such that

Rcosa

teos

COS

sin

sin

a cos
a sin

a cos

asm

Θ\
Θ

Θ
2
θ

2J

^Θ <Aπ

where sin a = r/i2(0 < a < ττ/2). The set of all inflection points of iί**
is a set of two points of iί** as follows

{(~J? + r , 0 , 0 , 0 ) , ( - i 2 - r , 0,0,0)}.

Next we give an inflection-free immersion of i ί in R\ For the fixed
real numbers 0 < a, 0 < 6, let Z: R2 -> R\ Z(θ, θ) = (x, y, u, v) be as
follows
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x = a cos θ cos θ y = a cos θ sin θ

u = b sin θ cos — v = b sin θ sin — .
2 2

Then the following proposition is easily seen by brief calculations.

PROPOSITION 1.1. The above Z:R2—+R* induces an inflection free
immersion of K in R\

It is easily seen that the second order tangent bundle of K is trivial.
Thus characteristic classes, 7-operations or spin operations do not serve
to study inflection-free non-immersion or non-embedding of K. The
author does not know if there is an inflection-free embedding of Klein
bottle K in iί4 or not.

2. Inflection-free embedding^ of Grassmann manifolds. For the rest
of this paper, F will denote the field R of real numbers, the field C of
complex numbers or the field H of quaternions. In natural way,
RdCd H. Let Fn be the right F-vector space of all ̂ -dimensional column
vectors and let GL(n; F) be the ̂ -dimensional general linear group over
F. Denote by M(n, m; F) the right vector space of all n x m-matrices
over F. Then M(n, m; F) is mw-dimensional over F. *: M(n, m; F) —•
M(m, n; F) will denote the adjoint operator, i.e., for AeM(n, m; F),
A* e M(m, n; F) is the transposed-conjugate matrix of A. The right
inner product over F for M(n, m; F) is defined as {A, B) = tr (A*B) for
A, B e M(n, m; F). Set M(n; F) — M(n, n; F) and denote by En the identity
matrix of M(n; F). Now for x e F, Re x will denote the real part of x.
Then Re x = (l/2)(ίc + x) for x e F> Re (yx) = Re (xy), i.e., yx + xy = xy + yx
for x, y e F. By these facts, we have the following lemma.

LEMMA 2.1.

Re tr (X) = — tr (X + X*) = Re tr (X*) for X e M(n; F) ,
Δ

Retr(ΓX) = Retr(XΓ) for X,YeM(n;F),

Re tr (AJ5*) = Re tr (A*B) , i.e.,

tr (AS* + £A*) = tr (A*B + J5*A) for A, BeM{n, m; F) .

Let £7(w; F) be the group of all unitary matrices of degree n over
F, i.e., U(n; F) = {UeM(n; F); ?7*[7 = # J . Then EΓfa; Λ) = O(n),
U(n; C) = Ufa) and I7(ii; J7) = Sp(n), in standard notations. Jϊ(^; F) will
denote the /J-vector space of all hermitian matrices over F, i.e.,
H(n; F) = {Xe M(n; F); X* - X}.

H(n; F) is of dimension (l/2)dFn(n — 1) + n over /?, where dF = 1, 2
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or 4 for F = R, C or H respectively. The inner product for H(n; F)
over R is defined by (X, Y) = Re tr (XY) for X, YeH(n;F). Set
Hμ(n; F) = { i G φ ; F); tr (X) = /*}, for μ e R. Then fl^w; F) is regarded
as a hyperplane in the Euclidean space H(n; F). Let U(n; F) act linearly
on H(n;F) in obvious manner: U(X)=UXU*, UeU(n;F) and
XeH(n;F). The following lemma is easily seen.

LEMMA 2.2. TAe action of U(n; F) preserves inner product of
H(n; F) and trace of each matrix of H(n; F). Therefore Hμ(n; F) for
μeR is invariant under the action of it.

The following lemma is well known [13].

LEMMA 2.3. For each XeH(n; F), there exists a UeU(n;F) such
that U*XU is a real diagonal matrix and the set of all eigenvalues of
a hermitian matrix is unique for the matrix.

For 0 ^ m <̂  n, M*,m(F) will denote the set of all orthogonal projec-
tions of Fn of rank m, i.e.,

M*m(F) = {P e M(n; F); P2 = P, P* = P and tr (P) = m) .

Then M*tm(F) c Hm(n; F). The following lemma is easily seen.

LEMMA 2.4. For PeM(n; F), the following statements are equivalent:

( i ) PeM m(F),
(ii) there exists a Ue U(n\ F) such that

Thus the action of U(n; F) on H{n\ F) is transitive on M*,m(F).

For 0 < m ^ n, set
VM(F) = {Ae M(n, m; F); A*A - EJ ,
VM(F) - {AeM(n, m; F); A*AeGL(m; F)} ,
Mn,m{F)\ the set of all m-dimensional F-subspaces of Fn.

Vn,m{F) is the Stiefel manifold over F, V'n>m(F) is the set of all
n x m-matrices over F of rank m and Mn>m(F) is the Grassmann manifold
over F. π: V'n>m(F)—+Mn>m(F) will denote the natural projection, i.e., for
Ae Vn,JJF), π(A)eMn>m(F) is the subspace spanned by m column vectors
of A. Consider the following map p: V'n>m(F)-+H(n; F) such that

p(A) = A(A*A)-1 A* for A e Vn,JF) .

The following proposition is well known.
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PROPOSITION 2.5. The above map p induces the smooth embedding

such that p* is a diffeomorphism of Mn,m(F) onto the submanifold
Mt,m(F) in Hm{n; F) and p = p* π.

Γ(F'), T(M*) will denote the tangent bundles of V%tJF), Λf*m(F)
respectively. Let dp: T(V') ~+T(Hm) = Hm(n; F) x HQ(n; F) be the dif-
ferential of p; V'n,m(F)-+Hm(n; F), where T(Hm) is the tangent bundle of
Hjn; F). N(M*) will denote the normal bundle of M*tJJF) in Hm(n; F).
Then we may consider as follows

T(V)= V'n,m(F) x M(n, m; F) ,

T(M*)czMZm(F)xH0(n;F),

N(M*)czMtm(F)xHQ(n;F).

Now we study dp and T(M*). V'n,m{F) is regarded as an open set
of dFmw-dimensional Euclidean space M{n, m; F) and p is the smooth
function defined on open set V'n,m(F), valued in the Euclidean space
H(n; F). Then we differentiate p(A) = A(A*A)-1A* and we obtain:

+ A{A*A)~\dA*){En -

This fact shows that dp is as follows:

dp(A, α) = (p(A), aJiA*A)'1A* + A(A*A)-1α0*)

where, AeVn,m(F), aeM(n,m;F) and α0 = (En - A(A*ii)-ιA*)α. The
following lemma is easily seen.

LEMMA 2.6. For A e V'%tm(F) and α0 e ϋί(^, m; F), A*α0 = 0 6 M(m; F)
if and only if there exists an α e M{n, m; F) such that

α0 = (En - A(A*A)~1A*)a .

Since τr; V»fΛ(F) —•ΛfΛlW(F) is the projection of the fiber bundle, π is
a submmersion. Therefore p is a submmersion of V'n,m{F) onto Λf;,m(F)
by Proposition 2.5. Thus dp: Γ ( y ) - * T(M*) is surjective. By means
of the Gram-Schmidt process, p{Vn,m(F)) = Λί*,m(F). Therefore we have
the following lemma.

LEMMA 2.7.

T(M*) = {(AίA*^)-1^*, αoίil*^)-1^*

+ A(A*A)"1^*); A e K,W(F), α0 e ikf(w, m; F) αwώ A*a0 = 0}

= {(AA*, a0A* + Aα0*); A e Vn>m(F), α0 e M(w, m; F) and A*a0 = 0} .
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Denote by TP and NP the tangent space and normal space to MtiWι{F)
at PsM*tJF), i.e., the fibres of T(M*) and N(M*) over PeM*,m(F)
respectively. In particular TQf No denote TPo, NPQ respectively, where
Po is defined as

IE 0\

° W 0/ #

By means of Lemma 2.2, Lemma 2.4 and Lemma 2.7, it is not hard
to see the following lemma.

LEMMA 2.8.

T - \(p 1° s*

No = jfp0, [^ %, KeH(m; F), LeH(n- m; F)

and tΐ(K) + tr(L) = θ| .

TP = j(p, u(^s ζ^j uή Se M(n - m, m;

NP = lip, uF ^j uA; KeH(m; F),Le H(n - m; F)

and tτc(K) + tr(L) = θ | ,

for Ue U(n; F) such that P = UPaU*.

Now to find the second fundamental form (first order normal form)
vP of p* at P = p(A)eM%,m(F) for Ae V'n,m(F), we consider the curve on
V'n,m(F) through A, for arbitrary o 6 M{n, m; F) and sufficiently small
ε>0,

φA(t) = A + at for 111 < ε .

We have the following curve on M*im(F) through P

Pt = P(φA(t)) for |

Then

*£*) = ao(A*A)-ίA* + A(A*A)-1a* ,
dt / t = 0

£/%) = 2(ao(A*A)-ιa* - A{A*A)
Cut ' t=o

)-1A* - A(A*A)-1X*a*) ,
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where α0 = (En - p(A))a, X = (A*A)~1A*a. By Lemma 2.7 alίX{A*A)-1A* +
A(A*A)-1X*a* is tangent to Mtm(F) at P. Moreover ao(A*A)-1a? -
A{A*A)~1a*a0(A*A)'ιA* is normal to Mί,m(F) at P. In fact, for arbitrary
δ0 e M(n, m; F) such that A*b0 = 0, set A = ao(A*A)~1A* and D =
bΰ(A*A)-1A*, then ^(A*^)-^* - A(A*A)-1a*aΰ(A*A)-1A* = AA* - A*A,
δo(-A*.A)'"1.A* + A(A*A)"160* = D + D* 6 2V, and ΌJ) = 0 = X>A by Lemma
2.6 and Lemma 2.7. Thus by Lemma 2.1, (D + D*, AA* - A* A ) = 0
Thus we have the following lemma.

LEMMA 2.9. The first order normal form vP: TP—>-Np of p* at
PeM*,m(F) is as follows

vP(P, D + D*) = (P, 2(DD* - D*D))

where P = p(A), D = ao{A*A)~ίA*, A e VΛ,J,F), % e M(n, m; F)
A*a0 = 0.

Now we show that No is generated by vPo(To) where

0 ~ lo o)
For (P o ,( j f ^ ) ) 6 2Vo,

C70 G ?7(^; F) such that

0

Lemma 2.3 and Lemma 2.8 there exists

0 c
where

U, = (J ^y VeU(m;F), WeU(n-m;F), a.eRil^ί^n) and

ax + α2 + + αn = 0.
Let ϋ ^ be a matrix unit of Λf(w; F) such that the (i, j) component

of it is 1 and the other components are 0. Set

Xi = Em+ι,m+ι — Eifi for 1 <; ΐ ^ m ,

xk = — α 4 for 1 <ί & < m ,

for
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Then we have the following

(K 0
_. «!( UoX, m) + + xu UoX.^ u%).

U JL//

For 1 5j i ^ m and m + 1 <; j ^ w, set

Then

(Po, D + Z>*) e TQ , 2(DD* - D*D) =

Thus (Po, UoXiU^eVp^T,) for 1 ^ i ^ w - 1, i.e., iV0 is generated
by vPo(To). By Lemma 2.8, Theorem 2.9 and the above facts, we obtain
the following main result.

THEOREM 2.10. p*: Mntm(F)~*Hm(n; F) is an inflection-free embedding.

3. Tangent bundles of Grassmann manifolds. Let T( V) be the
tangent bundle of Stiefel manifold V%,m(F). It is not hard to see the
following

T(V) = {(A, a) e Vn,m(F) x M(n, m; F); A*α + α*A = 0} .

Set

T0(V:,m(F)) = UV) = {(A, α) e VM{F) x M(n, m; F); A*α = 0} ,

Γo( V.,.(F)) = T0(V) = {(A, α) e F.,m(F) x Λ£(Λf m; F); A*α = 0} .

Then T0(V), T0(V) are subbundles of T(V')9 T{V) respectively.
For (A, α), (£, b) e Γ0(^')(resp. T0(V)), suppose that dp(A, a) = dp(J?, b)

then there exists g e GL(m; F)(resp. i7(m; F)) such that B = Ag and b = α#.
In fact by rfp(A, α) = dp(B, b), B(B*B)-ιB* = A ^ A Γ A * and

Thus JB = AίA*^)-1^*^, b - αίA*^)-1^*^ and £*£ = (A*5)*(A*A)"1A*B.
By Lemma 2.7 cẐ  is a surjection of Γ0(F') (resp. T0(V)) to Γ(ΛΓ*)
covering p: V'n>m(F)->M*W(F) (resp. Fn,m(F)->M*m(F)). Now GL(m; F)
(resp. U(m;F)) acts on Γ0(F') and 7U(F) (resp. Γ0(F) and FΛ,m(F)) on
the right as follows, for ((A, a), g) e T0(V) x GL(m; F) (resp. Γ0(F) x
U(m;F)), ((A,a),g)-+(Ag,ag)eT0(V) (resp. Γ0(F)) It is not hard to
see that T0(V) (resp. T0(V)) is a real right GL(m; F)-(resp. U(m; F)-)
vector bundle over right GL(m; F)-(resp. ί7(m; F)-) space F^TO(F) (resp.
FΛ)TO(F)). In particular Γ0(K,m(C)) (resp. TQ(Vn,m(C)) is a complex right
GL(m; C)-(resp. Z7(m)-) vector bundle over right GL(m; C)-(resp. U(m)~)
space F^,m(C) (resp. FΛ,m(C)). Therefore the orbit space
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T0(V')IGL{m; F)(resp. TQ(V)/U(m; F))

may be regarded as a real vector bundle over Mnjm(F). In particular
T0(V'n,m(C))/GL(m; C) (resp.Γ0(Fw,w(C))/C7(m)) may be regarded as a complex
vector bundle over Mn,m(C). By the facts stated above, we have the
following theorem.

THEOREM 3.1. dp: T0(V')-» T(M*) (resp. T0(V)->T(M*)) induces a
bundle equivalence map dp*: T0(V'n,m(F))/GL(m; F)-> Γ(ikf*m(F)) (resp.
T0(Vn,m(F))/U(m;F)-+T(Mim(F))) covering p*: Mn,m{F) -*Λf*m(F) ™ real
vector bundle, where T(Mtm(F)) = T(Λf*).

Thus we may identify T0(V'n>m(F))/GL(m; F) with the tangent bundle
T(Mn,m(F)) of Mn,m(F).

TQ(V'n,m(C))/GL(m; C) is a complex vector bundle over Mn,m(C).
T(MΛ,JC)) has complex structure. It is easily seen that Γo( V'n,m(C))/GL(m; C)
may be identified with T(Mn>m(C)) as complex vector bundle. For the
rest of this paper, we regard T(Mn>m(C)) as a complex vector bundle.

The fibre's dimension of right F-vector bundle T0(V')(T0(V)) is
m(n — m). Moreover we have the following short exact sequences (i),
(ii) of vector bundles over V'n,m{F)> Vn,m(F) respectively

( i ) 0 > V'n,m(F) x Λf(m; F) -ί-> T(V) -^-> T0(V) > 0

(ii) 0 >VM(F) x U(m; F)-U T(V)-^ Γo(V) >0

where φ and ψ of (i) are defined by

φ(A, X) = (A, AX) for (A, X) 6 V'^Jβ1) x Af(m; F) ,

, α) - (A, ( # . - A(A*A)-ιA*)α) for (A, α) e Γ( V) ,

and U(m; F) = {XeM(m; F); X* + X = 0}, ^ and ψ of (ii) are the restric-
tions of them of (i) respectively. Now (i), (ii) have natural splitting
homomorphisms ω: T{V) — V'Λ,m(F) x M(m; F), ω: T(V) — VntM(F) x
VL(m; F) defined by

ω(A, α) = (A, {AΆY'A^a) for (A, α) e T(F'), T(V) .

Then φ, ψ and ω of (i) are right F-vector bundle homomorphisms,
but them of (ii) are real vector bundle homomorphisms.

Now let V, W be right F-vector spaces of dimension m, n respec-
tively. LF(V, W) denotes set of all F-homomorphisms from V to W.
It is a vector space over R if F = R or H, over C if F = C.

Let 77, ζ be right F-vector bundles over compact manifold M. It is
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possible to define in natural way the vector bundle LF(η, ζ) whose fibre
LF{η,ζ)x at xeM is LF(ηx, ζa), where rjz9 ζx are fibres of η, ζ at x
respectively. It is a real vector bundle if F = R or H, a complex
vector bundle if F = C.

ξ denotes the canonical right F-vector bundle over Mn,m(F), i.e., its
total space Eξ is as follows

Eξ = {(F, x)eMntm(F) x f x e F ) .

Let ξ1 be orthogonal complement of ξ in Mn,m(F) x Fn, i.e.,

E^ = {(F, x) e ikΓw,w(F) xF*;xe F1} ,

where Vλ is orthogonal complement of V in Fn. We have the following
short exact sequence of right F-vector bundles over Mn>m(F).

0 >ζ-^Mn,m(F) x F * - ^ >0

where i is inclusion map and j is as follows for (V, x) e Mn>m(F) x Fn,
there exists A 6 V'n,m(F) such that m column vectors of A span F and

3\V, x) = (F, ( S . - A(A*il)-ιil*)x) .

The above exact sequence has canonical splitting F-homomorphism.
It is as follows q; Mn,m(F) x P - ^ ξ

q( V,x) = ( V, A(A*A)~γA*x) for (V, x) e M%,W(F) x F" .

where m column vectors of A e V'n,m(F) span V. Then we have the
following short exact sequence of vector bundles over Mn,m(F).

(iii) 0 > LF(ζ, ξ) - ^ LF(ξ, Fn) - ^ LF(ί, ξ±) > 0

where LF(ξ, Fn) = LF(ζ, Mn,m(F) x Fπ). (iii) has canonical splitting
homomorphism <?*: LF(ξ, Fn) —> LF(f, f) or £*: LF(ί, fx) —• LF(f, F%), where
t\ ζL —> ilίw,w(F) x F w inclusion map.

In general, let V, W be right F-vector spaces of dimension m, n
respectively and let / be a F-linear map from V to W. Suppose that
ί«iι •••»«»}» {«ί, •• ,«m} are two bases of F such that {αί ,α»} =
{«i, •• ,«m}^ where geGL(m;F), that {&„ ••-,&»}, {6ί, ••-,&;} are two
bases of W such that {b[, . . . , 6̂ } = {6X, , 6%}Λ, where fe e GL(?ι; F), that
XeM(n, m; F) corresponds to / with respect to {alf , αw}, {6̂  , bn}
and that X'eM(n,m;F) corresponds to / with respect to {a[, -- ,α'm},
{&[, ...,61}, then X' = h-ιXg.

By this fact we have the following commutative diagram
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x M(m; F) -*-> V'M(F) x M(n, m; F) -±-> T0(V'n,m(F))

(iv)

where p', p" and p are surjective bundle maps covering π: V«tJJF)

Now GL(m; F) acts on K,m(F) x M(m; F), V'n,m{F) x M(n, m; F) and
on the right as follows

((A, X), g) x (Ag, g^Xg) for A e V'%tJF), XeM(m; F), g e GL(m; F) ,

((A, α), g) -> (Ag, ag) for A e K}in(F), α e Λf(n, m; F), βr 6 GL(m; F) .

It is not hard to see that p', p" and p induce bundle equivalence
maps p*, p'l and p* covering π*:Vn,m(F)/GL(m; F)—*Mnym(F) as follows

0 > V x ©2/GL - ^ F ' x SK/GL - ^ > Γo( F')/GI/ — 0

(V) \pί \p£ \p*

0 > LF(ζ, ζ) ^ U LF(ξ, F*) -^-> LF(ζ, ζ-) — > 0 ,

where F' = K,W(F), ©S = M(m; F), GL(m; F), 9K = M(n, m; F), all
horizontal sequences are exact and this diagram is commutative. By
Theorem 3.1 we have the following theorem.

THEOREM 3.2. (Milnor [6]) Tangent bundle of Mn,m(F) is isomorphic

to LF(ζ, ί 1).

It is easy to see that

LF(ζ, F") = LF(ζ, F) 0 0 LF{ζ, F) = nLF(ξ, F) ,
where nLF(ζ, F) denotes the w-fold Whitney sum of LF(ξ, F) and F is
trivial right F-line bundle over Mnym(F). We have the following theorem.

THEOREM 3.3. (W. C. Hsiang and R. H. Szczarba [4])

T(MM(F)) Θ LF(ζ, ζ) = nLF(ζ, F) .

ξ may be regarded as a right F-vector bundle with structure group
U(m; F) which acts on its fibre on the left. Then LR(ξ, R) = ξ and
LR(ζ, ξ) = ξ ®Λ £. Thus we have the corollary

COROLLARY 3.4. T{Mn,m{R)) ®ξ®Rξ = nζ.

Lc(ζ, C) = f, where ξ denotes complex conjugate bundle of ξ and
Lc(ξ, ζ) = ξ®cξ (see 3.13 lemma and 3.17 corollary in [1]). We denote
the complex tangent bundle of Mn>m(C) by T(Mn,m(C)). We have the
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following corollary.

COROLLARY 3.5. T{Mn,m(C)) φ ξ ® c ξ = nξ .

Now we will show that LH(ξ, H) = ξR, where ζR denotes the real
vector bundle defined by ζ. Let G be a group and let V be a m-dimen-
sional G-vector space over JBΓ which is a right //-vector space such that
G acts on it on the left. Then we can regard the dual space
LH(V, H) = F * as a right //-vector space on which G acts on the left
as follows, for φeV*, qeH and geG, (gφq)(v) = q{φ(g~ιv)) for veV.

Let {elf , em} be a basis of V and let {^ , δm} be the dual basis of
F * with respect to {elf , em}. For v = e1xι + . . . + emxm 6 F, φ =
δiλi + + <?mλm e F * and ^ e G let

-K.. . ,e jx,( : ), ^ = (δ l f...,ί.)| : | = (*t, •• ,*.)rj :

where Xff, Γ, 6 GL(m; F) and [ | ) - Γ,[ | ).

Then for vι

Thus Γ* = Xff-i, i.e., Yg = (X71)*.
Now let {flryj be set of transition functions of the vector bundle ζ

with structure group Sp(m). Then by the above fact, the set {h3ί} of
transition functions of vector bundle LH(ζ, H) is as follows for each hH

hH{x) = {{gH{x))-γ = gH(x) for x e U, Π Uj,

where {Z7J is open covering of base space Mn>m(H) of ζ such that each
gH: Ui Π Uj —• Sp(m). Therefore LH(ξ, /Γ) = fΛ, since we regard L^(f, H)
as a real vector bundle. Thus we have the following corollary.

COROLLARY 3.6. T(Mn>m(H)) 0 LH(ξ, ξ) = nξR.

Now η, ζ denote right //-line bundles over a space B with structure
group Sp(l) = S3 which acts on their fibres on the left. We derive the
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Pontr jagin class of real vector bundle LH(η, ζ) whose fibre is of dimension
4. Let V, W be right ZΓ-vector spaces of dimension m, n respectively.
CHV, CHW denote complex vector spaces defined by restricting the scalars
to C from right ίΓ-vector spaces V, W respectively and cLH(V, W)
denotes 4mw-dimensional complex vector space obtained by complexifying
the 4mw-dimensional real vector space LH(V, W). The following lemma
is described in p. 32 of [1].

LEMMA 3.7. cLH(V, W) = Lc(cHV, cHW).

Moreover let G be a compact Lie group and suppose that V, W are
left G-vector spaces then by 3.6 Proposition, 3.13 Lemma, 3.17 Corollary
in [1] and the above Lemma 3.7, we have the following lemma.

LEMMA 3.8. cLH{V, W) = cHV®ccHW.

COROLLARY 3.9. In Corollary 3.6, cξR = 2cHζ and cLH(ζ, ξ) =
cHζ ®c cHξ.

e(rj), β(ζ) denote the total symplectic Pontrjagin classes of η, ζ
respectively and e^Jl) = y, β^ζ) = z e H\B; Z) denote the first symplectic
Pontrjagin classes of η, ζ respectively (see 9.6 in [2]). We prove the
following proposition.

PROPOSITION 3.10. The total Pontrjagin class of LH{η, ζ) is as
follows

p(LH(7), 0) = 1 + 20/ + z) + (y - zf ,

i.e., the first Pontrjagin class and the second Pontrjagin class of LH(η, ζ)
are as follow

Vι{LH{η, 0) = 2(y + z) , p2(LH(η, ζ)) = (V - zf .

PROOF. We denote formal factorizations of e(η), β(ζ) by e{r/) — 1 + α2,
e(ζ) = 1 + β2 respectively, where a2 = y, β2 = z. These formulas are
equivalent to the following total Chern classes of complex vector bundle
CHV> CH£ (see 9.6 in [2])

C(cHη) = (1 - α)(l + a) , C(cHζ) - (1 - β)(l + β) .

Thus

C{cHr]®ccHζ) = (1 - α - /3)(1 + α - jβ)(l - α + β)(l + α + /3)

= (1 - (α + /3)2)(1 ~ (α - βf)

By Lemma 3.8 we have the following total Chern class of complex
vector bundle cLH(η, ζ)
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C(cLH(y, 0) = 1 - 2(y + z) + (y - s) 2 .

Thus

P(LHO?, 0) = 1 + 2(tf + «) + (y - s)2 .

q.e.d.

For example let ξ be canonical quaternionic line bundle over
quaternion protective space P^H) = MnΛ{H) and let w e H\Pn^(H); Z)
be the first symplectic Pontrjagin class of ξ. Then by Proposition 3.9
we have

p(LH(ζ, ξ)) = 1 + An .

ί ®jϊί* in [4] may be regarded as LH{ξ, f). By Lemma 4.1 in p. 703
of [4], p(ζ ®tff*) = 1 + 2u. The author thinks that the Lemma 4.1 must
be as follows

Let η, ζ be right //-vector bundles over a space B with structure
groups Sp{m), Sp(n) which act on their fibres on the left respectively and
let total symplectic Pontrjagin classes of η, ζ and their formal factori-
zations be as follows

e(rj) = 1 + ejtf) + + ejrj) = (1 + y,) (1 + ym) ,

Then proposition in p. 703 of [4] is as follows.

PROPOSITION 3.11. The total Pontrjagin class of LH{η,ζ) is given
by

p(LH(v, 0) - Π Π [1 + 2(y, + zj) + (yt - Zj)2] .

This proposition is an immediate consequence of the splitting principal
and Proposition 3.10.
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