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The purpose of this note is to study a decomposition of generalized
S-curvature-like tensor fields on a Sasakian manifold, and to get a certain
relationship among Ricci tensor, Bianchi identity and contact Bochner
curvature tensor.

K. Nomizu [4] studied a decomposition of generalized curvature tensor
fields on a Riemannian manifold, and revealed a certain interesting re-
lationship among the tensors and tensor identities named after Codazzi,
Ricci, Bianchi and Weyl. Studying its Kaehlerian analogy H. Mori [2]
obtained a similar relationship among Bochner tensor (in place of Weyl
tensor), Ricei tensor and the other two tensor identities.

In this paper, first, we define a (g, &, n)-structure on a vector space
with an inner product, and an S-curvature-like tensor on V. As a
component of an orthogonal decomposition of an S-curvature-like tensor
L, we obtain a contact Bochner tensor associated to L. The same de-
composition implies directly a necessary and sufficient condition, obtained
by Tagawa [7], in order that the contact Bochner tensor on a Sasakian
manifold vanishes. Then we define a generalized S-curvature-like tensor
field L on a Sasakian manifold M so that L, is an S-curvature-like
tensor over the tangent space T,(M) at each point p of M. When we
consider the decomposition of a generalized S-curvature-like tensor field,
a natural question arises: When are the components of the decom-
position proper (i.e., When do they satisfy the second Bianchi identity)?
An answer is given by a certain equation to be satisfied by the Ricei
tensor field. In view of analogy which exists between an S-curvature-
like tensor (resp. a generalized S-curvature-like tensor field) and a K-
curvature tensor (resp. a generalized K-curvature tensor field) defined
in [3], all our methods can be applied also to the case when V is a vector
space with a Hermitian inner product (resp. M is a Kaehler manifold)
(cf. [3]). In this case, Tagawa’s result mentioned above is reduced to
Chen and Yano’s result [1] which gives a necessary and sufficient condi-
tion in order that the Bochner tensor on M vanishes.

1. Statement of results. Let V be a (2n + 1)-dimensional real vector
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space with an inner product denoted by <{, ). A tensor L of type (1, 3)
over V can be considered as a bilinear mapping
x,¥)eV X Vi L(z, y) cHom (V, V).

Such a tensor L is called a curvature tensor over V if it has the following
properties:

1.1) L(y, ) = —L(=, 9) ;

L(z, y) is a skew-symmetric endomorphism of V, i.e.,
(1.2) (L(@, Y)u, vy + {u, Lz, y)v) = 0;

1.3) o(L(z, y)z) =0 (the first Bianchi identity) ,

where o denotes the cyclic sum over z, ¥, and z.
For a curvature tensor L, the Ricei tensor K = K, of type (1, 1) is
a symmetric endomorphism of V defined by

K(x) = trace of the bilinear map:
y,2)e VX Vi Lz, y)zeV.

The trace of the Ricci tensor K, is called the scalar curvature of L.

A (¢, & n)-structure is defined on V by tensors ¢, & and 7 of type
1,1), (1,0), and (0,1), respectively, over V, satisfying the following
conditions:

(1.4) nE) =1;

(1.5) 7(gx) = 0 ;

(1.6) #'(x) = —a + @) ;
1.7 & & =1;

(1.8) N(x) = (& ) ;

(1.9) (g, 9y> = <=, ¥ — N@)N(Y) .

Let V be a (2n + 1)-dimensional vector space with a (g, & 7)-struc-
ture. A curvature tensor L is called an S-curvature tensor over V if
it has the following properties:

L(z, y)¢z = ¢(L(z, ¥)2) + {92, 2)y — (Y, 2)x — {Y, 2)¢x + {&, 2)$Y ;
L, 2)y = <y, ©)¢ — n(y)x .

A curvature tensor L is called an S-curvature-like tensor over V if it
has the following properties:

(1.10) Lz, y) o ¢ = ¢ o L(w, ) ;
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(1.11) L& ) =0.

We denote by (V) the vector space of all S-curvature-like tensors
over V.
Let P be a ¢-invariant 2-plane in V and let & be a unit vector in P.
For an S-curvature like tensor L, we set
k(P) = {L(, ¢x)p, ©) .

We call that %(P) is the ¢-sectional curvature of L for P.
For z, y e V, we denote by x4y and zdy the skew-symmetric endo-
morphisms of V, respectively, defined by
(@dy)z = {2, Yz — {2, )Y ,
(xdy)z = (zdy)z — NR)HY)2 — P()y)
— =)<z, ¥ — N(Y)Kz, 26 .
REMARK 1. Let L, be the S-curvature tensor defined by
Lz, y) = =4y .

Then L is an S-curvature tensor if and only if L — L, is an S-curvature-
like tensor. If L is the S-curvature-like tensor corresponding to an S-
curvature tensor L, that is,

L=L-1L,,
and K and K are the Ricci tensors, respectively, for L and I, then
K=K-@2nlI,

where I denotes the identity transformation of V.

From now on we shall discuss only S-curvature-like tensors, since
they are more convenient than S-curvature tensors for our computing.
The following proposition gives examples of S-curvature-like tensors.

PrOPOSITION 1. Let A and B be two symmetric endomorphisms of
V, each of which commutes with ¢. If we define L = L, by

(1.12) L(z, y) = AxdBy + BxdAy + ¢AxApBy + ¢BxdAy
+ 2{Az, ¢y)¢B + 2(Bz, ¢y)$A ,
then L is an S-curvature-like temsor.
We define £(V) to be the subspace of (V) consisting of all S-

curvature-like tensors

L= %LI,I ’



238 Y. YOSHIMATSU

where ¢ is an arbitrary constant, i.e.,

L(V) ={Le (V) with constant ¢-sectional curvature}. Let < (V) ]
be the orthogonal complement of &F(V) in (V). Then we have the
following propositions:

ProPOSITION 2.
LHV) = {Le X (V) with vanishing scalar curvature}
and
LV)=AV)D ZLV)D LA(V)  (orthogonal) ,
where
(V) = {L e £ (V) with vanishing Ricet tensor},
F(V) = orthogonal complement of (V) inm A + (V).
PROPOSITION 3. For Le £ (V), let
L=L +L;+L,,
where L, € F(V), Lye Z(V), L,e #(V). Then

— tr K
Y 8nn+ 1) T
— 1 _ trK
T oam+2) O dmm+2) Y
LB ] 1 tr K LI,I ’

———L
2n +2) ©7 " 8(m + L)(n + 2)
where K is the Ricci tensor of L and L, is the tensor defined by (1.12).

For each Le £ (V), the &5(V)-component L is called the contact
Bochner tensor associated to L.

COROLLARY 1. The contact Bochner temsor associated to L e ¥ (V)
18 0 iof and only if
(1.13) L=1L,,
for a symmetric endomorphism A of V which commutes with ¢.

From Corollary 1 we get easily the following fact which is stated in
[7] in terms of an S-curvature tensor.

COROLLARY 2 (Tagawa [7], cf. Chen and Yano [1]). In order that
the contact Bochner temsor associated to an S-curvature-like tensor
vanishes, it is mecessary and sufficient that there ewxists a (umique)
symmetric endomorphisms Q of V which commutes with ¢ and satisfies
the following: the ¢-sectional curvature k(P) for a 2-plane P 1s the trace
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of the restriction @ to P, i.e., k(P) = trace Q/P, the inner product being
also restricted to P.

A Sasakian structure (g, & 7) is defined on a Riemannian manifold
(M, g) by tensor fields ¢, & and % of type (1, 1), (1, 0), and (0, 1) which
give (¢,, &,, 7,)-structure on the tangent space T,(M) with the inner
product g, for each point p of M and satisfy the following conditions:

(1.14) (Vx)Y = (V)X — (X, Y)§;
(1.15) Vi = o¢(X), (which is equivalent to (V)Y = (Y, ¢X)),

where X and Y are any vector fields. Here and in the following, we
denote ¢g(,) by <, ) for brevity.

A Riemannian manifold with a Sasakian structure is called an Sasakian
manifold. A (differentiable) tensor field L of type (1, 3) on a Sasakian
manifold is called a generalized S-curvature tensor field (resp. a generalized
S-curvature-like tensor field) if for each point p the tensor L, is an S-
curvature tensor (resp. an S-curvature-like tensor) over T,(M). We shall
say that L is proper if it satisfies the second Bianchi identity, that is,

o(VLXY, Z)=0.

For vector fields X and Y on M, we denote by XAY and X4Y the
tensor fields of type (1, 1) which map a vector field Z, respectively, into
(4, Y>X —<Z, X>Y

and
(Z, Y)X —Z, X)Y — n(Z)(Y)X — n(X)Y)
— (X)Z, Y) —9Y)XZ, X)) .
REMARK 2. Let L, be the proper generalized S-curvature tensor
field defined by
L(X,Y)=XAY.

Then L is a (proper) generalized S-curvature tensor field if and only if
L — L, is a (proper) generalized S-curvature-like tensor field.

From now on we shall discuss only generalized S-curvature-like tensor
fields, since they are more advantageous than generalized S-curvature
tensor fields for our computing.

We see the following fact corresponding to Proposition 1: Let A
and B be two tensor fields of type (1, 1) which are symmetric as endomor-
phisms of the tangent space and commute with ¢. Then
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L, X, Y)= AXABY + BX4AY + ¢AXA¢BY + ¢BXAgAY
+ 2(AX, Y )¢B + 2{BX, Y )gA
defines a generalized S-curvature-like tensor field.
If L is a generalized S-curvature-like tensor field on a Sasakian

manifold M, then applying the decomposition in Proposition 3 at each
point p of M we obtain

L=L+Lz+L,,
where L,, L, and L, are generalized S-curvature-like tensor fields which,
at each point p, belong to &4, &, and & over T,(M), respectively.
THEOREM 1. On a (2n + 1)-dimensional Sasakian manifold M, let
L=L+ L+ L,

be the natural decomposition of a proper generalized S-curvature-like
tensor field L. If the Ricci tensor field K of L satisfies the following
equation:

(1.16) (VxK)Y = —n(Y)KgX — ({K¢X, Y )¢,

then L,, Ly and L, are proper. Conversely, if L,, Ly, and L, are proper
and tf n = 2, then K satisfies the equation (1.16).

COROLLARY 3. On a Sasakian manifold M of dimension =5 let L
be a proper generalized S-curvature-like tensor field whose scalar curva-
ture is constant. Then the associated contact Bochner temsor field Ly is
proper if and only if the Ricct tensor field K of L satisfies the equa-
tion (1.16).

We get Theorem 1 by the help of the following propositions.

PROPOSITION 4. Let L be a proper generalized S-curvature-like tensor
field on a Sasakian manifold M, and let K be the Ricci temsor field of
L. Then (1.16) is equivalent to the following formula:

L.17)  (V:K)X — (VxK)Y, Z) = )(YX$KX, Z) — W X){¢KY, Z)
+ 29(Z)XY, $KX) .
PROPOSITION 5. The assumptions and notation being as in Proposi-

tion 4, suppose that K satisfies the equation (1.16). Then tr K is con-
stant on M.

PROPOSITION 6. On a Sasakion manifold M let A be a tensor field
of type (1, 1) which s symmetric at each point and satisfies

Ap=¢A and AE=0.
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Let L be a generalized S-curvature-like tensor field defined by
L = L 4,1

If L is proper and if tr A is constant, them A satisfies the following
equation:

(1.18)  ((VeA)X — (VzA)Y, Z) = WYKAX, Z) — NX){$AY, Z)
+ 29(Z)Y, sAX) .

PRrOPOSITION 7. On a Sasakian manifold M let A be a temsor field
of tyve (1, 1) which is symmetric at each point and satisfies

Ap =9A and AE=0.
Let L be a generalized S-curvature-like temsor field defined by

L = LA,I .
If A satisfies the following equation:
(1.19) (VxA)Y = —n(Y)gAX — CAsX, Y)¢,

then L 1s proper.

Now let A(M) be the vector space of all tensor fields A of type (1, 1)
on a Sasakian manifold which satisfy the following conditions:

i) A is symmetric at each point;

iil) A commutes with ¢;

iii) Af = 0;

iv) A satisfies the equation (1.19);

v) tr A is constant.
Let & (M) denote the vector space of all proper generalized S-curvature-
like tensor fields whose Ricci tensor fields satisfy the equation (1.16).
We assume that dim M = 5.

We have a linear mapping A eUA(M)— L, e ¥ (M) given by

1 tr A
1.20 L,=——= L,,— L,,.
(1.20) T 2m+ 2 Y 8m+ D +2

We get the following theorem:

THEOREM 2. If dim M =5, A— L, is a linear isomorphism of
A(M) onto the subspace

{Le &(M)|Ly = 0}.
2. Proof of propositions.

Proor OF ProposiTION 1. It follows from (1.5), (1.6), and (1.9) that
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¢ is skew-symmetric. Making use of this fact, we can show easily that
L has the properties (1.1), (1.2), and (1.3). We prove that L has the
properties (1.10) and (1.11). We see that

(2.1) #((zdy)2) = (¢adgy)¢z

holds for #, y and ze V. Since

(2.2) (é4y)z =0,

we get, making use of (1.6) and (2.1),

(2.3) #((pxd9y)2) = ¢((g2dgy)2) = (¢'xA8™y)p2
= (¢°xd4’y)92
= ((—2z + (=)&) A(—y + 9(y)E))9z
= (zdy)¢z .

By (2.1) and (2.3) we see that L has the property (1.10).
From (1.4), (1.7), and (1.9) we get

(2.4) #E=0.
Since A commutes with ¢, we have, making use of (1.6), (1.8), and
(2.4),
CAg, o) = (A&, N(@)E — ¢’y = N@)CAS, &) = ({48, £)¢, 2y,

for all x€ V, and therefore A& = (A¢, £)&. From this equality and (2.2)
we get A£4By = 0. We also get Bé4Ay = 0. It follows from (2.4) that
pAEAPBy = 0, ¢BEAsAy = 0, (A, ¢y) = 0 and (B¢, ¢y) = 0 hold. Thus we
get L(& y) = 0, which completes the proof of Proposition 1.

Let L be an S-curvature-like tensor defined by (1.12). Then the
Ricei tensor K of L is given by
(2.5) Kz = (tr B — b)Ax + (tr A — a)Bx + 2(BAx + ABz)

— a(tr B)p(x)é — b(tr A)n(x)s — 2abn(2) ,

and the scalar curvature of L is given by
(2.6) trK=2trAtr B+ 4tr(AB) — 2(btr A + a tr B) — 2ab ,

where @ and b are constants defined by a = <{¢, A&) and b = (¢, BE). As
special cases of Proposition 1, we obtain the following examples:

ExampLE 1. Take A = (¢/2)I, B = I, where ¢ is a constant. Then
L is given by

L(z, y) = clady + ¢adoy + 2{x, ¢$y)¢} .
The Ricci tensor and the scalar curvature are
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Kz = 2(n + L)efr — p(x)¢}, tr K= 4n(n + L)c.

And the ¢-sectional curvature k(P) for all g-invariant planes P in V is
identically equal to 4¢c. Conversely, if L e (V) has constant ¢-sectional
curvature, say, 4c, then it is of the above form (Ogiue [5]).

ExXAMPLE 2. Take B =TI and a symmetric endomorphism A which
commutes with ¢. Then L is given by

L(z, y) = Azdy + zdAy + ¢Axdpy + ¢xdgAy
+ 2{Aw, ¢y>¢ + 2(w, syyg4A .
The Ricci tensor K and the scalar curvature are
Kz = 2(n + 2)(Az — an(®)é) + (tr A — a)(z — N(x)) ,
trK=4(n+1)tr 4 — a) .

LEMMA 1. Let L be an S-curvature-like tensor, and let K be the
Ricer tensor of L, then we have the following identities:

2.7 (L(z, y)z, w) =0

of at least one of =, y, 2, and w 13 equal to &;

(2.8) Ke=0;

2.9 K¢ = ¢K .

And if {ey, +--, €34} 18 an orthonormal basis of V, then
(2.10) 2(L(x, y)v, u) = 12;‘ (L=, y)e;, e.y{(udv)e;, e;)

= ; <L(£U, y)eh ei><(¢uA¢v)6j’ ei> .
We make use of these formulas for the proof of Propositions 2 and 3.

PrRoOF OF PROPOSITION 2. It is sufficient to show that Z#(V)
consists of all Le ¢ (V) whose scalar curvature is 0. L'e (V) can
be expressed by definition of <£(V) as follows

L'(z, y)z = c{(zdy)z — 7)Yz — 7(2)y)

— &z, (=) — {2, 2)1(Y)) + (p2doy)z + 2, $y)92} .
Let {e, ---, €,,,,} be an orthonormal basis of V, then
(2.11)  (L'(ew, enlesy € = c{(exden)e, €
— {9(es)((en)er — N(€r)en), €
— (&, e (e, enn(en) — ey €:)7(en))
+ <(¢ek/1¢em)ej’ ei> + 2<ek; ¢em><¢ej) 6,;>} .
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Let L be an S-curvature-like tensor.
From (2.7) follows

(2.12) o2 (Llew endes, e{<(es)(M(en)er — N(er)en), €.
+ (& e(Kes enpn(er) — (&5 ep7(en))} = 0.
From (2.10) follows
@13) 5 (Lo enles eo{K(erden)es, e + (derdgen)es, €}
= 4%‘,” (L(ey, n)em €,y = 4 (scalar curvature of L).
On the other hand,
(2.14) i,,-,z‘k,m (L(ery em)esy €:9{xy Pm){BE}, €,)
= 3 (Llgen e)es, g0,
= — 2 (Llem €5)gen, ge5) + (Lles, $en)em 9€:))
= 2, (Ldes, en)em ge5) + (Lles, Gen)plm €5))
= 2 (Lles, enlem €;) + X CKpom Gem)
= 5, (e, 02)ew 035 + 3 (Kew 0
= 2’J(scalar curvature o"é L).
From (2.11), (2.12), (2.13), and (2.14) we get
Ly L'y = 35 (Liew endes, e {L'(ew, en)es €9
= 8¢ (scalar curvature of L) .

This proves our assertion.

PrOOF OF PROPOSITION 3. By Examples 1 and 2 we can show easily
that tensors L,, L, and L, belong, respectively, to £(V), &%(V), and
ZHV). So it is sufficient to show that tensor L, is orthogonal to (V).
Since L;; is orthogonal to <%(V), we have only to show that Ly, ; is
orthogonal to <%(V). Let L’ be a tensor which belongs to &F(V).
Making use of (2.7) and (2.10), we get

@15) 3 (Lo eey ed((Kedenes, e + ($Kedgen)es, e)
= 3 Lo enles, ) K(Kordees, e + (3Keude,)es, o)

m,5,%

= 4kz <L’(ek; em)emy Kek> = O )
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(2.16) 2, (L', en)es, e){{(e1dKen)e;, ey + (geidgKe,)e;, €,))

k,m,5,i

=0.
On the other hand,
(2.17) kmE” (L' ey, em)esy e:y{Key, peny{se;,
= 22; (L' (Kgn, €n)ess P57
= = 3 ((L'(em €)Kden, ;) + (L'(e;, Kden)em $¢5))
=-2 (L' (em, €:)Ken, €;7 — (L'(e;, Koen)pm, €;7)
= 5, (Kew, Low, 065> + (G0us L/ (Kbtn, 0)0) = 0
(L' (e, em)e;, :;9{es, deny{sKe;, e> =10.

It

.,

(2.18)

k,m

From (2.15), (2.16), (2.17), and (2.18) we get
(L', Lg,;y =0.
This proves our assertion.
ExamMpPLE 8. Corresponding to Example 1 we consider
L =fL,,,

where f is a (differentiable) function. If dim M = 5, L is proper if and
only if f is a constant function.

LEMMA 2. Let L be a proper generalized S-curvature-like temsor
field on M and let K be its Ricci temsor field. Then we have the following
Jormulas:

(2.19) ((VxK)$Y, Z) = —{(VyK)Z, X) + {(VK)X, Y)
— WY K¢X, Z) + 29(X)K¢Z, Y} ;
(2.20) V.K=0;

(2.21) trace of {X— (V,K)Y} = %Y(tr K).

ProoF. (2.20) follows directly from (2.19): If we put ¥ = £in (2.19),
then we have

From K& = 0 follows
(2.22) (VzK)e = —K(V,6) = —K¢Z .
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Therefore we get V.K = 0. (2.21) is proved in [4]. We shall prove (2.19).
Let {e, ---, €,,+,} be an orthonormal basis of the tangent space T,(M) at
a point pe M. We see

(KY, Z) = 3.KL(Y, e)e, Z) = 2. <L($Y, ge)es Z >

= — (LY, ¢e)Z, e

= — Z ((Ley, $Z)9Y, ey + 3. {$L(Z, $Y)e,, €.

= - <}f¢Z, $Y) + >} <¢L(Z: 9Y)e, e

= (K, V) + 5 (6LZ, 606, 0
Thus we get
(2.23) (KY, Z) = % S ($L(Z, $Y)e, 0.
From this equation follows

(V:K)Y, Z) = —;— 2 K(Vxg)LlZ, $Y)ed), e) + (p(VxL)Z, $Y)e, e
+ {¢L(Z, (Vx9) Y)e,, €:)}
= 15 GWINZ, 6V)e, ) + L) S GLEZ, Do, e -

Replacing Y by ¢Y in this, we get |

(2.24) (V:K)$Y, Z) = ——;— 2. {$(V=L)(Z, Ve, e

B %.-z,“ (H(VL)Y, &)ey, €5 -
From (2.7) follows

(VZL)Y, &) = —L(Y, V58 = —L(Y, ¢Z) .
Putting this into (2.24) and making use of (2.23), we get

(V:K)$Y, Z) = —% S (H(VL)Z, Ve, ey — (KX, Z39(Y) .

Since L is proper, we get

{V:K)$Y, Z) + {(VyK)¢Z, X) + {(V;K)¢X, Y)
= —(Y)XKX, Z) + 7(Z)}XKY, X) + 2(X)XKZ, Y)) .

Replacing X by ¢X in this, we get
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(2.25)  (V4xK)$Y, Z) + (Vv K)$Z, $X) + {(VK)—X + 9(X)$), Y)
= —(UY)K$X, Z) + NZ)XKY, $X)) .
From K¢ = ¢K follows
(2.26) (VyK)pZ = —K(Vy9)Z + (Vy$)KZ + ¢(VyK)Z
= —N(Z)KY — (Y, KZ)¢ + ¢(VyK)Z .
Putting this and (2.22) into (2.25), we get
{(VexK)pY, Z) — WZKXKY, ¢X) + ($(V¢K)Z, $X) — {((V:K)X, ¥)
— NXKKpZ, Y) = —(NYKEK$X, Z) + 9(Z)XKY, X)) .
Since {(¢(VyK)Z, $X) = {(VyK)Z, X) + N X){KgY, Z), we get (2.19).
Now we can prove Propositions 4 and 5.

PROOF OF PROPOSITION 4. It is now easy to show that (1.17) follows
from (1.16). So we shall prove (1.16) under the assumption that (1.17)
holds. Interchanging X and Z in (1.17), we have

(VvK)Z — (V;K)Y, X) = N(Y)¢KZ, X) — NZ)}$KY, X)
+ 29(X)KY, ¢KZ) .
Putting this into (2.19), we get
{VsxK)9Y, Z) = N(Z){¢KY, X .

Replacing X and Y in this, respectively, by —¢X and —¢Y, and making
use of (2.20) and (2.22), we get (1.16).

PROOF OF PROPOSITION 5. From (1.16) we can easily get
trace of {X— (VK)Y}=0.
In view of (2.21), we see
YtrK)=0,
which proves our assertion.

LEMMA 3. Under the same assumptions as in Proposition 6, we
have the following formulas:

(2.27) trace of {(X+— (VzA)Y} =0;
(2.28) (V:A)X + NX)AZ = —(Z, AX)¢ + ¢((V;4)X) ;
(2.29) (VzA)E = —ApZ ;

(2.30) (VirA)pX — (VyxA)pY
= (VyAX — (VxA)Y + (Ag Y)nX — (ApX)7Y ;
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(2.31) V.A=0;

(2.32) trace of {Z +— ¢(V,A)X} = (tr A)n(X) ;
(2.33) 5 6((V., A)e) = 0

(2.34) tr (¢(V;4)) =0.

ProoF. Let K be the Ricci tensor of L, then from Example 2 we
get

(2.35) KX = 2(n + 2)AX + tr A(X — n(X)8) ;

(2.36) trK=4(n+1)tr 4.

From (2.35) follows

(2.37)  (VLK)Y =2(n + 2)(VA) Y — tr A(V))(Y)é + (Y)V8)
= 2(n + 2)(VzA)Y — tr AKY, ¢X)& + n(Y)¢X) .

Therefore
trace of (X i— (VzA)Y) = — L trace of {X— (V,K)Y)}
2(n + 2)
1
=—1 vyug),
i 7o K)

the second identity of which comes from (2.21). We see by (2.36) that
tr K is constant. So we get (2.27). Making use of (2.35) and (2.37), we
can rewrite the formula (2.19) into the following:
(VsxA)0Y, Z) = —{(VyA)Z, X) + {(V/A)X, Y)
— NY)A¢X, Z) + 29(X){(A¢Z, Y) .

From this (2.30) follows directly. (2.28), (2.29), and (2.31) can be proved
in the same way, respectively, as (2.26), (2.22), and (2.20). (2.32) follows
directly from (2.27) and (2.28). Since (X, ¢(Vy,A)Z) = —{(VwA)¢X, Z),

we get (2.33) by virtue of (2.27). Let {E,} be locally defined parallel
orthonormal fields. Then

; (E, $(V;AE,) = 2 (VB gAE) — (B, (V9)AE)) =0,
which proves (2.34).
PROOF OF PROPOSITION 6. By the definition of L, we see

LX, Y)W =W, Y)AX — (W, AX)Y — n(W)n(Y)AX + (W, AX)7(Y)&
+ (W, AY)X — (W, X)AY + p(W)n(X)AY
— &KW, AY)N(X) + (W, Y )pAX — (W, $AX)$Y
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T AW, 6AY )X — (W, $X)¢AY
+ 2(AX, s Y)W + 2(X, 6 Y)6AW .

From this follows

(V:L)X, Y)W = (W, Y)(V )X — (W, (VAX)Y
= (V) (WIN(Y)AX — p(W)(VY)AX + (Y )(V-4)X)
+ (W, AXON(Y)V £ + KW, (VAXONY) + (W, AXH(V7)(Y));
+ LW, (VA Y>X — (W, X)(V,A)Y
+ (V)(WNX)AY + p(WY(VAY + 9(X)(V-A)Y)
— AW, AY)N(X)V ¢ — KW, (VA YINX) + (W, AY ) (V )(X))E
+ (W, (V29) Y)9AX + (W, ¢ Y )(V,9)AX + (W, $Y)¢(V,4) X
— KW, (V29)AX)8Y — (W, ¢(V,A)X)8Y — (W, pAX)(V,0)Y
+ AW, (V29)AY )6 X + KW, 3(V,A) Y )X + (W, gAY )(V,4)X
— AW, (V29)X)8AY — KW, X )(V,9)AY — (W, $X)¢(V,A)Y
+ 2{(V,A)X, dY Yo W + 2{AX, (V,0)Y oW + 2{AX, ¢ Y ) (V,6)W
4+ 2{X, (V20) Y 0AW + 2{X, ¢Y)(V20)AW + 2{X, s Y >(V, AW .
Applying (1.14) and (1.15) to this, we obtain

(2.38) (V L)X, Y)W =W, Y)(V,A)X — (W, (V,A)X)Y

=W, Z)n(Y)AX — n(W)(KY, ¢Z2)AX + (Y)(V,A)X)

+ W, AXONY)oZ + KW, (VAXONUY) + (W, AX)Y, ¢Z))¢

+ AW, (VAY)X — (W, X)(V,A)Y

+ KW, 9Z)N(X)AY + (W)KX, ¢Z)AY + N(X)(V.4)Y)

— W, AY)n(X)$Z — KW, (VA Y)N(X) + (W, AY )X, $Z7)§

+ W, WX)Z — (Z, Y)$)pAX — (W, $Y )<Z, AXD§ + (W, $Y)¢(V,A) X
+ AW, <Z, AX)6¢Y — (W, §(V:A)X)8Y — (W, 9AX)(N(Y)Z — (Z, Y)§)
=KW, <Z, AY)E)¢X + (W, (VA Y )9 X + KW, 9AY)(NX)Z — (Z, X)§)
— AW, )X)Z — {Z, X)E)9AY + (W, $X){Z, AY )¢ — (W, $X)4(V,4)Y
+ A(VA)X, Y)W + 2(AX, YY) Z)s W + 2(AX, oY )(UW)Z —Z, W)E)
+ 22X, NUY)Z —{Z,Y)E)gAW — 2 X, 9 Y ){Z, AW )¢ + 2( X, Y )(V,A)W .
Making use of (2.27), (2.31), (2.32), (2.33), and (2.38), we get

2.29) 3 (V. L)X, Y)e, = (V:A)X — (VzA)Y + 2(2n + 3)KY, AX )¢

+ 2(n + 2(Y)PAX — 2(n + Vp(X)pAY
+ ¢((VorA)X) — 6((V4xA)Y)
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+ tr A(Y)pX — n(X)pY) — 2(X, ¢ Y )(tr A)¢
+ 23 (V. D)X, Y )ge, .
Making use of (2.38) and (2.34), we get
Ei'. (VL)X e)e. = (2n + 1)(V,A)X — 3(V,A)X + (& (V,A)X)¢
— 5{9Z, AX)¢ — 2n(X)¢AZ + NX)(V,A)¢E
— (tr A(X)pZ — tr ALX, ¢Z)¢ — 34%(V,4)X
— 34((V24)$X) .
Applying (2.29) to this, we get
(2.40) 3L (VLL)(X, e)e; = 2n + 1)V A)X — 3(AX, $Z)¢ — 39(X)pAZ

— (tr A(X)pZ — tr A(X, ¢Z)¢ — 34((V,4)$X) .
Since L is proper, we see
@41 (V. L)X, Y)e, = — 3 (VL)Y e)e, + 3. (VeL)(X, e, .

On the basis of (2.39), (2.40), and (2.41), we obtain
(2.42) 2n{(VyA)X — (VzA)Y} = ¢((V,rA)X) — 6((V4xA)Y)
+ 3¢((VyA)gX — (VzA)$Y) + AncY, 9AX)E + (2n + L)p(Y)pAX
— @n — Dn(X)AY + 23, (V,,A) X, Y )ge, .
By virtue of (2.28) and (2.29), we get
$(VirA)X) — 6((VsxA)Y) = (V4rA)pX — (V4xA)pY
+ NX)AgY — N(Y)AsX + 2(¢Y, AX)¢;
$(VyA)pX) — ¢(VxA)9Y) = N(Y)pAX — n(X)pAY
+ (VX A)Y — (VL A)X + 2(AY, ¢X)¢ .
Putting these two formulas into (2.42), we get
@n + (VyA)X — (VxA) Y} = (VirA)g X — (V4xA)pY
+ @2n + 3M(Y)gAX — 2n + I)N(X)pAY
+ 4(n + 1KY, pAXDE + 23, V., A)X, Y e, .
Putting (2.30) into this, we obtain
n + D{(VyA)X — (VzA)Y} = —nn(X)pAY + (v + D)(Y)pAX
+ 2(n + 1KY, gAXDE + 3KV, A)X, ¢ )de:

that is,
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(2.43) (n + 1){Z, (VzA)X — (VzA)Y) = —un(X){(sAY, Z)
+ (n+ DY) PAX, Z)+2(n+1)N(Z)KY, AX)—{(V4,A)X, Y .
We see easily
o{Z, (VyA)X — (V:A)Y) =0;
o(—m(X){SAY, Z) + (n + WY )pAX, Z)
+ 2(n + D)(Z)XY, 9AX)) = (N X){pAY, Z)) .
By virtue of these two formulas and (2.43), we obtain
0= —o(UY)XA$X, Z)) — 0({(V4:4)X, $Y)) ,
that is,
2.44)  (VerA)pX, Z) — {$((V4xA)Y), Z) = —((V,;A)X, ¢Y)
— (Y)XAgX, Z) + N(Z)AsY, X) + n(X){A¢Z, 1)) .
Replacing X and Z in (2.28), respectively, with Y and ¢X, we get
(VoxA)Y = —N(Y)A9X — (pX, AY )¢ + ¢((V4zA)Y) .
Putting this into (2.30), we get
(VorA)pX — ¢(V5xA)Y) = —29(Y)ApX — (X, AY )¢ + N(X)ApY
+ (V;A)X — (VzA)Y .
Putting this into (2.44), we get
—(V4A)X, 9Y) = (VyA)X — (V A)Y, Z)
— 20(Z){(¢X, AY) — WY)A¢X, Z) .
Putting this into (2.43), we get
(VY AX — (VxA)Y, Z) = —(X)KpAY, Z) + W(Y){$AX, Z)
. + 2(Z)Y, AX) ,
which proves our assertion.
PROOF OF PROPOSITION 7. By virtue of (1.19), we can easily prove
—(WNY XV AX + &KW, (VAXONY) + n(W)n(X)(VA)Y
— (W, (VAY)n(X)s =0.
The following formulas can be proved easily:
oW, AXXY, ¢Z) — (W, AY X, ¢Z) — 2{X, ¢Y AW, Z)) =0 ;
0(—(W,<Z, Y)E)sAX + (W, (X, Z)§)9AY) =0 ;
o(—(W, ¢Y)(AX, Z) + KW, X){AY, Z)) =0 ;
oKW, (AX, Z)£)¢Y — (W, (AY, Z)&)$X) =0 ;
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oW, AXXY, Z) — (W, 9AY XXX, Z}) = 0;
oKX, NY)Z — (Y, Z)§)) =0,
where o denotes the cyclic sum over X, Y, and Z. Applying these
formulas to the cyclic sum of (2.38) over X, Y, and Z, we obtain
(2.45) o((V,L) X, Y)W)
= oKW, Y)(V,AX — (W, (VAX)Y — (W, $Z)7(Y)AX
— NWXY, $Z2)AX + (W, AX)7(Y)9Z
+ LW, (V;AY>X — (W, X)(V,AY
+ (W, 0Z)N(X)AY + n(WXX, ¢Z)AY
— KW, AY))(X)9Z + (W, W(Y)Z)sAX
+ KW, Y )o((V,A)X) — KW, §(V,A)X)oY — (W, AX)(Y)Z
+ (W, $(V,A)Y )6 X + (W, gAY )n(X)Z
— AW, Y X)Z)pAY — (W, X)¢(V,A)Y)
+ 2(V,AX, oY oW + 2(AX, n(Y)Z Yo W
+ 2(AX, g Y)(n(W)Z — {Z, W)E)
+ 2(X, Y )e(V,AW)) .
By virtue of (1.19), we can prove the following:
o({W, $(V,A)Y )X — (W, AY))(X)$Z) = 0 ;
o({W, Y)(V,AX + (W, Z)AY, $X)¢ + NY KW, Z)pAX) =0 ;
o(UXKW, $Z)AY — (W, $X)¢((V,A)Y) =0
oW, (V;AX)Y + n(W)XAY, $X)Z + (W, AX)N(Y)Z) = 0 ;
o(—=n(WXY, $Z)AX + N(W)XX, ¢Z)AY + 2(X, ¢Y )6((V,AW) =0,

and we get the counterparts, respectively, of these formulas by inter-
changing X and Y. We get also

o({(V,A)X, ¢Y) + (AX, (Y)Z)) = 0.
Applying this and the above ten formulas to (2.45), we obtain
o(V:L)X, Y)) =0,
which proves our assertion.
3. Proof of theorems and corollaries.

PrOOF OF COROLLARY 1. If the contact Bochner tensor associated
to Le £(V) is 0, then we see by Proposition 3
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1 tr K
=— = Le,— L,,,
2n+2) ' 8m+ Dn+2

where K is the Ricci tensor of L. By setting,

— K tr K I
2n +2) 8n+ Ln+2)

we may write as (1.13). By Example 2 and Proposition 3, the converse
is easy to see.

PROOF OF COROLLARY 2. Let A be a symmetric endomorphism of V
which eommutes with ¢, and let L be an S-curvature-like tensor defined
by (1.13). Then

3.1) k(P) = &, x){Ax, x)

for z € V such that 7(x) = 0, where P is a 2-plane spanned by z and ¢z.
Conversely if L is an S-curvature-like tensor whose ¢-sectional curvature
for P is given by (3.1), then L satisfies the equality (1.13) (¢f. Chapter
IX, Proposition 7.1 in [2]). Putting @ = 44, the following follows from
(8.1) and vice versa:

k(P) = (@, )€, ©) + {(Q¢z, ¢))
for # €V such that n(x) = 0. This proves our assertion, since L, = 0 if
and only if L is given by (1.13).

Proor OF THEOREM 1. First assume that K satisfies (1.16). By
Proposition 5, tr K is constant on M. Then L, defined by

tr K
=_—— 1L
P 8nm+ 1)

is proper as in Example 3. Also L, defined by

1 tr K
L,=—— Ly, ——2X2 1
T om+ 2 T An(n+2)

is proper, L’ defined by

/ 1
L= 2(n + 2)LK”
is proper by Proposition 7. It follows that L; is proper.

Conversely, assume that L,, Ly, and L, are proper and that dim M = 5.
From the assumption on L, we see that tr k& is constant on M (see Ex-
ample 3). Since L, is proper, we see that L’ defined above is also proper.
By Propositions 4 and 6 we conclude that K satisfies the equation (1.16).
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This completes the proof of Theorem 1.

We see by Example 3 that Corollary 2 is an immediate consequence
of Theorem 1.

The linear mapping defined by (1.20) is one-to-one, because the Ricei
tensor field of L, is precisely A. Noting this, Theorem 2 is now easy
to prove.
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