ON THE DECOMPOSITION OF GENERALIZED S-CURVATURE-LIKE TENSOR FIELDS

YASHIRO YOSHIMATSU

(Received January 28, 1976)

The purpose of this note is to study a decomposition of generalized S-curvature-like tensor fields on a Sasakian manifold, and to get a certain relationship among Ricci tensor, Bianchi identity and contact Bochner curvature tensor.

K. Nomizu [4] studied a decomposition of generalized curvature tensor fields on a Riemannian manifold, and revealed a certain interesting relationship among the tensors and tensor identities named after Codazzi, Ricci, Bianchi and Weyl. Studying its Kaehlerian analogy H. Mori [2] obtained a similar relationship among Bochner tensor (in place of Weyl tensor), Ricci tensor and the other two tensor identities.

In this paper, first, we define a (ϕ, ξ, η) -structure on a vector space with an inner product, and an S-curvature-like tensor on V. component of an orthogonal decomposition of an S-curvature-like tensor L, we obtain a contact Bochner tensor associated to L. The same decomposition implies directly a necessary and sufficient condition, obtained by Tagawa [7], in order that the contact Bochner tensor on a Sasakian manifold vanishes. Then we define a generalized S-curvature-like tensor field L on a Sasakian manifold M so that L_p is an S-curvature-like tensor over the tangent space $T_p(M)$ at each point p of M. When we consider the decomposition of a generalized S-curvature-like tensor field, a natural question arises: When are the components of the decomposition proper (i.e., When do they satisfy the second Bianchi identity)? An answer is given by a certain equation to be satisfied by the Ricci tensor field. In view of analogy which exists between an S-curvaturelike tensor (resp. a generalized S-curvature-like tensor field) and a Kcurvature tensor (resp. a generalized K-curvature tensor field) defined in [3], all our methods can be applied also to the case when V is a vector space with a Hermitian inner product (resp. M is a Kaehler manifold) In this case, Tagawa's result mentioned above is reduced to Chen and Yano's result [1] which gives a necessary and sufficient condition in order that the Bochner tensor on M vanishes.

1. Statement of results. Let V be a (2n+1)-dimensional real vector

space with an inner product denoted by \langle , \rangle . A tensor L of type (1, 3) over V can be considered as a bilinear mapping

$$(x, y) \in V \times V \mapsto L(x, y) \in \text{Hom}(V, V)$$
.

Such a tensor L is called a curvature tensor over V if it has the following properties:

(1.1)
$$L(y, x) = -L(x, y);$$

L(x, y) is a skew-symmetric endomorphism of V, i.e.,

$$\langle L(x, y)u, v \rangle + \langle u, L(x, y)v \rangle = 0;$$

(1.3)
$$\sigma(L(x, y)z) = 0$$
 (the first Bianchi identity),

where σ denotes the cyclic sum over x, y, and z.

For a curvature tensor L, the Ricci tensor $K = K_L$ of type (1, 1) is a symmetric endomorphism of V defined by

$$K(x) = \text{trace of the bilinear map:}$$

$$(y, z) \in V \times V \mapsto L(x, y)z \in V$$
.

The trace of the Ricci tensor K_L is called the scalar curvature of L. A (ϕ, ξ, η) -structure is defined on V by tensors ϕ , ξ , and η of type (1, 1), (1, 0), and (0, 1), respectively, over V, satisfying the following conditions:

$$\eta(\xi) = 1 \; ;$$

$$\eta(\phi x) = 0 ;$$

(1.6)
$$\phi^{2}(x) = -x + \eta(x)\xi;$$

$$\langle \xi, \xi \rangle = 1 \; ;$$

$$\eta(x) = \langle \xi, x \rangle;$$

$$\langle \phi x, \phi y \rangle = \langle x, y \rangle - \eta(x)\eta(y) .$$

Let V be a (2n+1)-dimensional vector space with a (ϕ, ξ, η) -structure. A curvature tensor L is called an S-curvature tensor over V if it has the following properties:

$$L(x, y)\phi z = \phi(L(x, y)z) + \langle \phi x, z \rangle y - \langle \phi y, z \rangle x - \langle y, z \rangle \phi x + \langle x, z \rangle \phi y;$$

 $L(\xi, x)y = \langle y, x \rangle \xi - \eta(y)x.$

A curvature tensor L is called an S-curvature-like tensor over V if it has the following properties:

$$(1.10) L(x, y) \circ \phi = \phi \circ L(x, y) ;$$

(1.11)
$$L(\xi, x) = 0.$$

We denote by $\mathcal{L}(V)$ the vector space of all S-curvature-like tensors over V.

Let P be a ϕ -invariant 2-plane in V and let x be a unit vector in P. For an S-curvature like tensor L, we set

$$k(P) = \langle L(x, \phi x)\phi x, x \rangle$$
.

We call that k(P) is the ϕ -sectional curvature of L for P.

For $x, y \in V$, we denote by $x \wedge y$ and $x \wedge y$ the skew-symmetric endomorphisms of V, respectively, defined by

$$(x \Lambda y)z = \langle z, y \rangle x - \langle z, x \rangle y$$
,
 $(x \Delta y)z = (x \Lambda y)z - \eta(z)(\eta(y)x - \eta(x)y)$
 $- (\eta(x)\langle z, y \rangle - \eta(y)\langle z, x \rangle)\xi$.

Remark 1. Let L_0 be the S-curvature tensor defined by

$$L_0(x, y) = x\Lambda y$$
.

Then L is an S-curvature tensor if and only if $L - L_0$ is an S-curvature-like tensor. If \tilde{L} is the S-curvature-like tensor corresponding to an S-curvature tensor L, that is,

$$\tilde{L}=L-L_{0}$$
.

and K and \tilde{K} are the Ricci tensors, respectively, for L and \tilde{L} , then

$$\widetilde{K} = K - (2n)I$$
.

where I denotes the identity transformation of V.

From now on we shall discuss only S-curvature-like tensors, since they are more convenient than S-curvature tensors for our computing.

The following proposition gives examples of S-curvature-like tensors.

PROPOSITION 1. Let A and B be two symmetric endomorphisms of V, each of which commutes with ϕ . If we define $L = L_{A,B}$ by

(1.12)
$$L(x, y) = Ax \triangle By + Bx \triangle Ay + \phi Ax \triangle \phi By + \phi Bx \triangle Ay + 2\langle Ax, \phi y \rangle \phi B + 2\langle Bx, \phi y \rangle \phi A,$$

then L is an S-curvature-like tensor.

We define $\mathcal{L}_{\scriptscriptstyle 1}(V)$ to be the subspace of $\mathcal{L}(V)$ consisting of all S-curvature-like tensors

$$L=rac{c}{2}L_{I,I}$$
 ,

where c is an arbitrary constant, i.e.,

 $\mathscr{L}_{\mathbf{i}}(V) = \{L \in \mathscr{L}(V) \text{ with constant } \phi\text{-sectional curvature}\}.$ Let $\mathscr{L}_{\mathbf{i}}^{\perp}(V)$ be the orthogonal complement of $\mathscr{L}_{\mathbf{i}}(V)$ in $\mathscr{L}(V)$. Then we have the following propositions:

Proposition 2.

$$\mathscr{L}_{1}^{\perp}(V) = \{L \in \mathscr{L}(V) \text{ with vanishing scalar curvature}\}$$

and

$$\mathcal{L}(V) = \mathcal{L}_1(V) \oplus \mathcal{L}_B(V) \oplus \mathcal{L}_2(V)$$
 (orthogonal),

where

$$\mathscr{L}_{\mathtt{B}}(V) = \{L \in \mathscr{L}(V) \ with \ vanishing \ Ricci \ tensor\}$$
 , $\mathscr{L}_{\mathtt{2}}(V) = orthogonal \ complement \ of \ \mathscr{L}_{\mathtt{B}}(V) \ in \ \mathscr{L}_{\mathtt{1}} + (V)$.

Proposition 3. For $L \in \mathcal{L}(V)$, let

$$L=L_{\scriptscriptstyle 1}+L_{\scriptscriptstyle B}+L_{\scriptscriptstyle 2}\,,$$

where $L_1 \in \mathcal{L}_1(V)$, $L_B \in \mathcal{L}_B(V)$, $L_2 \in \mathcal{L}_2(V)$. Then

$$egin{align} L_{_{1}} &= rac{ ext{tr } K}{8n(n+1)} L_{_{I,I}} ext{ ,} \ L_{_{2}} &= rac{1}{2(n+2)} L_{_{K,I}} - rac{ ext{tr } K}{4n(n+2)} L_{_{I,I}} ext{ ,} \ L_{_{B}} &= L - rac{1}{2(n+2)} L_{_{K,I}} + rac{ ext{tr } K}{8(n+1)(n+2)} L_{_{I,I}} ext{ ,} \end{array}$$

where K is the Ricci tensor of L and $L_{A,B}$ is the tensor defined by (1.12).

For each $L \in \mathcal{L}(V)$, the $\mathcal{L}_{B}(V)$ -component L_{B} is called the contact Bochner tensor associated to L.

COROLLARY 1. The contact Bochner tensor associated to $L \in \mathcal{L}(V)$ is 0 if and only if

$$(1.13) L = L_{A,I}$$

for a symmetric endomorphism A of V which commutes with ϕ .

From Corollary 1 we get easily the following fact which is stated in [7] in terms of an S-curvature tensor.

COROLLARY 2 (Tagawa [7], cf. Chen and Yano [1]). In order that the contact Bochner tensor associated to an S-curvature-like tensor vanishes, it is necessary and sufficient that there exists a (unique) symmetric endomorphisms Q of V which commutes with ϕ and satisfies the following: the ϕ -sectional curvature k(P) for a 2-plane P is the trace

of the restriction Q to P, i.e., k(P) = trace Q/P, the inner product being also restricted to P.

A Sasakian structure (ϕ, ξ, η) is defined on a Riemannian manifold (M, g) by tensor fields ϕ , ξ , and η of type (1, 1), (1, 0), and (0, 1) which give (ϕ_p, ξ_p, η_p) -structure on the tangent space $T_p(M)$ with the inner product g_p for each point p of M and satisfy the following conditions:

$$(7.14) \qquad (\nabla_X \phi) Y = \eta(Y) X - \langle X, Y \rangle \hat{\xi} ;$$

(1.15)
$$\nabla_X \xi = \phi(X)$$
, (which is equivalent to $(\nabla_X \eta) Y = \langle Y, \phi X \rangle$),

where X and Y are any vector fields. Here and in the following, we denote g(,) by \langle , \rangle for brevity.

A Riemannian manifold with a Sasakian structure is called an Sasakian manifold. A (differentiable) tensor field L of type (1,3) on a Sasakian manifold is called a generalized S-curvature tensor field (resp. a generalized S-curvature-like tensor field) if for each point p the tensor L_p is an S-curvature tensor (resp. an S-curvature-like tensor) over $T_p(M)$. We shall say that L is proper if it satisfies the second Bianchi identity, that is,

$$\sigma(\nabla_{x}L)(Y,Z)=0$$
.

For vector fields X and Y on M, we denote by $X\Lambda Y$ and $X\Delta Y$ the tensor fields of type (1, 1) which map a vector field Z, respectively, into

$$\langle Z, Y \rangle X - \langle Z, X \rangle Y$$

and

$$\langle Z, Y \rangle X - \langle Z, X \rangle Y - \eta(Z)(\eta(Y)X - \eta(X)Y) - (\eta(X)\langle Z, Y \rangle - \eta(Y)\langle Z, X \rangle)\xi$$
.

REMARK 2. Let L_0 be the proper generalized S-curvature tensor field defined by

$$L_0(X, Y) = X\Lambda Y$$
.

Then L is a (proper) generalized S-curvature tensor field if and only if $L-L_0$ is a (proper) generalized S-curvature-like tensor field.

From now on we shall discuss only generalized S-curvature-like tensor fields, since they are more advantageous than generalized S-curvature tensor fields for our computing.

We see the following fact corresponding to Proposition 1: Let A and B be two tensor fields of type (1, 1) which are symmetric as endomorphisms of the tangent space and commute with ϕ . Then

$$L_{A,B}(X, Y) = AX \triangle BY + BX \triangle AY + \phi AX \triangle \phi BY + \phi BX \triangle \phi AY + 2\langle AX, \phi Y \rangle \phi B + 2\langle BX, \phi Y \rangle \phi A$$

defines a generalized S-curvature-like tensor field.

If L is a generalized S-curvature-like tensor field on a Sasakian manifold M, then applying the decomposition in Proposition 3 at each point p of M we obtain

$$L=L_{\scriptscriptstyle 1}+L_{\scriptscriptstyle B}+L_{\scriptscriptstyle 2}\,,$$

where L_1 , L_B , and L_2 are generalized S-curvature-like tensor fields which, at each point p, belong to \mathcal{L}_1 , \mathcal{L}_B , and \mathcal{L}_2 over $T_p(M)$, respectively.

Theorem 1. On a (2n + 1)-dimensional Sasakian manifold M, let

$$L = L_{\scriptscriptstyle 1} + L_{\scriptscriptstyle B} + L_{\scriptscriptstyle 2}$$

be the natural decomposition of a proper generalized S-curvature-like tensor field L. If the Ricci tensor field K of L satisfies the following equation:

$$(1.16) (\nabla_X K) Y = -\eta(Y) K \phi X - \langle K \phi X, Y \rangle \xi,$$

then L_1 , L_B and L_2 are proper. Conversely, if L_1 , L_B , and L_2 are proper and if $n \ge 2$, then K satisfies the equation (1.16).

COROLLARY 3. On a Sasakian manifold M of dimension ≥ 5 let L be a proper generalized S-curvature-like tensor field whose scalar curvature is constant. Then the associated contact Bochner tensor field L_B is proper if and only if the Ricci tensor field K of L satisfies the equation (1.16).

We get Theorem 1 by the help of the following propositions.

PROPOSITION 4. Let L be a proper generalized S-curvature-like tensor field on a Sasakian manifold M, and let K be the Ricci tensor field of L. Then (1.16) is equivalent to the following formula:

(1.17)
$$\langle (\nabla_{Y}K)X - (\nabla_{X}K)Y, Z \rangle = \eta(Y)\langle \phi KX, Z \rangle - \eta(X)\langle \phi KY, Z \rangle + 2\eta(Z)\langle Y, \phi KX \rangle.$$

PROPOSITION 5. The assumptions and notation being as in Proposition 4, suppose that K satisfies the equation (1.16). Then $\operatorname{tr} K$ is constant on M.

PROPOSITION 6. On a Sasakian manifold M let A be a tensor field of type (1, 1) which is symmetric at each point and satisfies

$$A\phi = \phi A$$
 and $A\xi = 0$.

Let L be a generalized S-curvature-like tensor field defined by

$$L=L_{A,I}$$
.

If L is proper and if $\operatorname{tr} A$ is constant, then A satisfies the following equation:

$$\begin{array}{ll} (1.18) & \langle (\nabla_{Y}A)X - (\nabla_{X}A)Y, Z \rangle = \eta(Y) \langle \phi AX, Z \rangle - \eta(X) \langle \phi AY, Z \rangle \\ & + 2\eta(Z) \langle Y, \phi AX \rangle \ . \end{array}$$

PROPOSITION 7. On a Sasakian manifold M let A be a tensor field of type (1, 1) which is symmetric at each point and satisfies

$$A\phi = \phi A$$
 and $A\xi = 0$.

Let L be a generalized S-curvature-like tensor field defined by

$$L=L_{A,I}$$
.

If A satisfies the following equation:

$$(1.19) \qquad (\nabla_{X} A) Y = -\eta(Y) \phi A X - \langle A \phi X, Y \rangle \xi,$$

then L is proper.

Now let $\mathfrak{A}(M)$ be the vector space of all tensor fields A of type (1, 1) on a Sasakian manifold which satisfy the following conditions:

- i) A is symmetric at each point;
- ii) A commutes with ϕ ;
- iii) $A\xi=0$;
- iv) A satisfies the equation (1.19);
- v) tr A is constant.

Let $\mathcal{L}(M)$ denote the vector space of all proper generalized S-curvature-like tensor fields whose Ricci tensor fields satisfy the equation (1.16). We assume that dim $M \geq 5$.

We have a linear mapping $A \in \mathfrak{A}(M) \mapsto L_A \in \mathscr{L}(M)$ given by

(1.20)
$$L_A = \frac{1}{2(n+2)} L_{A,I} - \frac{\operatorname{tr} A}{8(n+1)(n+2)} L_{I,I}.$$

We get the following theorem:

THEOREM 2. If dim $M \ge 5$, $A \mapsto L_A$ is a linear isomorphism of $\mathfrak{A}(M)$ onto the subspace

$$\{L\in\mathscr{L}(M)\,|\,L_{\scriptscriptstyle B}=0\}$$
 .

2. Proof of propositions.

PROOF OF PROPOSITION 1. It follows from (1.5), (1.6), and (1.9) that

 ϕ is skew-symmetric. Making use of this fact, we can show easily that L has the properties (1.1), (1.2), and (1.3). We prove that L has the properties (1.10) and (1.11). We see that

(2.1)
$$\phi((x\Delta y)z) = (\phi x \Lambda \phi y)\phi z$$

holds for x, y and $z \in V$. Since

$$(2.2) (\xi \Delta y)z = 0,$$

we get, making use of (1.6) and (2.1),

(2.3)
$$\phi((\phi x \Lambda \phi y)z) = \phi((\phi x \Delta \phi y)z) = (\phi^2 x \Lambda \phi^2 y)\phi z$$

$$= (\phi^2 x \Delta \phi^2 y)\phi z$$

$$= ((-x + \eta(x)\xi)\Delta(-y + \eta(y)\xi))\phi z$$

$$= (x\Delta y)\phi z .$$

By (2.1) and (2.3) we see that L has the property (1.10). From (1.4), (1.7), and (1.9) we get

$$\phi \xi = 0.$$

Since A commutes with ϕ , we have, making use of (1.6), (1.8), and (2.4),

$$\langle A\xi,\,x
angle = \langle A\xi,\,\eta(x)\xi-\phi^2x
angle = \eta(x)\langle A\xi,\,\xi
angle = \langle\langle A\xi,\,\xi
angle\xi,\,x
angle$$
 ,

for all $x \in V$, and therefore $A\xi = \langle A\xi, \xi \rangle \xi$. From this equality and (2.2) we get $A\xi \Delta By = 0$. We also get $B\xi \Delta Ay = 0$. It follows from (2.4) that $\phi A\xi A\phi By = 0$, $\phi B\xi A\phi Ay = 0$, $\langle A\xi, \phi y \rangle = 0$ and $\langle B\xi, \phi y \rangle = 0$ hold. Thus we get $L(\xi, y) = 0$, which completes the proof of Proposition 1.

Let L be an S-curvature-like tensor defined by (1.12). Then the Ricci tensor K of L is given by

(2.5)
$$Kx = (\operatorname{tr} B - b)Ax + (\operatorname{tr} A - a)Bx + 2(BAx + ABx) - a(\operatorname{tr} B)\eta(x)\xi - b(\operatorname{tr} A)\eta(x)\xi - 2ab\eta(x)\xi,$$

and the scalar curvature of L is given by

(2.6)
$$\operatorname{tr} K = 2 \operatorname{tr} A \operatorname{tr} B + 4 \operatorname{tr} (AB) - 2(b \operatorname{tr} A + a \operatorname{tr} B) - 2ab$$
,

where a and b are constants defined by $a = \langle \xi, A\xi \rangle$ and $b = \langle \xi, B\xi \rangle$. As special cases of Proposition 1, we obtain the following examples:

EXAMPLE 1. Take A=(c/2)I, B=I, where c is a constant. Then L is given by

$$L(x, y) = c\{x \Delta y + \phi x \Lambda \phi y + 2\langle x, \phi y \rangle \phi\}$$
.

The Ricci tensor and the scalar curvature are

$$Kx = 2(n+1)c\{x - \eta(x)\xi\}$$
, tr $K = 4n(n+1)c$.

And the ϕ -sectional curvature k(P) for all ϕ -invariant planes P in V is identically equal to 4c. Conversely, if $L \in \mathcal{L}(V)$ has constant ϕ -sectional curvature, say, 4c, then it is of the above form (Ogiue [5]).

EXAMPLE 2. Take B = I and a symmetric endomorphism A which commutes with ϕ . Then L is given by

$$L(x, y) = Ax\Lambda y + x\Lambda Ay + \phi Ax\Lambda \phi y + \phi x\Lambda \phi Ay + 2\langle Ax, \phi y \rangle \phi + 2\langle x, \phi y \rangle \phi A.$$

The Ricci tensor K and the scalar curvature are

$$Kx = 2(n+2)(Ax - a\eta(x)\xi) + (\operatorname{tr} A - a)(x - \eta(x)\xi)$$
, $\operatorname{tr} K = 4(n+1)(\operatorname{tr} A - a)$.

LEMMA 1. Let L be an S-curvature-like tensor, and let K be the Ricci tensor of L, then we have the following identities:

$$\langle L(x, y)z, w \rangle = 0$$

if at least one of x, y, z, and w is equal to ξ ;

$$(2.8) K\xi = 0 ;$$

$$(2.9) K\phi = \phi K.$$

And if $\{e_1, \dots, e_{2n+1}\}$ is an orthonormal basis of V, then

$$\begin{aligned} (2.10) \qquad \qquad & 2\langle L(x,\,y)v,\,u\rangle = \sum\limits_{i,j} \langle L(x,\,y)e_j,\,e_i\rangle \langle (u \varLambda v)e_j,\,e_i\rangle \\ & = \sum\limits_{i,j} \langle L(x,\,y)e_j,\,e_i\rangle \langle (\phi u \varLambda \phi v)e_j,\,e_i\rangle \;. \end{aligned}$$

We make use of these formulas for the proof of Propositions 2 and 3.

PROOF OF PROPOSITION 2. It is sufficient to show that $\mathcal{L}_1^{\perp}(V)$ consists of all $L \in \mathcal{L}(V)$ whose scalar curvature is 0. $L' \in \mathcal{L}_1(V)$ can be expressed by definition of $\mathcal{L}_1(V)$ as follows

$$egin{aligned} L'(x,\,y)z &= c\{(x arLambda y)z - \eta(z)(\eta(y)x - \eta(x)y) \ &- \xi(\langle z,\,y
angle \eta(x) - \langle z,\,x
angle \eta(y)) + (\phi x arLambda \phi y)z + 2 \langle x,\,\phi y
angle \phi z \} \ . \end{aligned}$$

Let $\{e_1, \dots, e_{2n+1}\}$ be an orthonormal basis of V, then

$$\begin{split} \langle L'(e_k,\,e_m)e_j,\,e_i\rangle &= c\{\langle (e_k \varLambda e_m)e_j,\,e_i\rangle \\ &- \langle \eta(e_j)(\eta(e_m)e_k - \eta(e_k)e_m),\,e_i\rangle \\ &- \langle \xi,\,e_i\rangle(\langle e_j,\,e_m\rangle\eta(e_k) - \langle e_j,\,e_k\rangle\eta(e_m)) \\ &+ \langle (\phi e_k \varLambda \phi e_m)e_j,\,e_i\rangle + 2\langle e_k,\,\phi e_m\rangle\langle\phi e_j,\,e_i\rangle \} \,. \end{split}$$

Let L be an S-curvature-like tensor. From (2.7) follows

(2.12)
$$\sum_{i,j,k,m} \langle L(e_k, e_m)e_j, e_i \rangle \{ \langle \eta(e_j)(\eta(e_m)e_k - \eta(e_k)e_m), e_i \rangle + \langle \xi, e_i \rangle (\langle e_j, e_m \rangle \eta(e_k) - \langle e_j, e_k \rangle \eta(e_m)) \} = 0.$$

From (2.10) follows

(2.13)
$$\sum_{i,j,k,m} \langle L(e_k, e_m)e_j, e_i \rangle \{ \langle (e_k \Lambda e_m)e_j, e_i \rangle + \langle (\phi e_k \Lambda \phi e_m)e_j, e_i \rangle \}$$

$$= 4 \sum_{k,m} \langle L(e_k, e_m)e_m, e_k \rangle = 4 \text{ (scalar curvature of } L) .$$

On the other hand,

(2.14)
$$\sum_{i,j,k,m} \langle L(e_k, e_m)e_j, e_i \rangle \langle e_k, \phi e_m \rangle \langle \phi e_j, e_i \rangle$$

$$= \sum_{m,j} \langle L(\phi e_m, e_m)e_j, \phi e_j \rangle$$

$$= -\sum_{m,j} (\langle L(e_m, e_j)\phi e_m, \phi e_j \rangle + \langle L(e_j, \phi e_m)e_m, \phi e_j \rangle)$$

$$= \sum_{m,j} (\langle L(e_j, e_m)\phi e_m, \phi e_j \rangle + \langle L(e_j, \phi e_m)\phi e_m, e_j \rangle)$$

$$= \sum_{m,j} \langle L(e_j, e_m)e_m, e_j \rangle + \sum_{m} \langle K\phi e_m, \phi e_m \rangle$$

$$= \sum_{m,j} \langle L(e_j, e_m)e_m, e_j \rangle + \sum_{m} \langle Ke_m, e_m \rangle$$

$$= 2 \text{ (scalar curvature of } L \text{)}.$$

From (2.11), (2.12), (2.13), and (2.14) we get

$$egin{aligned} \langle L,\,L'
angle &= \sum\limits_{i,\,j,\,k,\,m} \langle L(e_{k},\,e_{\it m})e_{\it j},\,e_{\it i}
angle \langle L'(e_{\it k},\,e_{\it m})e_{\it j},\,e_{\it i}
angle \\ &= 8c \; ext{(scalar curvature of }L) \;. \end{aligned}$$

This proves our assertion.

PROOF OF PROPOSITION 3. By Examples 1 and 2 we can show easily that tensors L_1 , L_B , and L_2 belong, respectively, to $\mathcal{L}_1(V)$, $\mathcal{L}_B(V)$, and $\mathcal{L}_1^{\perp}(V)$. So it is sufficient to show that tensor L_2 is orthogonal to $\mathcal{L}_B(V)$. Since $L_{I,I}$ is orthogonal to $\mathcal{L}_B(V)$, we have only to show that $L_{K,I}$ is orthogonal to $\mathcal{L}_B(V)$. Let L' be a tensor which belongs to $\mathcal{L}_B(V)$. Making use of (2.7) and (2.10), we get

$$(2.15) \qquad \sum_{k,m,j,i} \langle L'(e_k, e_m)e_j, e_i \rangle \{ \langle (Ke_k \Delta e_m)e_j, e_i \rangle + \langle (\phi Ke_k \Lambda \phi e_m)e_j, e_i \rangle \}$$

$$= \sum_{k,m,j,i} \langle L'(e_k, e_m)e_j, e_i \rangle \{ \langle (Ke_k \Lambda e_m)e_j, e_i \rangle + \langle (\phi Ke_k \Lambda \phi e_m)e_j, e_i \rangle \}$$

$$= 4 \sum_{k,m} \langle L'(e_k, e_m)e_m, Ke_k \rangle = 0 ;$$

$$(2.16) \qquad \sum_{k,m,j,i} \langle L'(e_k,e_m)e_j,e_i\rangle \{\langle (e_k \Delta K e_m)e_j,e_i\rangle + \langle (\phi e_k \Delta \phi K e_m)e_j,e_i\rangle \}$$

$$= 0.$$

On the other hand,

(2.17)
$$\sum_{k,m,j,i} \langle L'(e_k, e_m)e_j, e_i \rangle \langle Ke_k, \phi e_m \rangle \langle \phi e_j, e_i \rangle$$

$$= \sum_{m,j} \langle L'(K\phi e_m, e_m)e_j, \phi e_j \rangle$$

$$= -\sum_{m,j} (\langle L'(e_m, e_j)K\phi e_m, \phi e_j \rangle + \langle L'(e_j, K\phi e_m)e_m, \phi e_j \rangle)$$

$$= -\sum_{m,j} (\langle L'(e_m, e_j)Ke_m, e_j \rangle - \langle L'(e_j, K\phi e_m)\phi e_m, e_j \rangle)$$

$$= \sum_{m,j} (\langle Ke_m, L'(e_m, e_j)e_j \rangle + \langle \phi e_m, L'(K\phi e_m, e_j)e_j \rangle) = 0 ;$$
(2.18)
$$\sum_{k,m,j} \langle L'(e_k, e_m)e_j, e_i \rangle \langle e_k, \phi e_m \rangle \langle \phi Ke_j, e_i \rangle = 0 .$$

From (2.15), (2.16), (2.17), and (2.18) we get

$$\langle L', L_{\kappa, l} \rangle = 0$$
.

This proves our assertion.

EXAMPLE 3. Corresponding to Example 1 we consider

$$L = fL_{I,I}$$
,

where f is a (differentiable) function. If dim $M \ge 5$, L is proper if and only if f is a constant function.

LEMMA 2. Let L be a proper generalized S-curvature-like tensor field on M and let K be its Ricci tensor field. Then we have the following formulas:

(2.19)
$$\langle (\nabla_{\phi X} K) \phi Y, Z \rangle = -\langle (\nabla_{Y} K) Z, X \rangle + \langle (\nabla_{Z} K) X, Y \rangle - \eta(Y) \langle K \phi X, Z \rangle + 2\eta(X) \langle K \phi Z, Y \rangle ;$$
(2.20) $\nabla_{\varepsilon} K = 0 ;$

(2.21)
$$trace \ of \ \{X \mapsto (\nabla_X K) Y\} = \frac{1}{2} Y(\operatorname{tr} K) .$$

PROOF. (2.20) follows directly from (2.19): If we put $Y = \xi$ in (2.19), then we have

$$-\langle (\nabla_{\varepsilon}K)Z, X\rangle + \langle X, (\nabla_{Z}K)\xi\rangle + \langle X, K\phi Z\rangle = 0$$
.

From $K\xi = 0$ follows

$$(2.22) \qquad (\nabla_z K)\xi = -K(\nabla_z \xi) = -K\phi Z.$$

Therefore we get $\nabla_{\varepsilon}K=0$. (2.21) is proved in [4]. We shall prove (2.19). Let $\{e_1, \dots, e_{2n+1}\}$ be an orthonormal basis of the tangent space $T_p(M)$ at a point $p \in M$. We see

$$egin{aligned} \langle KY,Z
angle &= \sum_i \langle L(Y,e_i)e_i,Z
angle &= \sum_i \langle L(\phi Y,\phi e_i)e_i,Z
angle \ &= -\sum_i \langle L(\phi Y,\phi e_i)Z,e_i
angle \ &= -\sum_i \langle (Le_i,\phi Z)\phi Y,e_i
angle + \sum_i \langle \phi L(Z,\phi Y)e_i,e_i
angle \ &= -\langle K\phi Z,\phi Y
angle + \sum_i \langle \phi L(Z,\phi Y)e_i,e_i
angle \ &= -\langle KZ,Y
angle + \sum_i \langle \phi L(Z,\phi Y)e_i,e_i
angle \ . \end{aligned}$$

Thus we get

(2.23)
$$\langle KY, Z \rangle = \frac{1}{2} \sum_{i} \langle \phi L(Z, \phi Y) e_{i}, e_{i} \rangle$$
.

From this equation follows

$$egin{aligned} \left\langle \left(
abla_{_{\it X}} K
ight) Y, \, Z
ight
angle &= rac{1}{2} \, \sum_{_{\it i}} \left\{ \left\langle \left(
abla_{_{\it X}} \phi
ight) (L(Z, \, \phi \, Y) e_{_{\it i}}
ight), \, e_{_{\it i}}
ight
angle + \left\langle \phi (
abla_{_{\it X}} L) (Z, \, \phi \, Y) e_{_{\it i}}, \, e_{_{\it i}}
ight
angle + \left\langle \phi (
abla_{_{\it X}} L) (Z, \, \phi \, Y) e_{_{\it i}}, \, e_{_{\it i}}
ight
angle + rac{1}{2} \eta (Y) \, \sum_{_{\it i}} \left\langle \phi L(Z, \, X) e_{_{\it i}}, \, e_{_{\it i}}
ight
angle \, . \end{aligned}$$

Replacing Y by ϕY in this, we get

$$egin{aligned} \langle (
abla_X K) \phi \, Y, \, Z
angle &= \, - rac{1}{2} \, \sum_i raket{\phi(
abla_X L)(Z, \, Y) e_i, \, e_i} \ &- rac{1}{2} \, \sum_i raket{\phi(
abla_Z L)(Y, \, \xi) e_i, \, e_i} \,. \end{aligned}$$

From (2.7) follows

$$(\nabla_z L)(Y, \xi) = -L(Y, \nabla_z \xi) = -L(Y, \phi Z)$$
.

Putting this into (2.24) and making use of (2.23), we get

$$\langle (
abla_{_{\it X}} K) \phi \, Y, \, Z
angle = - rac{1}{2} \sum ig\langle \phi(
abla_{_{\it X}} L) (Z, \, Y) e_i, \, e_i
angle - ig\langle K X, \, Z
angle \eta(Y) \; .$$

Since L is proper, we get

$$\langle (\nabla_X K) \phi Y, Z \rangle + \langle (\nabla_Y K) \phi Z, X \rangle + \langle (\nabla_Z K) \phi X, Y \rangle$$

= $-(\eta(Y) \langle KX, Z \rangle + \eta(Z) \langle KY, X \rangle + \eta(X) \langle KZ, Y \rangle)$.

Replacing X by ϕX in this, we get

(2.25)
$$\langle (\nabla_{\phi X} K) \phi Y, Z \rangle + \langle (\nabla_{Y} K) \phi Z, \phi X \rangle + \langle (\nabla_{Z} K) (-X + \eta(X) \xi), Y \rangle$$

= $-(\eta(Y) \langle K \phi X, Z \rangle + \eta(Z) \langle K Y, \phi X \rangle)$.

From $K\phi = \phi K$ follows

(2.26)
$$(\nabla_{Y}K)\phi Z = -K(\nabla_{Y}\phi)Z + (\nabla_{Y}\phi)KZ + \phi(\nabla_{Y}K)Z$$

$$= -\eta(Z)KY - \langle Y, KZ \rangle \xi + \phi(\nabla_{Y}K)Z.$$

Putting this and (2.22) into (2.25), we get

$$\langle (\nabla_{\phi X} K) \phi Y, Z \rangle - \eta(Z) \langle KY, \phi X \rangle + \langle \phi(\nabla_Y K) Z, \phi X \rangle - \langle (\nabla_Z K) X, Y \rangle - \eta(X) \langle K \phi Z, Y \rangle = -(\eta(Y) \langle K \phi X, Z \rangle + \eta(Z) \langle KY, \phi X \rangle).$$

Since
$$\langle \phi(\nabla_Y K)Z, \phi X \rangle = \langle (\nabla_Y K)Z, X \rangle + \eta(X) \langle K \phi Y, Z \rangle$$
, we get (2.19).

Now we can prove Propositions 4 and 5.

PROOF OF PROPOSITION 4. It is now easy to show that (1.17) follows from (1.16). So we shall prove (1.16) under the assumption that (1.17) holds. Interchanging X and Z in (1.17), we have

$$\langle (\nabla_{Y}K)Z - (\nabla_{Z}K)Y, X \rangle = \eta(Y) \langle \phi KZ, X \rangle - \eta(Z) \langle \phi KY, X \rangle + 2\eta(X) \langle Y, \phi KZ \rangle$$
.

Putting this into (2.19), we get

$$\langle (\nabla_{\phi X} K) \phi Y, Z \rangle = \eta(Z) \langle \phi K Y, X \rangle$$
.

Replacing X and Y in this, respectively, by $-\phi X$ and $-\phi Y$, and making use of (2.20) and (2.22), we get (1.16).

PROOF OF PROPOSITION 5. From (1.16) we can easily get

trace of
$$\{X \mapsto (\nabla_X K) Y\} = 0$$
.

In view of (2.21), we see

$$Y(\operatorname{tr} K) = 0,$$

which proves our assertion.

LEMMA 3. Under the same assumptions as in Proposition 6, we have the following formulas:

$$(2.27) trace of \{X \mapsto (\nabla_X A)Y\} = 0;$$

(2.28)
$$(\nabla_z A)\phi X + \eta(X)AZ = -\langle Z, AX\rangle \xi + \phi((\nabla_z A)X);$$

$$(2.29) (\nabla_Z A)\xi = -A\phi Z ;$$

(2.30)
$$(\nabla_{\phi Y} A) \phi X - (\nabla_{\phi X} A) \phi Y$$

$$= (\nabla_{Y} A) X - (\nabla_{X} A) Y + (A \phi Y) \eta X - (A \phi X) \eta Y;$$

$$\nabla_{\varepsilon} A = 0 \; ;$$

(2.32)
$$trace \ of \{Z \mapsto \phi(\nabla_z A)X\} = (\operatorname{tr} A)\eta(X);$$

(2.33)
$$\sum_{i} \phi((\nabla_{e_i} A) e_i) = 0 ;$$

$$(2.34) tr (\phi(\nabla_z A)) = 0.$$

PROOF. Let K be the Ricci tensor of L, then from Example 2 we get

(2.35)
$$KX = 2(n+2)AX + \operatorname{tr} A(X - \eta(X)\xi);$$

(2.36)
$$\operatorname{tr} K = 4(n+1)\operatorname{tr} A$$
.

From (2.35) follows

(2.37)
$$(\nabla_X K) Y = 2(n+2)(\nabla_X A) Y - \operatorname{tr} A((\nabla_X \eta)(Y)\xi + \eta(Y)\nabla_X \xi)$$

$$= 2(n+2)(\nabla_X A) Y - \operatorname{tr} A(\langle Y, \phi X \rangle \xi + \eta(Y)\phi X) .$$

Therefore

trace of
$$\{X \mapsto (\nabla_x A) Y\} = \frac{1}{2(n+2)}$$
 trace of $\{X \mapsto (\nabla_x K) Y\}$
$$= \frac{1}{4(n+2)} Y(\operatorname{tr} K) ,$$

the second identity of which comes from (2.21). We see by (2.36) that tr K is constant. So we get (2.27). Making use of (2.35) and (2.37), we can rewrite the formula (2.19) into the following:

$$\begin{split} \langle (
abla_{\phi X} A) \phi \, Y, \, Z \rangle &= \, - \langle (
abla_Y A) Z, \, X \rangle \, + \, \langle (
abla_Z A) X, \, Y \rangle \ &- \, \eta(Y) \langle A \phi X, \, Z \rangle \, + \, 2 \eta(X) \langle A \phi Z, \, Y \rangle \; . \end{split}$$

From this (2.30) follows directly. (2.28), (2.29), and (2.31) can be proved in the same way, respectively, as (2.26), (2.22), and (2.20). (2.32) follows directly from (2.27) and (2.28). Since $\langle X, \phi(\nabla_W A)Z \rangle = -\langle (\nabla_W A)\phi X, Z \rangle$, we get (2.33) by virtue of (2.27). Let $\{E_i\}$ be locally defined parallel orthonormal fields. Then

$$\sum_i raket{E_i, \phi(
abla_z A)E_i} = \sum_i \left(
abla_z raket{E_i, \phi A E_i} - raket{E_i, (
abla_z \phi) A E_i}
ight) = 0$$
 ,

which proves (2.34).

PROOF OF PROPOSITION 6. By the definition of L, we see

$$L(X, Y)W = \langle W, Y \rangle AX - \langle W, AX \rangle Y - \eta(W)\eta(Y)AX + \langle W, AX \rangle \eta(Y)\xi$$

 $+ \langle W, AY \rangle X - \langle W, X \rangle AY + \eta(W)\eta(X)AY$
 $- \xi \langle W, AY \rangle \eta(X) + \langle W, \phi Y \rangle \phi AX - \langle W, \phi AX \rangle \phi Y$

$$+\langle W, \phi A Y \rangle \phi X - \langle W, \phi X \rangle \phi A Y$$

 $+ 2\langle AX, \phi Y \rangle \phi W + 2\langle X, \phi Y \rangle \phi A W$.

From this follows

$$\begin{array}{l} (\nabla_{z}L)(X,\,Y)W = \langle W,\,Y\rangle(\nabla_{z}A)X - \langle W,\,(\nabla_{z}A)X\rangle Y \\ - (\nabla_{z}\eta)(W)\eta(Y)AX - \eta(W)((\nabla_{z}\eta)(Y)AX + \eta(Y)(\nabla_{z}A)X) \\ + \langle W,\,AX\rangle\eta(Y)\nabla_{z}\xi + (\langle W,\,(\nabla_{z}A)X\rangle\eta(Y) + \langle W,\,AX\rangle(\nabla_{z}\eta)(Y))\xi \\ + \langle W,\,(\nabla_{z}A)\,Y\rangle X - \langle W,\,X\rangle(\nabla_{z}A)\,Y \\ + (\nabla_{z}\eta)(W)\eta(X)A\,Y + \eta(W)((\nabla_{z}\eta)A\,Y + \eta(X)(\nabla_{z}A)\,Y) \\ - \langle W,\,A\,Y\rangle\eta(X)\nabla_{z}\xi - (\langle W,\,(\nabla_{z}A)\,Y\rangle\eta(X) + \langle W,\,A\,Y\rangle(\nabla_{z}\eta)(X))\xi \\ + \langle W,\,(\nabla_{z}\phi)\,Y\rangle\phi AX + \langle W,\,\phi\,Y\rangle(\nabla_{z}\phi)AX + \langle W,\,\phi\,Y\rangle\phi(\nabla_{z}A)X \\ - \langle W,\,(\nabla_{z}\phi)AX\rangle\phi\,Y - \langle W,\,\phi(\nabla_{z}A)X\rangle\phi\,Y - \langle W,\,\phi AX\rangle(\nabla_{z}\phi)\,Y \\ + \langle W,\,(\nabla_{z}\phi)AY\rangle\phi X + \langle W,\,\phi(\nabla_{z}A)Y\rangle\phi X + \langle W,\,\phi AY\rangle(\nabla_{z}\phi)X \\ - \langle W,\,(\nabla_{z}\phi)X\rangle\phi AY - \langle W,\,\phi(\nabla_{z}A)Y\rangle\phi X + \langle W,\,\phi AY\rangle(\nabla_{z}\phi)X \\ - \langle W,\,(\nabla_{z}\phi)X\rangle\phi AY - \langle W,\,\phi(\nabla_{z}A)Y\rangle\phi X - \langle W,\,\phi X\rangle\phi(\nabla_{z}A)Y \\ + 2\langle(\nabla_{z}A)X,\,\phi Y\rangle\phi W + 2\langle AX,\,(\nabla_{z}\phi)Y\rangle\phi W + 2\langle AX,\,\phi Y\rangle(\nabla_{z}\phi)W \\ + 2\langle X,\,(\nabla_{z}\phi)Y\rangle\phi AW + 2\langle X,\,\phi Y\rangle(\nabla_{z}\phi)AW + 2\langle X,\,\phi Y\rangle\phi(\nabla_{z}A)W \,. \end{array}$$

Applying (1.14) and (1.15) to this, we obtain

$$(2.38) \quad (\nabla_{z}L)(X, Y)W = \langle W, Y \rangle(\nabla_{z}A)X - \langle W, (\nabla_{z}A)X \rangle Y \\ - \langle W, \phi Z \rangle \eta(Y)AX - \eta(W)(\langle Y, \phi Z \rangle AX + \eta(Y)(\nabla_{z}A)X) \\ + \langle W, AX \rangle \eta(Y)\phi Z + (\langle W, (\nabla_{z}A)X \rangle \eta(Y) + \langle W, AX \rangle \langle Y, \phi Z \rangle)\xi \\ + \langle W, (\nabla_{z}A)Y \rangle X - \langle W, X \rangle(\nabla_{z}A)Y \\ + \langle W, \phi Z \rangle \eta(X)AY + \eta(W)(\langle X, \phi Z \rangle AY + \eta(X)(\nabla_{z}A)Y) \\ - \langle W, AY \rangle \eta(X)\phi Z - (\langle W, (\nabla_{z}A)Y \rangle \eta(X) + \langle W, AY \rangle \langle X, \phi Z \rangle)\xi \\ + \langle W, \eta(Y)Z - \langle Z, Y \rangle \xi \rangle \phi AX - \langle W, \phi Y \rangle \langle Z, AX \rangle \xi + \langle W, \phi Y \rangle \phi(\nabla_{z}A)X \\ + \langle W, \langle Z, AX \rangle \xi \rangle \phi Y - \langle W, \phi(\nabla_{z}A)X \rangle \phi Y - \langle W, \phi AX \rangle(\eta(Y)Z - \langle Z, Y \rangle \xi) \\ - \langle W, \langle Z, AY \rangle \xi \rangle \phi X + \langle W, \phi(\nabla_{z}A)Y \rangle \phi X + \langle W, \phi AY \rangle(\eta(X)Z - \langle Z, X \rangle \xi) \\ - \langle W, \eta(X)Z - \langle Z, X \rangle \xi \rangle \phi AY + \langle W, \phi X \rangle \langle Z, AY \rangle \xi - \langle W, \phi X \rangle \phi(\nabla_{z}A)Y \\ + 2\langle (\nabla_{z}A)X, \phi Y \rangle \phi W + 2\langle AX, \eta(Y)Z \rangle \phi W + 2\langle AX, \phi Y \rangle(\eta(W)Z - \langle Z, W \rangle \xi) \\ + 2\langle X, \eta(Y)Z - \langle Z, Y \rangle \xi \rangle \phi AW - 2\langle X, \phi Y \rangle \langle Z, AW \rangle \xi + 2\langle X, \phi Y \rangle \phi(\nabla_{z}A)W .$$

Making use of (2.27), (2.31), (2.32), (2.33), and (2.38), we get

$$(2.29) \qquad \sum_{i} (\nabla_{e_{i}} L)(X, Y)e_{i} = (\nabla_{Y} A)X - (\nabla_{X} A)Y + 2(2n+3)\langle Y, \phi AX \rangle \xi \\ + 2(n+2)\eta(Y)\phi AX - 2(n+1)\eta(X)\phi AY \\ + \phi((\nabla_{\phi Y} A)X) - \phi((\nabla_{\phi X} A)Y)$$

$$+ \operatorname{tr} A(\eta(Y)\phi X - \eta(X)\phi Y) - 2\langle X, \phi Y \rangle (\operatorname{tr} A)\xi + 2\sum_{i} \langle (\nabla_{e_{i}}A)X, \phi Y \rangle \phi e_{i} .$$

Making use of (2.38) and (2.34), we get

$$egin{aligned} \sum_i \left(
abla_z L
ight) (X,\,e_i) e_i &= (2n\,+\,1) (
abla_z A) X - 3 (
abla_z A) X + \langle \xi,\, (
abla_z A) X
angle \xi \ &- 5 \langle \phi Z,\, AX
angle \xi - 2 \eta(X) \phi AZ + \eta(X) (
abla_z A) \xi \ &- (\mathrm{tr}\,A) \eta(X) \phi Z - \mathrm{tr}\,A \langle X,\, \phi Z
angle \xi - 3 \phi^2 (
abla_z A) X \ &- 3 \phi ((
abla_z A) \phi X) \;. \end{aligned}$$

Applying (2.29) to this, we get

$$(2.40) \qquad \sum_{i} (\nabla_{Z}L)(X, e_{i})e_{i} = (2n+1)(\nabla_{Z}A)X - 3\langle AX, \phi Z \rangle \xi - 3\eta(X)\phi AZ \\ - (\operatorname{tr} A)\eta(X)\phi Z - \operatorname{tr} A\langle X, \phi Z \rangle \xi - 3\phi((\nabla_{Z}A)\phi X) .$$

Since L is proper, we see

(2.41)
$$\sum_{i} (\nabla_{e_i} L)(X, Y) e_i = -\sum_{i} (\nabla_X L)(Y, e_i) e_i + \sum_{i} (\nabla_Y L)(X, e_i) e_i.$$

On the basis of (2.39), (2.40), and (2.41), we obtain

By virtue of (2.28) and (2.29), we get

$$\phi((
abla_{\phi Y}A)X) - \phi((
abla_{\phi X}A)Y) = (
abla_{\phi Y}A)\phi X - (
abla_{\phi X}A)\phi Y
+ \eta(X)A\phi Y - \eta(Y)A\phi X + 2\langle\phi Y, AX\rangle\xi;$$
 $\phi((
abla_{\gamma}A)\phi X) - \phi((
abla_{\chi}A)\phi Y) = \eta(Y)\phi AX - \eta(X)\phi AY
+ (
abla_{\gamma}A)Y - (
abla_{\gamma}A)X + 2\langle AY, \phi X\rangle\xi.$

Putting these two formulas into (2.42), we get

$$egin{aligned} (2n+3)\{(
abla_{_Y}A)X-(
abla_{_X}A)Y\} &= (
abla_{_{\phi Y}}A)\phi X-(
abla_{_{\phi X}}A)\phi Y \ &+ (2n+3)\eta(Y)\phi AX-(2n+1)\eta(X)\phi AY \ &+ 4(n+1)\langle Y,\phi AX
angle \xi + 2\sum_i \langle (
abla_{_{e_i}}A)X,\phi Y
angle \phi e_i \ . \end{aligned}$$

Putting (2.30) into this, we obtain

$$(n+1)\{(
abla_{\scriptscriptstyle Y}A)X-(
abla_{\scriptscriptstyle X}A)Y\} = -n\eta(X)\phi AY + (n+1)\eta(Y)\phi AX \ + 2(n+1)\langle Y,\phi AX \rangle \xi + \sum\limits_{\scriptscriptstyle i} \langle (
abla_{\scriptscriptstyle i}A)X,\phi Y \rangle \phi e_i \; ,$$

that is,

$$(2.43) \quad (n+1)\langle Z, (\nabla_Y A)X - (\nabla_X A)Y \rangle = -n\eta(X)\langle \phi AY, Z \rangle \\ + (n+1)\eta(Y)\langle \phi AX, Z \rangle + 2(n+1)\eta(Z)\langle Y, \phi AX \rangle - \langle (\nabla_{\phi Z} A)X, \phi Y \rangle.$$

We see easily

$$egin{aligned} \sigma & \langle Z, (
abla_{_{Y}}A)X - (
abla_{_{X}}A)Y
angle & = 0 \;; \ \sigma & (-n\eta(X)\langle \phi AY, Z
angle + (n+1)\eta(Y)\langle \phi AX, Z
angle \ & + 2(n+1)\eta(Z)\langle Y, \phi AX
angle) & = \sigma(\eta(X)\langle \phi AY, Z
angle) \;. \end{aligned}$$

By virtue of these two formulas and (2.43), we obtain

$$0 = -\sigma(\eta(Y)\langle A\phi X, Z\rangle) - \sigma(\langle (\nabla_{\phi Z}A)X, \phi Y\rangle),$$

that is,

(2.44)
$$\langle (\nabla_{\phi Y} A) \phi X, Z \rangle - \langle \phi((\nabla_{\phi X} A) Y), Z \rangle = -\langle (\nabla_{\phi Z} A) X, \phi Y \rangle - (\eta(Y) \langle A \phi X, Z \rangle + \eta(Z) \langle A \phi Y, X \rangle + \eta(X) \langle A \phi Z, Y \rangle).$$

Replacing X and Z in (2.28), respectively, with Y and ϕX , we get $(\nabla_{\phi X} A) \phi Y = -\eta(Y) A \phi X - \langle \phi X, AY \rangle \xi + \phi((\nabla_{\phi X} A) Y).$

Putting this into (2.30), we get

$$(
abla_{\phi Y}A)\phi X - \phi((
abla_{\phi X}A)Y) = -2\eta(Y)A\phi X - \langle \phi X, AY \rangle \xi + \eta(X)A\phi Y + (
abla_{v}A)X - (
abla_{v}A)Y.$$

Putting this into (2.44), we get

$$-\langle (\nabla_{\phi Z}A)X, \phi Y \rangle = \langle (\nabla_{Y}A)X - (\nabla_{X}A)Y, Z \rangle - 2\eta(Z)\langle \phi X, AY \rangle - \eta(Y)\langle A\phi X, Z \rangle$$
.

Putting this into (2.43), we get

$$\langle (
abla_{\scriptscriptstyle T} A) X - (
abla_{\scriptscriptstyle X} A) Y, Z \rangle = -\eta(X) \langle \phi A Y, Z \rangle + \eta(Y) \langle \phi A X, Z \rangle \ + 2\eta(Z) \langle Y, \phi A X \rangle \; ,$$

which proves our assertion.

PROOF OF PROPOSITION 7. By virtue of (1.19), we can easily prove $-\eta(W)\eta(Y)(\nabla_z A)X + \xi \langle W, (\nabla_z A)X\rangle \eta(Y) + \eta(W)\eta(X)(\nabla_z A)Y \\ - \langle W, (\nabla_z A)Y\rangle \eta(X)\xi = 0.$

The following formulas can be proved easily:

$$\sigma(\langle W, AX \rangle \langle Y, \phi Z \rangle - \langle W, AY \rangle \langle X, \phi Z \rangle - 2\langle X, \phi Y \rangle \langle AW, Z \rangle) = 0 ;$$
 $\sigma(-\langle W, \langle Z, Y \rangle \xi) \phi AX + \langle W, \langle X, Z \rangle \xi) \phi AY) = 0 ;$
 $\sigma(-\langle W, \phi Y \rangle \langle AX, Z \rangle + \langle W, \phi X \rangle \langle AY, Z \rangle) = 0 ;$
 $\sigma(\langle W, \langle AX, Z \rangle \xi) \phi Y - \langle W, \langle AY, Z \rangle \xi) \phi X) = 0 ;$

$$\begin{split} &\sigma(\langle \textit{W},\,\phi A\textit{X}\rangle\langle \textit{Y},\,\textit{Z}\rangle - \langle \textit{W},\,\phi A\textit{Y}\rangle\langle \textit{X},\,\textit{Z}\rangle) = 0 \text{ ;} \\ &\sigma(\langle \textit{X},\,\eta(\textit{Y})\textit{Z} - \langle \textit{Y},\,\textit{Z}\rangle\xi\rangle) = 0 \text{ ,} \end{split}$$

where σ denotes the cyclic sum over X, Y, and Z. Applying these formulas to the cyclic sum of (2.38) over X, Y, and Z, we obtain

$$(2.45) \quad \sigma((\nabla_{Z}L)(X, Y)W) \\ = \sigma(\langle W, Y \rangle(\nabla_{Z}A)X - \langle W, (\nabla_{Z}A)X \rangle Y - \langle W, \phi Z \rangle \eta(Y)AX \\ - \eta(W)\langle Y, \phi Z \rangle AX + \langle W, AX \rangle \eta(Y)\phi Z \\ + \langle W, (\nabla_{Z}A)Y \rangle X - \langle W, X \rangle(\nabla_{Z}A)Y \\ + \langle W, \phi Z \rangle \eta(X)AY + \eta(W)\langle X, \phi Z \rangle AY \\ - \langle W, AY \rangle \eta(X)\phi Z + \langle W, \eta(Y)Z \rangle \phi AX \\ + \langle W, \phi Y \rangle \phi((\nabla_{Z}A)X) - \langle W, \phi(\nabla_{Z}A)X \rangle \phi Y - \langle W, \phi AX \rangle \eta(Y)Z \\ + \langle W, \phi(\nabla_{Z}A)Y \rangle \phi X + \langle W, \phi AY \rangle \eta(X)Z \\ - \langle W, \eta(X)Z \rangle \phi AY - \langle W, \phi X \rangle \phi((\nabla_{Z}A)Y) \\ + 2\langle (\nabla_{Z}A)X, \phi Y \rangle \phi W + 2\langle AX, \eta(Y)Z \rangle \phi W \\ + 2\langle AX, \phi Y \rangle(\eta(W)Z - \langle Z, W \rangle \xi) \\ + 2\langle X, \phi Y \rangle \phi((\nabla_{Z}A)W)).$$

By virtue of (1.19), we can prove the following:

$$\begin{split} &\sigma(\langle W,\,\phi(\nabla_z A)\,Y\rangle\phi X - \langle W,\,A\,Y\rangle\eta(X)\phi Z) = 0\;;\\ &\sigma(\langle W,\,Y\rangle(\nabla_z A)X + \langle W,\,Z\rangle\langle A\,Y,\,\phi X\rangle\xi + \eta(Y)\langle W,\,Z\rangle\phi AX) = 0\;;\\ &\sigma(\eta(X)\langle W,\,\phi Z\rangle A\,Y - \langle W,\,\phi X\rangle\phi((\nabla_z A)\,Y) = 0\;;\\ &\sigma(\langle W,\,(\nabla_z A)X\rangle\,Y + \eta(W)\langle A\,Y,\,\phi X\rangle Z + \langle W,\,\phi AX\rangle\eta(Y)Z) = 0\;;\\ &\sigma(-\eta(W)\langle Y,\,\phi Z\rangle AX + \eta(W)\langle X,\,\phi Z\rangle AY + 2\langle X,\,\phi Y\rangle\phi((\nabla_z A)W) = 0\;, \end{split}$$

and we get the counterparts, respectively, of these formulas by interchanging X and Y. We get also

$$\sigma(\langle (\nabla_{\boldsymbol{Z}} A) X,\, \phi \, Y \rangle + \langle A X,\, \eta(\, Y) \boldsymbol{Z} \rangle) = \boldsymbol{0}$$
 .

Applying this and the above ten formulas to (2.45), we obtain

$$\sigma((\nabla_z L)(X, Y)) = 0,$$

which proves our assertion.

3. Proof of theorems and corollaries.

PROOF OF COROLLARY 1. If the contact Bochner tensor associated to $L \in \mathcal{L}(V)$ is 0, then we see by Proposition 3

$$L = \frac{1}{2(n+2)} L_{\scriptscriptstyle K,I} - \frac{{
m tr} \, K}{8(n+1)(n+2)} L_{\scriptscriptstyle I,I}$$
 ,

where K is the Ricci tensor of L. By setting,

$$A = rac{K}{2(n+2)} - rac{{
m tr}\; K}{8(n+1)(n+2)} I$$
 ,

we may write as (1.13). By Example 2 and Proposition 3, the converse is easy to see.

PROOF OF COROLLARY 2. Let A be a symmetric endomorphism of V which commutes with ϕ , and let L be an S-curvature-like tensor defined by (1.13). Then

$$(3.1) k(P) = 8\langle x, x \rangle \langle Ax, x \rangle$$

for $x \in V$ such that $\eta(x) = 0$, where P is a 2-plane spanned by x and ϕx . Conversely if L is an S-curvature-like tensor whose ϕ -sectional curvature for P is given by (3.1), then L satisfies the equality (1.13) (cf. Chapter IX, Proposition 7.1 in [2]). Putting Q = 4A, the following follows from (3.1) and vice versa:

$$k(P) = \langle x, x \rangle (\langle Qx, x \rangle + \langle Q\phi x, \phi x \rangle)$$

for $x \in V$ such that $\eta(x) = 0$. This proves our assertion, since $L_B = 0$ if and only if L is given by (1.13).

PROOF OF THEOREM 1. First assume that K satisfies (1.16). By Proposition 5, tr K is constant on M. Then L_1 defined by

$$L_{\scriptscriptstyle 1} = \frac{\operatorname{tr} K}{8n(n+1)} L_{\scriptscriptstyle I,I}$$

is proper as in Example 3. Also L_2 defined by

$$L_{z} = rac{1}{2(n+2)} L_{{\scriptscriptstyle K},{\scriptscriptstyle I}} - rac{{
m tr} \; K}{4n(n+2)} L_{{\scriptscriptstyle I},{\scriptscriptstyle I}}$$

is proper, L' defined by

$$L'=\frac{1}{2(n+2)}L_{\scriptscriptstyle K,I}$$

is proper by Proposition 7. It follows that L_B is proper.

Conversely, assume that L_1 , L_B , and L_2 are proper and that dim $M \ge 5$. From the assumption on L_1 we see that tr k is constant on M (see Example 3). Since L_2 is proper, we see that L' defined above is also proper. By Propositions 4 and 6 we conclude that K satisfies the equation (1.16). This completes the proof of Theorem 1.

We see by Example 3 that Corollary 2 is an immediate consequence of Theorem 1.

The linear mapping defined by (1.20) is one-to-one, because the Ricci tensor field of L_A is precisely A. Noting this, Theorem 2 is now easy to prove.

REFERENCES

- B.-y. CHEN AND K. YANO, Manifolds with vanishing Weyl or Bochner curvature tensor,
 J. Math. Soc. Japan, 27 (1975), 106-112.
- [2] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I, II, Interscience, 1969.
- [3] H. Mori, On the decomposition of generalized K-curvature tensor fields, Tôhoku Math. J., 25 (1973), 225-235.
- [4] K. Nomizu, On the decomposition of generalized curvature tensor fields, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, (1972), 335-345.
- [5] K. OGIUE, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kôdai Math. Sem. Rep., 16 (1964), 223-232.
- [6] M. SITARAMAYYA, Curvature tensors in Kaehler manifolds, Trans. Amer. Math. Soc., 183 (1973), 341-353.
- [7] M. TAGAWA, Sasakian manifolds with vanishing C-Bochner tensor, (unpublished).

CENTRAL RESEARCH LABORATORY

MITSUBISHI ELECTRIC CORP.

Amagasaki-shi, Japan