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1. Introduction. We consider the boundary value problem for the
second order scalar differential equation

(1.1) x" = /(£, x, xf)

(1.2) x(a) = xa , x(jb) = xb .

Hukuhara [1] proved the following Nagumo's existence theorem by
using Kneser's property which will be stated in Section 2.

THEOREM 1.1. (Nagumo) Let f(t, x, y) be a continuous function on
a compact domain D: a <; t ^ 6, ω(t) <£ x ^ ώ(t), β(ί, x) ^ y ^ Ω(t, x),
where ω and ώ are twice continuously differentiate functions satisfy-
ing ω{t) ^ ώ(t) on a ^ t ^ 6 , β α^d β are continuously differentiate
functions satisfying β(ί, α?) ̂  -0(έ, a;) on the domain a ^ t ^ 6, ω(ί) ^
α; ^ ώ(t). Suppose the following inequalities hold;

\Ω(t, (o(t)) ^ ώ'(t) ^ β(έ, ώ(t)) /or a ^ t ^ b f

ία)"(t) ^ /(ί, α)(t), ω'(t)) /or a tί t ^b

(ά>"(£) ^ /(t, ώ(£), ώ'(t)) /or a ^ t ^ b 9

(f(t, x, Ω(t, x)) - Ωt(t, x) - Ωx(t, x)Ω{t, x) > 0

( / ( £ , a?, Ω(t, x)) - Ωt(t, x) - Ωx(t, x)Ω{t, x)< 0

for a^t^bf ω(t) ^ x ^ ώ ( £ )

α>(α) = α;α = ω(a) , ω{b) ^ xb ^ d)(6) .

equation (1.1) /ms α£ Zeαsέ owe solution which satisfies boundary

condition (1.2).

Under conditions (1.4) and (1.5), inequalities (1.3) are essentially

ί£(ί, Λ}(£)) < ω'(£) ̂  fl(ί, α>(£)) for α < t ^ 6

(i2(£, ώ(£)) ̂  ώ'(£) < β(£, ώ(£)) for a <t^b .
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In Theorem 3.1 in this paper, assumptions (1.3), (1.4) and (1.5) of Theo-
rem 1.1 will be weakened and furthermore, without the assumption
ω(a) — ω(α), we shall obtain solution x(t) of (1.1) such that ω(a)^x(a)^
ώ(a) and x(b) = xb.

2. Kneser Family.

DEFINITION 2.1. A family Jf of ^-vector valued continuous func-
tions is called a family of curves if the following conditions are
satisfied:

(a) Each curve x (or {(£, x(t)): t e/J) of ^ is a graph of an n-
vector valued continuous function defined on a compact definition inter-
val Ix.

(b) If x belongs to ^~, every partial arc x\z (the restriction of x
to a compact subinterval I of Ix) belongs to &~.

(c) ^ is a compact set in a metric space of compact sets in Rn+\
where the distance is defined by

Dist (A, B) = inf {d > 0: Uδ(A) => B , Uδ(B) z> A} ,

Uδ(A) = {pe Rn+ί: dist (p, A) ^ <5} .

(d) If x and # of &~ assume a same value at t — a, the function
which coincides with x for t <; α and with ]/ for £ ̂  α belongs to &*.

(e) The end points of a maximal (with respect to the definition inter-
val) curve belong to the boundary B = 3D of D, where D — D(^~) is
the compact set in Rn+ί filled by the curves of &~ and is called the
fundamental domain of

Let &~ be a family of curves. The left end point of a maximal
curve of ^ will be called a left extreme point of D. All left extreme
points of D form a set, which we call the left boundary and denote by

Bι = B\^~). We define the left emission zone Z~(E), EaD, by Z~(E) =
{(t, x(t)): x e ^ for which there exists a ίo6/β such that (t09x{tQ))eE,
t <; t0}. The set ^~({p}) is simply denoted by Z~(p). The set of points
p 6 B\Bι such that p is an isolated point of B Π Z~(p) will be denoted
by B~ = B~(^~). The set of points peB\Bι such that p is an accumula-
tion point of 5fΊ £-(p) will be denoted by B_ = BJ^). Then β is
expressed as the disjoint sum of B\ B~ and i?_. Similarly, we define
the right boundary Br and the set B+, B+.

DEFINITION 2.2. Let ^ be a family of curves. A point p = (a, ζ)e
DaRxRn is called a left Kneser point if it satisfies one of the following
conditions:

( I ) p is a point of Bι.
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(I I) p is a point of B~ U Int D and the intersection of the emission
zone Z~(p) with the hyperplane t — τ is a continuum when a — τ > 0 is
sufficiently small.

(Ill) p is a point of B_ and the union S U ( ΰ Π Z~(p)) is a conti-
nuum when α — τ > 0 is sufficiently small, where

= {(*, 0 6 Z-(p): ί ^ τ) .

DEFINITION 2.3. A family of curves &~ is called a left Kneser
family if it satisfies the following condition:

(f) All points of D are left Kneser points, and B~ is open in B and
is contained in Br.

Hukuhara proved the following results .

THEOREM 2.1. If &~ is a left Kneser family, then the intersection

Z~(E) Π (Bι U BJ)

is a continuum when E is a continuum in D.

For the proof, see [1].

LEMMA 2.1. Let & be a family of curves and G be the fundamen-
tal domain of Ŝ% and ά^ be the family of the curves of & which are
contained in a compact set D in G. (It is easy to show that J^ is a
family of curves and D is the fundamental domain of ^.) Suppose
that a point p = (a, ξ) of BS^) is an interior point of G or a point
of 2?-(gf), and that the following conditions are satisfied:

( i ) Every maximal function (or curve) of *& issuing from p to
the left exists uniformly in a sufficiently small interval [a — δ, a],

(ii) Every point of Z~-δ(p\ &) is a left Kneser point with respect
to Sf.

(iii) Any curve of ^a-δ(p) [issuing from an exterior point of D
to the left cannot attain D, where Sfά-δ(v) is the family of the curves
of & which are contained in Z~-δ(p; 5f).

(iv) Any point of B~(ά?r) does not belong to Z~-δ(p;
Then p is a left Kneser point of J^~.

For the proof, see [1].

3. Existence Theorem. First we consider the system

(3.1) X' = φ(t,x),

where φ is continuous on X — [a, b] x Rn, — o o < α < 6 <
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DEFINITION 3.1. A set N in X is a negatively invariant set with
respect to (3.1) if for each point (ί0, x0) e N and each solution x(t) of
(3.1) with x(tQ) = xη, (t, x(t)) eN on [a, t0] (Ί Jx, where Jx is the maximal
interval of existence of x. Similarly, we define a positively invariant
set with respect to (3.1).

LEMMA 3.1. Let D be a compact subset of X and p = (a, ξ) be a
point of Ό. Let J^~ be a family of solutions of (3.1) which are con-
tained in D and defined on compact intervals. Obviously &~ is a
family of curves. Suppose that there is a negatively invariant set N
and a positively invariant set P of (3.1) such that X\D = NUP. Then

(a) if p is a point of N (the closure of N), p is a point of β ι U5_.
(b) if B~ cB\ p is a left Kneser point.

PROOF, (a) Obviously, p is a point of B = 3D since p is a point of
N Π D. Assume p is not a point of Bι. Then there is a solution y(t)
of (3.1) issuing from p to the left and a number σ, σ < α, such that

(3.2) (t, y(t)) eD on [σ, a] .

Let {pn} be a sequence in N which converges to p and xn be a left
maximal solution of (3.1) issuing from pn to the left defined on Jn.
Since N is negatively invariant, we have

(t, xn(t)) e N on Jn .

By Theorem 3.2 ([2], p. 14), there is a left maximal solution x(t) of
(3.1) issuing from p to the left defined on Jx and a subsequence of {xn}
which converges to x uniformly on any compact interval in Jx. There-
fore we have

(3.3) (t, x(t)) eN on Jx .

It then follows from (3.2), (3.3) and Kneser's theorem ([2], p. 15) that
if τ in Jx Π [o, a) is sufficiently near to α, there exists a solution z(t)
of (3.1) issuing from p to the left defined on [τ, a] such that

Now we shall show that (t,z(t))eD on [τ, α]. Suppose there is a
tι, r < ίi < α, such that (£„ z^)) ί Z). If the point (tί9 z(t^)) is in N,
then (r, «(τ)) is in N since iNΓ is a negatively invariant set of (3.1). If
the point (t19 z(t,)) is in P, then p is in P since P is a positively invariant
set of (3.1). In both cases, there arise con tradictions. This shows
(t,z(t))eD on [τ, a]. Since the number τ can be assumed to be arbi-
trarily near to a, we have peB_.
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(b) If p is a point of Bι U B~ U I n t D , p is a left Kneser point by
Kneser's theorem. Assume p is a point of B_ — B_{^). Let G be a
compact subset of X such that the interior of G in X containes D, and
gr be the family of solutions of (3.1) contained in G and defined on
compact intervals. Then one can easily verify that conditions (i) and
(ii) in Lemma 2.1 are satisfied. By the same arguments as in the last
part of the proof of (a), condition (iii) in Lemma 2.1 is satisfied. The
assumptions B'{^) c Br(^~) and p e B_{^) imply condition (iv) in
Lemma 2.1. Thus, by Lemma 2.1, we can conclude that p is a left
Kneser point of &~m q.e.d.

THEOREM 3.1. Let f on D, ω, ώ, Ω and Ω be the functions given in
Theorem 1.1. Instead of conditions (1.3), (1.4) and (1.5), suppose that
these functions satisfy the following inequalities:

fω'(ί) ^ Ω(t, ω(t)) for a^t^b

[ώ\t) ^ Ω(t, ώ(t)) for a^t^

(ω'\t) ^ fit, Φ\ ω\t)) if ω\t) £ Ω(t, ω(t))

U"(t) £ f(t, ώ{t\ ώ\t)) if ώ'(t) ^ Ω(t, ώ(t)) ,

and

\f(t, x, Ω(t, x)) - Ωt(t, x) - Ωx(t, x)Ω(t, x)^0

(/(t, x, Ω(t, x)) - Ωt(t, x) - Ωx(t, x)Ω(tf x)^

for a^t^b, ω(t) ^ x ^ ώ(t) .

Then for any number xb, ω(b) ^ xb ^ (d(b), equation (1.1) has at least
one solution x(t) defined on [a, b] such that x(b) = xb. If ω{a) — xa —
ώ(a), this solution satisfies boundary condition (1.2).

PROOF. We consider an equivalent system

(3.7) χ' = y, y' = f(t,x,y).

Let J?~ be the family of solutions of (3.7) in D defined on compact inter-
vals. First we shall show that the family άf is a left Kneser family.
We investigate the properties of boundary points of D.

The points in B = 3D which are on the plane t — a belong to Bι.
We denote by So the set of such points.

Let Sx be the set of points {t, x, y)eB such that

t = b , ω(b) < x < ω(b) , Ω(b9 x)< y < Ω(b, x)

o r

telo, x = ω(t) , Ω(t, x) < y < min {ω'(fc) , Ω(t, x)}
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or

t e Io, x = ώ(t) , Max {ώ'(t), Λ(i, x)} < y < Ω(t, x) ,

where

Io = {t: a < t ^ 6, α>(£) < ώ(ί)} .

The points of S1 belong to B~ Π Br since ?/ < ω'(fc) for the second case
and y > ώ\t) for the third case.

Let S2 be the set of points (t, x, y)e B such that

a < t ^ b , ω(t) ^x^ ώ(t) , y = fl(t, a?)

or

α < t <: 6 , a = ω(t) , ωf(t) ^ 7/ < fl(t, a;) ,

and S3 be the set of points (t, x, y)eB such that

α < ί ^ 6 , ω(έ) ^x ^ ώ(t) , y = Ω(t9 x)

or

a < t ^ b , x = ώ(t) , Ω(t, x) < y ^ ώ\t) .

We shall extend / t o 1 = [α, 6] x R2 in order to show that the points
of S 2 US 3 belong to B1\JB_. First we construct a continuous extension
g* of / defined on a domain a ^ £ ̂  6, α)(t) ̂  x ^ ώ(ί), |y | < oo, so that
the follwoing inequalities hold:

(3.8) ω"(t) ^ flf*(t, ω(t\ ω\t)) for α ^ t ^ 6 ,

(3.9) ώ"(t) ^ flf*(ί, ώ(t), ώ'(t)) for α ^ t ^ b ,

(3.10) ff*(t, a?, y) ^ f(t, x, S(t, x))

for a^t^b , ω(t) ^x^ ώ(t) , y ^ β(έ, x)

and

(3.11) flr*(t, a?, y) ^ /(t, a?, Λ(t, x))
for α ^ t ^ 6 , ft)(t) ^ x ^ ώ(ί) , 2/ ̂  fl(t, a;) .

Set g* = / on ί?. For 2/ ^ fl(t> »)> 0* is constructed in the following
way. For t e J l f a? = α)(ί) and ί/ = α)'(t), we define ί/* by

g*(t, x, y) = min {ω"(ί) , /(t, a;, Ω(t, x))} ,

where

ii = {t: a ^ t ^ 6 , ωf(t) > Ω(t, ω(t))} .

Then (3.8) holds. For tellf x = α)(t) and fl(ί/a?) < y < α)'(t), we define
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g* by joining f(t, x, Ω(t, x)) and g*(t, x, ω\t)) linearly in y, that is,

g*(tf %, v)

_ (ω'(t) - y)f(t, x, Ω(jb, x)) + (y - Ω(t9 x))g*(t, x, ω'(t))
ω\t) - Ω(t, x)

For a ^ t ^ 6, x = ω(t) and y > Max {ω'(t), Ω(t9 x)} = 7(t), let g* be

g*(t, x, y) = g*(t, x, 7(t)) .

For α ^ t ^ 6, α)(t) < a? ̂  ώ(ί) and y > Ω(t, x), g* is defined by

0*(t, α, 2/) = /(«, », 5(t, x)) - f(t, ω(t), fl(t, ω(ί)))

+ flr*(t, ω{t),Ω{t, ω{t)) + y - Ω(t, x)) .

Then (3.10) holds. Similarly, we can construct g* for y ^ Ω(t, x) so that
(3.9) and (3.11) are satisfied. Finally, we define a continuous extension
g of / defined on X by

'0*(t, <S(t),!/) + « - ώ(t) if ^ > ώ(t)

flr(ί, xfy) = g*(t, x, y) if α>(t) ^ α? ^ ώ(ί)

%g*(t, ω{t), y) + x - ω(t) if x < ω(t) .

Instead of system (3.7), we now consider the system

(3.12) x' = ?/ , / = flr(ί, a?, y) .

We divide the set X\D into the following sets;

A = {(*, %,y):a>^t^ 6, α>(t) ̂  a ^ ώ(t), 2/ > Ω(t, x)},

A = ί(*f *, tf):» ^ * ^ δ, α; < ω(t), » ^ ω'(t)} ,

A = {(*, x,y):a^t^b, x< ω(t), y ^ ω\t)} ,

A = {& », y): α ^ t ^ &, ω(t) ^ α; ̂  ώ(t), y < Ω(t, x)} ,

A = {(*, x,y):a^t^b, x> ώ(t), y ^ ώ'(t)}

and

A = {(Jtf x,y):a^t^b, x> ώ(t), y ^ ώ'(t)} .

If a (t) is a solution of (3.12) such that x(t0) < ω(£0) and x'(to) = ω'(to),
then we have

^(ίo) = g(t0, χ(t0), x'(Q)

= flr*(ίo, ω(t0), ©'(«„)) + x(t0) - ω(t0)

< g*(t0, ω(t0), ω'(t0)) ^ ω ' W

This implies that A i s a negatively invariant set and A i s a positively
invariant set with respect to (3.12). Let x(t) be a solution of (3.12)
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issuing from a point of Dlf that is, α>(ί0) <; x(t0) ^ ώ(t0) and x\Q > Ω(t09

x(t0)) for some t0. Along this solution &(£), let

= {x\t) - Ω(t, x(t))) exp Γ 5,(8, a(β))dβ .

Then, as long as α>(ί) <J a (ί) <i <S(fc) and a '(t) ^ fl(fc, sc(t)), we have

- \ Ωx(s,x(s))ds\

= x'\t) - Ωt(t, x(t)) - β,(t, x(t))β(t, x(t))

= g*(t, x(t), x\t)) - Ωt(t, x(t)) - Ωx(t, x(t))Ω(t, x(t))

S fit, x(t\ Ω(t, x(t))) - Ωt(t, x(t)) - Ωx(t, x(t))Ω(t, x(t))

From this and V(t0) > 0, we have x'(t)>Ω(t, x(t)) as long as ω(t)^x(t)^
ώ(t), t <; t0. When t decreases from ί0, if this solution arc does not
remain in D19 then it enters D2 U A because ώ\t) ^ Ω(t, ώ(ί)). Further-
more, D3 is positively invariant and A Π A = 0 , and hence this solu-
tion arc enters A Therefore A U A is a negatively invariant set of
(3.12). Similarly, we can show that A U A is a negatively invariant
set and A is a positively invariant set of (3.12). Thus N = A U A U
A U A is negatively invariant and P = A U A is positively invariant
with respect to (3.12) and X\D = NU P.

Since S2 U S3 is contained in N, it is contained in Bι U #_ by Lemma
3.1(a). Therefore B~ is just Su and this implies that B~ is contained
in Br. It then follows from Lemma 3.1(b) that all points of D are left
Kneser points. Consequently, J^ is a left Kneser family since B~ = Si
is open in B.

Now let,

# = {(6, xb, V): Ω(b, x h ) ύ y ^ Ω(b, xb)}

a n d

K - Z~(E) n (B1 U B_) .

Then

and if is a continuum by Theorem 2.1 because E is a continuum in D.
Next we shall show that K f] So is nonempty. Assume K 0 So — 0 .

Let L be a set of points (t, x, y)eB such that
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( i ) a^t^b , x = ω(t) , y = ω'(t) = £?(£, x)

or

(ii) a<,t<:b, x = ώ(t) , 1/ = ώ'(t) = Ω(t, x)

or

(iii) α <; έ ^ 6 , x = α>(£) = ώ(ί) , 7/ = ω'(t) = ώ'(t)

or

(iv) α ^ t ^ 6 , ω(t) ^x^ ώ(t) , y = fl(t, a?) = β(t, x) .

Then the intersection M = K Π L is a nonempty compact set because
K Π S2 Φ 0 and if n S3 ^ 0 . Let q be one of the left end points of
M. We may assume q is a point of the first case (i) since the argu-
ments for the other cases are similar. Therefore we can write q =
(r, O)(Γ), ω'(r)) for some τ, α < τ <̂  &. By Theorem 2.1, the set i ί =
Z~{θ) Π (Bz U -B_) is a continuum and is contained in K. Since q e 5 2 and
D2 is a negatively invariant set of (3.12), there is a left maximal solu-
tion y(t) of (3.12) issuing from q to the left defined on Jy such that

(t,y(t),y'(t))eD2 on Jy .

Similarly, there is a left maximal solution z(t) of (3.12) issuing from q
to the left defined on Jz such that

(t, s(t), s'(t)) 6 A U A on Jz .

Since the set D3 is positively invariant and does not contain q, any
solution of (3.12) issuing from q to the left cannot enter D3 It follows
from this and Kneser's theorem that there are two solutions yo(t) and
zo(t) of (3.12) issuing from q to the left and a number σ, σ < τ, such
that

qy = (<τ, 2/0(σ), 3/ί(<7)) e S 2

a n d

gz = (σ, zo(σ), zf

0(σ)) e S3 .

Furthermore, we can show that

(t,yo(t),y'o(t))eD for σ^t^τ

and

(t, 30(*), «ί(t)) e ΰ for σ ^ t ^ τ

since D2 and A U A are negatively invariant set of (3.12). Therefore the
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points qy and qz belong to H. From this and the fact that q is also a
left end point of H Γϊ L, we have H Π So is nonempty. This contradicts
HczK and K Π So = 0 . Thus we have K Π So is nonempty, which
assures the existence of a solution of (1.1) joining a point of So and a
point of E. q.e.d.

REMARK. AS will be seen in the following example, in Theorem 3.1,
we cannot arbitrarily choose the value of x{a) in ω(ά) ^ x(a) ^ ώ(α).
Consider the equation

(3.13) x" = 0

for 0 ^ t ^ 1. Let ω, ώ, Ω and Ω be constant functions such that

ω(t) = - 1 , ώ(t) = 1 , Ω(t, x) = - 1 and β(ί, a?) = 1 .

Though all conditions in Theorem 3.1 are satisfied, there is no solution
x(t) of (3.13) satisfying x(0) = — 1 and x(l) — 1 in the domain D.

COROLLARY 3.1. Let f(t, x, y) be a continuous function on a
domain W: — °o ^ a < t < b < oo, ω(t) ^ x ^ ώ(t), β(t, a?) ̂  2/ ̂  Ω(t, x),
where (O, ώ, Ω and Ω are those in Theorem 3.1 and satisfy inequalities
(3.4), (3.5) and (3.6) replacing a <ίt <>b by a < t < 6. Furthermore,
assume that there is a number T, α < Γ < 6 , αwd α measurable function
m(t) on T ^ £ < b and a Lebesgue integrable function h{t) on T ^ t < 6

\f(t,x,y)\^m{t)

for T ^t <b , ω(ί) ^ a? ̂  ώ(ί) , Ω(t, x) ^ y ^ Ω(t, x)

and

Γ m(s)ds ^ h{t) for T ^ t < b .

the functions <o(t) and ώ(t) are necessarily bounded on T ^ t <b,
and for any number xb such that

(3.14) lim inf ω(t) ^ xb ^ lim sup ώ(t) ,
t-*b t-^b

equation (1.1) has at least one solution x(t) defined on the whole interval
(a, b) satisfying x(b~) = lim x(t) = ίc6.

PROOF. We can choose two sequences {an} and {bn} such that

a < an+i <an< T , (n = 1, 2, . •) , lim an = α ,

6 > 6 B + 1 > 6 n > Γ , (Λ = 1,2, ) ,
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and

(3.15) lim sup ω(bn) ^ xb ^ lim inf ώ(bn) .
n—oo n-κχ>

Let Wn(n = 1,2, ) be a compact domain defined by

an ^ t £ bn , ω(ί) ̂  a? ̂  ώ(ί) , Ω(t, x) ^ y ^ Ω(t, x) .

It then follows from Theorem 3.1 and (3.15) that there exists a solu-
tion xn(t) of (1.1) defined on [an, bn] such that

xn(bn) = Bn - * xb as n -> oo .

By standard arguments, we may assume that there is a solution x(t) of
(1.1) defined on (α, 6) such that

xn(t) -* x(t) and »;(ί) --> a?'(t)

uniformly on any compact interval in (α, 6), as n—>c>o. For any fixed
£, Γ <; £ < 6, we may assume t <bn (n = 1, 2, •)• Since a?n(t) is a
solution of (1.1) on [an, bn], we can write

S bnΓs

\ f(u, xn(u), x'n(u))duds ,

which implies

(3.16) Bn = xn(t) + (bn - t)x'n(T) + j | Fn(s)ds ,

where

S s

J \lA/j JUn\lA/)f JUn\lA/))U/U/ IUΓ JL -^ o - ^ 0 n

(θ for 5 , < s < 6 .

From the assumptions, we have

(3.17) l ̂ ( s ) | ^ \ \f(u, xn(u), xf

n(u))\du ^\ m(u)du ^ h(s)

for T g s < b .

Therefore, by setting t = T in (3.16), \Bn\ <M for some constant M
independent of n. This implies that xb is a finite number, and hence
ω(t) and α>(ί) are bounded on T ̂ t <b because xb is an arbitrary
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number satisfying (3.14). On the other hand,

lim Fn(s) = lim [ x"(u)du = lim «(s) - xn(T)) ,
n-»oo n~*oo J T n-*oo

that is

(3.18) lim Fn(s) = x'(s) - x\T) for T rg s <b .
n—κχ>

Hence x'(s) is Lebesgue integrable function on T ^ s < δ by (3.17). It
follows from (3.16), (3.17) and (3.18) that

xb = x(t) + (b — £).

x'{8)ds for T < t <b .

t ~

Since cc'(s) is Lebesgue integrable on Γ <̂  s < 6, we have

-> 0 as t~+b~ ,

which implies &(&"") = &6. q.e.d.
4. Appendix. When i? is locally connected, the assumption that B~

is open in B cannot be dropped in Theorem 2.1. This is observed in the
following proposition.

PROPOSITION 4.1. Let άf be a family of curves and each point of
D = D(J?~) be a left Kneser point and B = 3D be locally connected. If
the set

K(E) = Z~(E) Π (Bι U B_)

is a connected set for any continuum E in D, then B~ is open in B.
Therefore K(E) is necessarily continuum.

PROOF. Assume B~ is not open in B. Then there is a point p in
B~ which is an accumulation point of Bι U B_. Since peB~, we have
p does not belong to K(p). Therefore there is a positive number ε such
that

vε(p) n κ(p) = 0 ,

where Vε(p) is an open ε-neighborhood of p in B. Let d, 0 < δ < ε, be
arbitrary. By the local connectedness of J5, there is a neighborhood
base {Un: n = 1, 2, •} of p in B consisting of continua such that

UnaVδ(p) (w = l,2, . . • ) .
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For each n, there is a point rn in Un Π (Bι U B_) since p is an accumula-
tion point of Bι U J?_. Namely, the connected set K(Un) contains an
interior point rn of Vδ(p) and exterior part if(p) of Vδ(p), and hence
K(Un) Π δF/p) is nonempty, where dVδ(p) is the boundary of Vδ{p) in
i?. Thus there exist pneUn, qnedVδ(p) and xne^ whose right end
point is pn and left end point is qn. By the compactness of J^~, we
may assume that there is a curve x e Jf to which xn converges. Obvi-
ously, the right end point of x is p, and the left end point of x denoted
by q belongs to dVδ(p), and hence dist(p, q) = δ. Since δ > 0 be arbi-
trarily small, we have p e i?_. This contradicts the assumption p e B~.

q.e.d.
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