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Introduction. Let @, be the p-adic number field, & a finite extension
of Q,, and G the Galois group of k/k. In 1968, Jakovlev [1] described
the structure of the Galois group G in the case of p # 2. In his paper,
he determined the number of generators of G and gave a description of
the relations among the generators. But, as he recognized himself there,
those relations were considerably complicated and it is difficult to look
through the structure of the Galois group only by those relations. In
order to determine the structure of the Galois group up to isomorphism,
as we shall show later, we need not the exact description of the relations,
for we can characterize the relations among the generators by more
general and loose conditions.

Let K be the maximal tamely ramified extension of @, and let

A = Gal.(K/Q,), B = Gal.(Q,/K).
Then the exact sequence
l1-B—»G—A—1

splits, and G is an holomorph extension of B by A. By fixing one splitting
morphism A — @, we can consider A as a subgroup of G and B as a
pro-p-group with the operator domain A. In §6, we define “the projective
envelope” P of the A-pro-p-group B, and consider the relation among
the generators of B as an element of P. In §7, we define the notion of
w-regularity for the elements of P, and prove that Ker.(P— B) is generated
by an w-regular element of P. Furthermore, we prove that for any two
w-regular elements w, 7’ congruent to each other modulo certain normal
subgroup of P, there is an automorphism ¢ of PA such that n° =7/,
where PA is the holomorph extension of P by A.

By this fact, the problem of determination of the structure of the
Galois group is entirely reduced to the problem of determination of certain
non-degenerate skew symmetric quadratic form corresponding to the Galois
group. Though we do not show here, we can easily classify such quadratic
forms, and determine the one of them which corresponds to the Galois

group.
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In this paper we restricted the base field to @, but this is not
essential and we can easily extend our results to the case of arbitrary
base fields.

Finally I wish to thank Professor Ogawa for his advices and encoura-
gements.

1. Maximal tamely ramified extension of @,. Let K be the maximal
tamely ramified extension of Q,, and let T be the maximal unramified
extension of Q,.

PROPOSITION 1.1. The Galois group, A = Gal.(K/Q,) is generated “as
a topological group” by the two elements x, y with the unique relation,
rTyr = y*,
where x s an arbitrary element of A, such that x induces the Frobenius
mapping of T/Q,, and y is an arbitrary generator of Gal.(K/T).

PROPOSITION 1.2. B = Gal.(Q,/K) is a pro-p-group and the following
exact sequence splits.

1— B—Gal.(Q,/Q,) —A—1.
In other words, G = Gal.(Q,/Q,) is the holomorph extemsion of B by A.
F'rom_ now on, we fix a splitting morphism, A = Gal.(K/Q,) — G =
Gal.(Q,/Q,), and by this splitting morphism we regard A as a subgroup
of G.

COROLLARY 1.3. Let {x), (y) be “the closures” of two subgroups of
A, generated by x or y respectively.
Then
() = lim Z/p"Z
.
() =lim Z/(p" — 1)Z
r

and A s the holomorph extension of {y) by {x).
2. Group ring of A. Let Z, be the maximal order of Q,.

DEFINITION 2.1. We define the “group ring”, 4 = Z,{x,y) of A=
{x, y|x 'yx = y*>, by the following formula,
A4 =1lim Z/p"Z[A|U]
-
r, U
where U runs over all normal open subgroups of A.

Let D be the set of all monic irreducible divisors with coefficients in
Z, of polynomials of type X?"' —1; » = 1.



GALOIS GROUP OF LOCAL FIELDS 387

PROPOSITION 2.1. Let F = Z {y) be “the closure” of the subring of
A, generated by y e A.
Then
F = };IDFQ H Fa = Zp[Y]/g(Y)Zp[Y] .

II means the direct product of topological abelian groups.
Proor. By Corollary 1.3, we get
Zy) = lim Z[Y]/(Y*™ = 1)Z,[Y] .
r
Our assertion follows directly from this. q.e.d.

Since x27'yx = y?, the inner automorphism ¢ of 4 induced by zc A
induces the Frobenius mapping on every F,.

The unit element ¢, of F, is contained in the center of 4, and so
de, is two sided ideal of 4, and

A =TI 4e, .

Put d,=deg g, then the center I', of Ae, is generated by x%e, over Z,¢,=Z,.

Therefore, I', is isomorphic to the group ring,

Zwto) = lim Z [ X]/(X" — 1) Z,(X) .
.

DEFINITION. Let Z be the completion of the ring of rational integers

Z, i.e.,
Z=1mZZ =112, .
-

In the above product, we denote by e, the unit element of Z,, which is
regarded as an idempotent of Z. For any profinite group H and for any
element h e H, we denote by h°» “the p-part” of h. If a@,a, --- is a
sequence of integers that converges to ¢, in Z, then h*» is the limit of
the sequence h*, b, --+ in H.

We put

x, = 2" % | and x, = 2% d, =degyg,
then we have
(x%) = {x,y X {x,y (direct product),

Iy = Z{a') = Z,(x) @ Z,{(x.) »

and
Z {wo) = lim Z,[X]/(X* — 1)Z,[X]

= I Z,IX]/f(X)Z,[X] .

feD
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Since {(x,> is a free-pro-p-group, its group ring

Zy(e) = lim Z,[ X](X*" — 1)Z,[X]
r
is isomorphic to the power series ring in one variable x, — 1 over the
ring Z,.
Thus

ry:erDFf,g; geD

where I';, is isomorphic to the one variable formal power series ring in
one variable over the ring isomorphic to Z,(X)/f(X)Z,[X].
Let e;, be the unit element of I';, then

A4=114
E €fr9

where (f, g) runs over all elements of D X D. Each 4, soisal’ +.~algebra
which is free as a I';,-module, and

4., sl =d%; d,=degg.

We shall write simply 4,, instead of Ae;,, then we have the following
assertions. ,

PROPOSITION 2.2.
1) 4= H(f»g) Af,g’

Asg = AWs g5 Upy = (fx70'%), g(y))-4
and d, = deg g.

2) Iy, 18 1somorphic to the total matrix algebra (I';,)d, over its
center I';,.

8) Iy, is isomorphic to the formal power series ring in one variable
over the ring isomorphic to Z [X]/f(X)-Z [X].

PrOOF. 1) and 3) have been already proved.

2) can be proved by means of the theory of erossed product. q.e.d.

PROPOSITION 2.3. Let M be a A;,-module and put
U={oced=_x,y)|VeeM, op =y},
A= 3, (0 — D4y,

oeU

A=A/U and 4=4;,%.

We denote by x the image of x in A, then it holds that M = A under
the following conditions 1), 2), 3):

1) M is Z,free and finitely generated over Z,.
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2) There is a submodule M' of M such that
M=4, |MIM}< .
8) The subgroup J = {(x%») of A is finite and
H}M)=0
where d = deg g.

PROOF. In the first case of x%» = 1, the center of A is isomorphic
to Z,[X]/f(X)Z,[X] and 1 is isomorphic to the total matrix algebra of
rank d* over its center. By assumptions, M is isomorphic to a left ideal
of 4, which satisfies

[ AT < oo
But 4 has only one ideal class (Iwasawa [1]) and so
M=41.
In general case, let p” be the order of Z. We put
N=1+4+Z+Z+ -+ +3""0
and
A=Al —5d=NI.
Applicating the first case to A and NM, we obtain NM = /l: Therefore

NM is generated by one element as a 4-module. On the other hand, by
the assumption pertaining to H!, we have

NM=M/(1—xz)M.
Since 1 — % is contained in the radical of A, M itself is generated by

one element as a A-module. By assumptions,

(M: Z,] = [/T. Z,]
therefore we see that

M=4 q.e.d.
3. Unit groups of tamely ramified extension. Let k/Q, be a tamely
ramified normal extension of @, of finite degree, and let U be the principal
unit group that is the group consisting of all units of % congruent to 1

modulo the prime ideal of k. U can be regarded as a 4-module, and
it splits corresponding to the splitting of 4 such as

U=11Us,,
fi9

where almost all U;,, are 1.
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If we put
A, = Gal.(K/k)c A
Ay = Af"’/agjc(o — 4y, ,
then

I Ay = 4] 3, (0 — D4 = Z,[A]A,]

g€Ap

and each U,, is regarded as a /4, ,-module.

PROPOSITION 3.1. - If U,,, does mot contain any primitive p-th root
of unity, then

Uy = Ay, -
ProOF. By Proposition 2.5. q.e.d.
PROPOSITION 3.2. Let 6 € K be a p-th primitive root of unity, then
Q,(0) = Q,((—»)"*™) .

If we put @ = (—p)/?"Y, then 7’ is a prime element of Q,0), and the
principal unit group U of Q,(0) splits as a A-module, such as

U=Ug_1y-1 XUz 1y-0 X +++ XUz, Y — @"*
where @ is a primitive (p — 1)-th root of unity. And
Ur_1y-0 = 67 X exp (Z,r*)
Ur-rr-oi = €Xp(Z,7) 2=i<p-—1.

Proor. In the case of p = 2, Proposition 3.2 is trivial. And so we
assume that p = 2.
Since X?' + oo + X + 1 = [[2=1 (X — 6%), we have

Nl-6=T=11—-6)=1+---+1=p; N=NQ,0)Q,.

On the other hand, the chracteristic polynomial of # is X? '+ p =0,
and so

Nr = (-1y"p=p; NQ,)/Q,.
Therefore, by class field theory, we conclude that
Q:(0) = Q,(m) .
We may assume that
=wr; @tp—-1)=1.

If we put 7, =6 — 1, then 7, is also a prime element of Q,(6), therefore



GALOIS GROUP OF LOCAL FIELDS 391

7w = sm, mod (7?) for some 1<s=p-—1.
On the other hand, it is clear that
l4m=0"=0"=Q1+7r)*=1+ wr, mod (n?),

therefore w'n = n¥ = sw¥ = swnm, = wx mod (7%). From this we have that
1=1and 7 =n. Put O = Z,[0] = Z,[x], then we find

U = 6* x exp (On?)
= 6% X exp (g Z,,7c">
=07 X exp (Z,m*) X +++ X exp(Z,7*), O0?ce¢Ux_iy-0,
and
exp(Z,m)e Uz 1y0u; 2515 D.
Since ®” = w it holds that

UX—l,Y—w = 6% X exp (Zpﬂ:p) ’
Ugry-wi = €Xp(Z,n%); 251<p—1.

Thus our assertion holds. q.e.d.

PROPOSITION 3.3. Let k be the unramified extension of Q,(0) of degree
p7 r=1, and U the principal unit group of k. Then Ux_,y_, i8 gener-
ated as a A-module by two elements o, B, which satisfy the following
conditions,

N,=0 N;=-exp(@?); N=N'Q\0), a*=p",
where
T = (—p)/"7 e Q,(0)
and
=1+ mod (7.
ProOF. Let (Z) be Gal.(k/Q,(0)), then
Hoy(Us-rv—0) = 1.

Hence, there exists such an element @, of Uy_,,_, that N, = 0. Since
Na? =1 and H';(Uy_,y-0) = 1, we can find such 8, € Uy_,y_, a8 @ = 8%,
Now we put

& =1+ar and B, =1+ bz mod (7%

with integers a, b, of %, then
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al =1 + par + a’n? =1 + (a® — a)n?
Brt=1+4 (b* — b)r mod (x**) .
Therefore, it holds that
b — b, =0 mod (7,

and we may assume b, € Z without loss of generality. We put 8, = B,67",
then

B:€ Ux_ iy,
ar = By = (B = B,
and
B, =1 mod (n% .

Let k, be the unramified extension of Q, of degree p" and let 0 be the
maximal order of k, then, similarly as Proposition 3.2, we get

fueUg_,y_olu=1 (n%)} = exp(dr®).

Since

a’ =14 (a» — a)r® mod (7?+?)
we see

B, =1+ br* mod (z**),

77 =14 (b — b)x* mod (n**),
and so

(@ —bP=a—b mod(m).
On the other hand,
l+7=60=Na, =1+ tra,-r mod (7 .
By this and the before, we get

trb=tra=1 mod(n),
NB, =1+ trbn*=1+n"
= exp (z?) mod (z?*) .
From this and Proposition 3.2, it holds that
NB, =exp(¢'n?); p'eZ,,
=1 mod(p).

Now we put @ = a* and 8 = B4, then we have
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Na=6*=6, NB = exp(n?)
and
a? = [,
Since « and B generate U,_, ,_,, this proves our assertion. g.e.d.

PROPOSITION 3.4. Let k,U be the same that of Proposition 3.3, and
let M, be the maximal ideal of

A=Ay vy 0.
Then
Ur_1y—o =M /(@ — 1IN, .
PrOOF. Since
M, = (p,x— )4, ,

I, is generated as a 4,-module by two element (x — l)e, pe, with the
unique relation:

p-(x — e, = (x — 1)-pe, ,

where ¢, is the unit (idempotent) of 4,. Therefore, we can define a 4,-
epimorphism

¢: wel '_’UX—I,Y—m
by

@ — e, > a
pe, 58,
using «, B in Proposition 3.3. Since 4, is an integral domain, we get
(2" — DA,)(x*" — L), = 4,/M, = Z/pZ .
On the other hand, we see that
(W)@ — DAz Z,] = [4)("" — DAz Z,] = [Ux-y,r-o/2: Z,]
where Q2 is the p-torsion part of Uy_,y_, and 2 = Z/pZ. This shows
ker ¢ = (x*" — 1),
and we get
Usiy-o = M/ — 1M, . q.e.d.

PROPOSITION 38.5. Let k/Q, be a mormal extension of finite degree,
contained in k/Q, and let U, be the princial unit group of k. If we put
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A, ={oeAd =<, y)|Vrek =y},
Ay =3,(c—14,

oedp
and

im=(p,w——l,y—a))/1,
then there is a A-left isomorphism:
U, = M/MA, .

PrROOF. It is clear that the isomorphism holds except the 4,-parts
of the both hand sides. On the 4,-parts, by Proposition 3.4, isomorphism
holds if % is the unramified extension of Q,(f) of degree p". Therefore,
by Proposition 3.1, we may assume that % contains the primitive roots
of uPity. Let p"n be the relative degree of k/Q, with (p, ») =1, and
let £ be the unramified extension of @, of degree p” which is contained
in k. Then the A,-component of U; agrees with that of U, and the 4,-
component of IM/MA, also agrees with that of M/MA;, and this concludes
the proof. q.e.d.

Easily we obtain the following three propositions.

PROPOSITION 3.6.
limU, =M
%

where the left hand side is the inverse limit with respect to the morm
mappings and k moves over all tamely ramified normal extensions of
Q, of finite degree.

PROPOSITION 3.7. Let B be Gal.(Q,/K) then as the A-modules,
B/B,Bl=2=M=(x— 4,y — w)d.

PROPOSITION 3.8. B is generated as a pro-p-group with the operator
domain A by two elements Z, W, which admit only two relations modulo
[B, Bl:

Ziz—ve — We
Woe=w
where e, 18 the unit (idempotent) of A,.

PROPOSITION 3.9. In Proposition 3.8, we can take such W that admits
the relations;

x*pTMbx Tp = W,
and Yy Wy = we.
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Proor. For @ in Proposition 3.8, it holds
xap~1wx1—sp =w ,
Yy~'Wy = w° mod[B, B].

Let W be a minimal closed subgroup of B that satisfies the following
conditions.

1) Wis clos_ed to the operations of z'™*» and y.

2) (B, B], W) contains @. Then W’ = W/[W, W] is indecomposable
as a A'=Z,(x'"*p, y)-module, and is isomorphic to 4'/(x**p—1, y—w)A'=Z,.
Let @, be the element of W such that

W, =@ mod[B, B],
then this w, satisfies our assertions. q.e.d.

4. Cohomology with coefficient Z/pZ. Let S be a profinite group.
Following facts is well known.

PROPOSITION 4.1. For the S-trivial module Z/pZ,
H(Z|pZ) = (S][S, S18?)* .

The symbol * in the right hand side denotes the Pontrjagin dual of the
compact group.

PROPOSITION 4.2. Let @; F— S be a homomorphism mapping the
pro-p-group F to S, such that F is free and the homomorphism

F||F, F)F*— SJ[S, S]S*
induced by @ is an tsomorphism. Then,
HY(Z|pZ) = (F\/[F, F\|F})*,

where F, = ker (F —S). Furthemore, for any pro-p-group S, such a
free group F and a homomorphism ¢; F— S always exist. Let S, and
S, be two (additive) pro-abelian groups. We define the temsor product

S, ®S; by

S,®8, = lim S,/U,® S/U,,

where U(U,) runs over all open subgroups of S,(resp.S,). Let o be the
automorphism of S® S difined by

ca®b) =bRa, abeS.
We define SAS and SO S as
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SAS=coker(S®RSTI5RS),

SPS=ker(SRST55®S).

PROPOSITION 4.3. Let S be a pro-abelian group (additive) such that
pS =0, and let S* the Pontrajagin dual of S. Then SPS is identified
naturally with the Pontrjagin dual of S* ® S*.

Proor.

aeSPANS=A+0o)a=0
=1l+o0a, S*RS*)=0
=@, 1+0)S*®S*)=0. q.e.d.
PROPOSITION 4.4. Let F be a free pro-p-group. We put
F,=|F, FIF*, F,=][F, F,|F?
F = F|F, and F,= F,/F,.

Then, we have
1) of p#2

F,

n

FORHOF=FANFDF.
2) ifp=2
F,=FQ®F.
PrOOF. We define the mappings ﬁ;rF X F—F, and ¢,; F— F, by
D(a, b) = [a, D] e F,,
P(a) = are F,,
respectively. Then D and &, induce the mappings
D;Fx F—F,,
@py F— F, .
It is easily known that D is”bilinear and that ¢, is linear for p # 2.
Let »p = 2. The homomorphism
FAFOFZ2 P,
is clearly an epimorphism. In order to show that D + ¢, is a mono-
morphism, it is sufficient to construct in practice a pro-p-group S such that
S=88.=F; 8 =I8 818,
S,=8,/S:=(FAF)®F; S,=18S, 8.1 .
Regarding E = F/[F, F1F? as a module, we put V= E A E/p-E N\ E.
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If we define the multiplication on the set S = E X V such as

(a, a)b, B) = (a+b, a+/9+%a/\b>.for a,beE, a,BcV

then S becomes a group and it satisfies our requirements. Let p = 2.
We put

V=FQF
and define the multiplication on the set S = F' X V such as
(@, )b,B)=(a +b,a+B+a®b), for a,beF, a BcV.

As in the case of p # 2, S becomes a group. We identify V=FQ F
with the subgroup of S consisting of all elements of type (0, @). Then
we get the following diagram with the row exact.

F

|

S— S/V—s0; S/V=F.
Since F' is free, the diagram can be extended to a commutative diagram;
F
£ l
e
S— S/V—0.
Since
(@, @) =(0,eQa),
(@, a)b, B)a, @)7'(b, B = (0,a®b — bR a)

the subgroup f(F)N V agrees with the submodule FQF of V. But clearly
f (V) = F, and ker f = F,, therefore this concludes the proof. q.e.d.

Let S be a pro-p-group. By Proposition 4.1, there exists a free
pro-p-group F' and a homomorphism ¢; FF'— S, such that @ induces an
isomorphism;
FJ|F, F1F* = S/[S, S]S* .

By Proposition 4.1 and Proposition 4.2, the following homomorphisms exist.
HY{Z|pZ) = S*(= F*).
H¥Z|pZ) = N* .

Where S = S/[S, S]S?, N = N/[F, N]N?, and N = ker .
Using the injection N < F,, we define the homomorphism A from
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HXZ[pZ)* to H(Z|pZ)* ® HXZ|pZ) such as

HXZ/pZ)* = N F,
= (FOF)OFZ5FQF,
= H,(Z|pZ)* ® H)(Z|pZ)* (p # 2);
HXZ/pZ) = N F,
= F,® F, = H(Z|pZ)* ® H,Z/pZ)* (p =2) .
PROPOSITION 4.5. The cup product
U: H)(Z/pZ) \ H(Z|pZ)— HXZ|pZ)
18 the dual of h.
DEFINITION 4.1. Let F be a free pro-p-group, and =« an element
of [F, F]F*. We put S = F/{z) where (x)) is the normal (closed) sub-

group of F generated by . We call = a regular element of F' if the
cup product

HXZ/pZ) A\ H(ZIpZ) S H:Z/pZ)

is a non-degenerate bilinear form. Where “non-degenerate” means that
for each non-zero-element a of HX(Z/pZ) there exists at least one element
B of HXZ|pZ) such that a U B # 0.

5. o-regular elements of tensor products. Put

A = (x, y) = Gal.(K/Q,) ,
4= 2 o, y) = 1 dsp 4 = Ai-sy-0

be the same as in §2.

PROPOSITION 5.1. There is an involutive anti-automorphism * of A
determined by

x* =,x—-1 , y* — a)y—-l .
DEFINITION 5.1. We call 4}, the w-dual of 4 ,.

PROPOSITION 5.2. Let M(N) be a Ay ,(resp. 4y, ,)-non-zero module.
The following two conditions are equivalent.

1) The A, component of M QX N is non-zero.

2) 47,= Afl.al'

We denote the number of Ay ,~indecomposable components of a Aj -
module M by [M; 4;,].

Let A be Gal.(K, Q,), and let M(or M*) be a A, (resp. A% ,)-projective
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module of finite type. The temsor product M X M* is regarded as an
A (and comsequently A)-module by usual way. Thus M X M* is regarded
as a 4@ (End, (M)) ® (End, (M*))-module. We call M* the w-dual of
M if [M; Ap ) = [M*; 4%,

ProPOSITION 5.8. Let M be a A ,-projective module of finite type,
and M* its w-dual. Then, we have, A, ® End, (M)-modules,

e(MQQM*)= 4, End, (M) .

Proor. Let R be the maximal two sided ideal of 4, , and U an open
normal subgroup of A such that

voeeU, (0 —1e,eN.
We put
A=AU I=2plA]= 43,0 - 14,
Ay =Absy, AF, = A-45,
M=A-M, and M*=A-M*.
We define the right operation of 4 for M by
f-a=a*ft for fieM, acd.

By this definition M becomes a A%, right module, and the tensor product
M®,M* over A is defined. We can easily see that as the End,(M)-
modules,

e(M @ M*)/(x — Le(M ® M*) = M Q4 M* .

Let F' be the center of 4;,. Then End, (M) is isomorphic with the total
matrix algebra over F' of degree n = [M; A;,] and M ®, M* is projective
over End, (M) and

(M @, M*; End, (M)] = [M*; L}, =n .
Hence as End, (M)-modules it hold that
e(M Q@ M*)/(x — L)e(M @ M*) = End (M) .

But clearly M & M* is projective over 4 and consequently A,(M ® M*)
is free over 4,. This shows that

e (M ® M*) = 1, ® End, (I) .
Taking the inverse limits of the both hand sides, we get
e(MQ M*) = A, x End(M) . q.e.d.
PROPOSITION 5.4. Let f, g, M, M* be the same as in Proposition 5.3,
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and let 7w be an element of e, (M X M*). Then the followings are equivalent
to each other.

1) e(MQ M*) is generated by © over A, End, (M).

2) e(M® M*) is generated by m over A, End, (M*).

3) e(MQ M*)(x — 1)e(M Q M*) is generated by T over End,(M),
where M = M/TMM, M* = M/MM and M is the radical of 4, i.e.,

M = pd + ,H (xeprdes? — 1)y, .
(.0

4) For any A-module N and for any element a of e, (N Q M*), there
exists at least ome A-morphism f; M — N such that

(fR®Lwr=a mod(x — e (NR M*).
Where f Q1; M Q M* — N X M* s the A-morphism induced by f.
PrOOF. By Proposition 5.3. g.e.d.

DerINITION 5.2. Let f, g, M, M* be the same as in Proposition 5.3,
and wee(M x M*). We call # an w-regular element of M x M* if «
satisfies the equivalent conditions of Proposition 5.4. By the condition
3 of Proposition 5.4, the w-regularity of = is determined only by the
residue class of 7 in

e(M @ M*)/(x — 1)-e,(M @ M*) .
6. ‘““Projective envelope”’ of Gal.(Q,/K). The notions of free, pro-

jective, essential ete. can be defined in the Category of pro-p-groups with
operator domain. Namely, we have,

PROPOSITION 6.1. Let A a pro-finite group, and M a set. Then there
exists a DTO-p-group B with the continuous operator domain A and o
map M— B which satisfy the following universal mappmg property.

For any A-pro-p- group B, and for any map M— B,, there exists a
uniqUe A- -morphism B — B, such that it makes the following diagram
commutative.

M

7\
Ve N
B— B,

DEFINITION 6.1. Let Aa pro-finite group, an B and A-pro-p-group.
We call B an A-projective group if B satisfy the following condition:
for any A-epimorphism B, — B, there exists a A-morphism
a A-morphism B — B, such that
[B—B,—Bl=1;3.
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DEFINITION 6.2. Let B, —»B be a A-epimorphism of A-pro-p-group.
We call ¢ a A-essential morphism if for any proper A-subgroup B, of
B,, ¢(B)) # B,.

PROPOSITION 6. 2. For any A-pro-p-group B there exists a A-projective
group P and a A-epimorphism @; P — B such that ¢ is A-essential. (@, p)
18 uniquely determined by B up to A-isomorphisms.

PROOF. By Proposition 6.1, B can be written as a residue group
FIN of an A-free group F. Let N, be a minimal A-normal subgroup of
F containing in N such that F/N,— B is essential. The existence of
such N, can be easily proved. Next, let # be a minimal A-subgroup of
F such that 7 — B is onto. Such 7 also exists. Then 7 — B is essential
and F = N,p. Since F' is A-free. There is a commutative diagram:

F
% |
"4
ﬁ____’ F/N1 .

Then, by the commutatively of the above diagram we see,

ker. p c o (N, A P) =
But for

F/ker.p = p— F/N,— B
is essential, by the minimality of N, therefore, we get kerp = N, =
@ (N, A p), and so

N AND=1.

Since F' is free, this shows that p is fi—projective. q.e.d.

5 PROPOSITION 6.3. For any Z-pro-p-group B, there exists the mawimgl
A-normal subgroup B, of B such that B — B/B, is essential and this B,
18 the common part of all maximal A-normal subgroups of B.

PROOF. Since

B — BJ[B, B]
is essential, we get Propos~itio~n ~6.3 by adapting the theory of limit
Artineans to the A-module B/[B, B]. g.e.d.

In the following, we put
A= <x’ y> = Gal*(K/Qp) y
B = (Z, w) = Gal.(Q,/K) ,
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and we shall construct the A-projective envelope of the A-pro-p-group B.
Let It be the “radical” of 4, this is,

M= pd + I (= — 1)y,
(f,9)

and let B, = [B, B]B® be the inverse image of (B/[B, B])® with respect
to the A-morphism B— B/[B, B]. Then B/B, is essential and B/B, =
A/M D 4,/MMA,. Therefore our task is to construct the A-projective envelope
of A/M P 4,/MA,.

Let F be a free pro-finite group generated by four elements =, y,
Z,, w, and let N be its normal subgroup generated by Z, and w,. We
denote by N, the normal subgroup of F' generated by three elements

xyxy?,
2w rwt; where e¢,€7,,
ywywr®
and the all elements of type v'*»; yve N, and we put
P=N/N,AN.

We denote by Z, w the images of Z,, w, in P respectively, and we define
the A-epimorphism P— B by Z —Z

w—w.
PROPOSITION 6.4. P— B 1s the A-projective envelope of B.
Proor. P/[P, Pl= A6 4. q.e.d.
We denote by PA the holomorph extension of P by A.

PROPOSITION 6.5. Let @; I' — PA be an epimorphism from a pro-
finite group I’ to PA such that ker ¢ is a pro-p-group. Then ¢ splits.

ProOF. Let N = ¢ (p), then N is a pro-p-group by the assumption.
The fact that the epimorphism

I' =PA— A

splits is well known, and so the I” is isomorphic with holomorph extension
NA of N by A. Consequently N is regarded as an A-pro-p-group and
so the A-epimorphism N — P is splits, this concludes proof. q.e.d.

PROPOSITION 6.6. Let I''A and I',A be the holomorph intensions of
A-pro-p-group ', I', respectively. In the following diagram the row
exact be exact.
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pA
e
rA-2-ra—1u.
We assume that
@ (ra) = p(ua) =a mod I, ,
for all rel',, ueP, acA.

Then there exists a morphism @; PA— I''/A which makes the diagram
commutative:

PA
o/ 1
Ve
I'A—T,A.
PrROOF. Let the diagram
C— PA
P2
rA-2.r,A
be the pull back of @, @,. Since C— PA satisfies the condition in Pro-
position 6.5, it splits.

Let PA — C be its splitting morphism, then ¢; PA — C — I' A satisfies
our requirement. g.e.d.

Let N be a A-normal subgroup of P containing p, = [P, P]P®, and
put N, =[P, N]IN. Further let ¢; P/P,— N/N, be a A-morphism and
Y(ve N) be a A-invariant element of N/N,. We define an automorphism
4 of PA/N, by

V(&) =TV,

vy =Y,

¥(@) =a-p(@  for aeP
where @ is residue class of @€ P in P/P,. We easily see that 4 is well-
defined.

PROPOSITION 6.7. There exists an automorphism + of PA such that
it fizes N, and induces ¥ over PA|N,.

PrOOF. Apply Proposition 6.6 to the diagram
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PA
5
PA—— PA/N, q.e.d.

PROPOSITION 6.8. The p-cohomological dimension of PA is1; Cd,(PA)=
1 and consequently the p-Sylow subgroup {(x°», P) of PA 1is a free pro-p-
group. ‘

ProOF. @G; free-pro-p-group « Cd,(G) =1 (Tate [5]). g.e.d.

PROPOSITION 6.9. Let G = BA = Gal.(Q,/Q,), and let 2 be the group
of all p-th roots of unity, then

HG(‘Q) HG L) = Z|pZ .
Where G, = (B, x°») is the p-Sylow subgroup of G.
PrROOF. Since the sequence

1-0=Q;5Q,—1

is exact, and
Hy@) =1, HyQ;)=Q/Z,
we get
H(2) = ker (Q/1Z 2 Q/Z) = Z/vZ .

Similarly from the fact,

H; (@) =

Hy(Q, )= H K(*5)

J =

Z/QZ—"Z[p]/Z

we get

HG(.Q) HG 9) = Z/pZ . q.e.d.

PropOSITION 6.10. N = ker. (P— B) ts generated as a normal subgroup
of G, = (P, x°s) by an element m, that satisfies

T =w?Z*" mod[P, P].
(The notation Z©="v2 is explained below.) And as the A-groups
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N/[Gm N]Np =2=4/M; W, = (p, = — 1)4,
and consequently we may assume that

xrimx T =1,
Yy ny =xw° .

Proor. The first half is the consequence of Proposition 6.9 and the
latter half can be proved as in Proposition 38.9. q.e.d.

Here we shall give an account of the notation Z“~“*t in Proposition
6.10.

In general for any acP we denote by a* the A-subgroup of P
generated by a. For any ned we denote by a* the any one of the
inverse images of a~?¢ca‘/[a?, a’]. Especially if ¢ is an idempotent con-
taining in the center of 4, we can choose @° such that the A-epimorphism
at—(a*/[a*, at])’ is essential where a4 is the A-subgroup of a“ generated
by a°, so in the followings we shall always choose o as above. Similarly
for any A-normal subgroup N of P the meaning of [p, N]IN® etc. may
be clear. Where I0 is the “radical” of 4, that is,

M= (p, 04,
€ = lim 3 (x°»%°89 — l)es , .
(fr9)

DEFINITION 6.3. Especially we put and fix
Zy,=2", Z =171,
Zy, = 7" (p # 2),
and
Zy=2Z,= 72" (p=2),
where ¢, p, are the unit elements (which are idempotents of 4) of 4,=

Ay g, 4, = Ax_, y_, respectively. In the case of p =2, we note that
€ = €.

PROPOSITION 6.11. Let G, be the p-Sylow subgroup of Gal. (Q,/Q,).
The cup product

H, (ZIpZ) N H, (Z]pZ) — H} (Z|pZ) = Z|pZ
is a non-degenerate skew symmetric form.

ProorF. Let L/Q, be the algebraic extension corresponding to G,
and 2 be the group of p-th roots of unity. By taking the Kummer-
character of G, induced by the elements of L°, we get
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H;p(!z) = L*/L* .
On the other hand,
v—1
H: (2QQ) = Hy () ® H; (2)
= QR ZpZ=2Q2.

Hence we have the following commutative diagram.

) . Y
H, (2) A Hj (2) — H3, (2 ® 2)
|
g =
(L*IL™) N (LP| L) —— 2
We can easily prove that the second row of the diagram agrees with

the Hilbert norm residue symbol of L°, and consequently it is non-dege-
nerate. Since 2 is trivial as G,-module, this concludes the proof. q.e.d.

PROPOSITION 6.12. Let © be the same as in Proposition 6.10. Then
T 18 a regular element of the free pro-p-group G, = {p, x°*) in the sense
of Definition 4.1.

7. Successive approximation.

DEFINITION 7.1.

D, = P y Dryy = [Pr pr]p?‘
ﬁr=pr/pf+l; ”';1,

M=o,
¢ = lim ;_‘, (2287 — 1)es,, «
(f,9)

ProOPOSITION 7.1. The commutator mapping
(a, b) — [a, b] = aba™'b*
and the mappings
a—a°, mod][a?, a’]
a—ar
induce the bilinear form
D, 0, @P,—Dpsw Jor r,821,
and the linear mapping
Pe; Dp = Dpyn Jor r=1
and the mapping
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¢p; ﬁr—"f)r+l fOT /rgl'
Further these mappings commutes with the operation of A, and o,
18 linear except for the case of p = 2, r = 1.
PrOOF. These are easily obtained by direct computations. q.e.d.
PROPOSITION 7.2. Euxcept for the case of »p =2, r =1, the A-homo-
morphism

Dl,r+¢e+¢’p —
> Dty

ﬁl@ﬁr@ﬁr@ﬁr

18 omto, and especially

_ _ _ _ _ — Diitoctop, _
D A\ D/PUD, \ D) DD, D D ;———”» Dy

for p + 2.

ProOF. This can be proved in the same manner as in Proposition
4.4. q.e.d.

NoTE. In the followings we regard each p, as an additive group as
in Proposition 7.2.
In §4 we have defined S;® S;, S A S as follows

Sl®S2:‘:,_i%S1/U1®S2/U2;
SAS=SRS/(1+0SRS,
ca®b) =R a.

For p # 2, the definition of S A S agrees with usual one but not for
p=2. So we define SA S by

SAS=ImSRSIL5®S).

PROPOSITION 7.3. Let @y (p*) be the subgroup of P, generated by
{p@)|aep)}. Then

Dl,l '+_‘_’L + Pe ﬁ;o ,

(P70 A D) D 4(P1) + pi°

where 1 18 the injection and
PIOA DT = D70 A pTMBIT A P

DEFINITION 7.2. Let M, M, be A-projective modules of finite type.
We call M, the w-dual of M if for any indecomposable component 4;,, of 4,

les.sM; 4y,,] = [€F, M5 47F,] -
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We denote by M* the w-dual of M. Clearly M* is uniquely determined
by M up to A-isomorphism. Let Tee (M Q M*). We note that

(M@ M*) = ILees M & e}, M) .

Let

7 = lim Z 7’i:f,y ’
£

and let
Trg,celer,,MQ e M*)
be the decomposition of 7. We call # an w-regular element of M & M*
if each 7, , is w-regular in the sense of Definition 5.2. Let
MQM=MQ M /DM M*),
M= MMM, and M*= M*MM*.

By Proposition 5.4 the w-regularity of 7 depend only on the residue class
7of #in MQ M, and so we call T an w-regular element of M X M*
if e, (M ® M*) is generated by % over End, (JM).

Further if M = M* by the natural imbedding of M A M into M Q M,
we can define the w-regularity of the elements of M A M, also those of

MAM=MA MDA M) .
Finally we note that the A-module
o = (P[P, P])'"™ (p #2),
= (p/lp, '™ (@ =2)
is w-dual with itself and
P A D = DB A DY,
and so we can say about the w-regularity of the elements of D, .(7;A 7)).

PROPOSITION 7.4. Let © be the same as in Proposition 6.10. If we
take suitable gemerators of AP, is written in the form

T = wx, Z,)[w, Z,Jr, (p # 2)
= wx, Z,]r, (p =2)
and
7, € D, (P, A DY) ,

where D, is the one in Definition 7.2. Further T, is an w-regular element
of D, (P, A D)) in the sense of Definition 7.2.



GALOIS GROUP OF LOCAL FIELDS 409

PrROOF. We prove only in the case of p = 2. By Proposition 6.12,
we conclude that © is of the form

T = wzlx: Zo][x: w]i[w, Zo]jﬂ:1 ’
and
T, eDm(p; A ﬁ;) = pi A D!

is w-regular, where %, 5 = 0 or 1.
We put

7Z'=Zw', « =axw .
Then 7= becomes of the form
T = w74, «'|r,
and
T,=T .
But z/, y, Z', w satisfy the same relations as x, ¥y, Z, w in AP and generate
AP, so this completes the proof. q.e.d.

DEFINITION 7.3. Let 7 be an element of p,., We call = a standard
w-regular element of p if it satifies the following conditions.

1) z»"'mx°» =xm, Yy 'my = 7.

2) If we put

T = wlx, Z,)lw, Z]r, (p # 2)
= we, Z,|x (»=2)
then the residue class 7, of 7, in P, is an w-regular element of
D, (i A D) = D, A P
in the sense of Definition 7.2.

DEFINITION 7.4. We denote by W,; » = 2 the group of all automor-
phisms of AP those satisfy

o-(x1~¢‘,> —_ x1—ep y
oY) =19,
o(@) =a modp, for acAP.

PROPOSITION 7.5. Let o€ W,; r=2. Then, the mapping 6,; p— p
defined by

o(a) = o(a)-a™*

induces the A-morphism
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0% Po—> Pusrs  Jor sz=1.

Further 0% s = 1 is determined only by the residue class 6 of o in W, =
Wr/Wr+1'

PROPOSITION 7.6. Let
0" =o(x) - €D, .

Then 0 € pir and it is determined only by the residue class ¢ of o in
W'r = W'r/ Wr+1'

PROPOSITION 7.7. Let +; W,— Hom A (B, D,) P b2 defined by
(@) =0 @PoyY  for oeW,.
Then + is an isomorphism.

PROOF. Proposition 7.5 and Proposition 7.6 can be obtained by direct
computations. Proposition 7.7 is the consequence of Proposition 6.6. q.e.d.

DEFINITION 7.4. For an arbitrary « € 7,, we define a 4-homomorphism
q)a; T)r'—’ﬁr—f—l; r 2 1 by

@a(/g) = Dl,r(a ® 18) € ﬁrﬁ-l .

PROPOSITION 7.8. Let o0 W, and 1 the natural imbedding of 7, A D,
wnto D, X D,. Then the following diagram is commutative.

1®6%H

_ _ 1 _ _ _ _
D A pl——’p1®p1_'—"_’p1®pr
lDl,l lDl,r
_ (2) _
pz 50 —> pr+1

Proor. By direct computations.
PROPOSITION 7.9. Let
T = w*x, Z,)[w, ZJr, (p # 2)
= wx, Z,]r, (p = 2)
by standard w-regular element of », then
O = (9, — 3) - OV — 3,08 + @, 0,
+ @02, + 07T, (p #2),
OPT) = (s + 3) - 0B + .00 Z,
+ @z, 0 + 0T, (p=2).
DErINITION 7.5. Let
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g‘B = @ ,g; 1—72 .

Then o, @., ., (€@ €p,), are regarded as the operators on the graded
module %B. Let I' be the operator ring generated by @, @. and {p.},
acp, over Z/pZ. Let M be the right ideal of I" generated by

Py — Pz Par Pry Per (Paa €D (0 # 2),
P2 + Puy P PZys {¢a}a eiji—”o (p = 2) .

PROPOSITION 7.10. Let @ be a standard w-regular element of p.
Then for any a€ MP A e.p,.., there exists € W, such that

0X(T®) =a, Jor r=2.
Proor. By Propositions 7.7, 7.8, 7.9, and the regularity of #. q.e.d.

ProproOSITION 7.11.
MP=3p  for p#2,

ra3
e MP + Z/2Z[¢2] ° (1772<PE’ITJ + ?g'z—o) = éeop—r Sfor p=2.
PRrOOF.

CASE. p # 2. Let ¥ =3, 0,. Then the operation of I" on Y5 can
be extended to §¥'. Clearly

I'= M@ Z/pZ]p,] .

Therefore it is sufficient to prove that ¢, p, CMP'. If a€(l — ¢ — ¢,)p, +
Z|pZ-(w, Z,), we have

Po = (Py = P2,)0 + P20
= (Pp — Pz,)) — Pl € MP' .
For Z,cp,
Pl = (Pp — P7) 2, € MP .
CASE. p = 2. Since I' = M + Z/2Z|p,], it is sufficient to prove that
PP C M + Z[2Z(piZ0y Pup.W)
By Proposition 7.3, we get

€, = eoDm((l —e)D: A (1 — €,)D,)
+ Z[2Z - (p,W, P 2oy Prlery PW, PeLly) -

On the other hand for a, b€ p,
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[a, b*] = ab’a™'b7*
= [a, blbaba'b7*
= [a, blb[a, b]b~*
= [[a, ], b]b[a, b]D*
= [[a, b], bl[a, b mod P, .
This shows that for «, 8¢€p,
PaPolB = P+ PoPal -
Similarly, if we note that
p@ = [x,alep, for aepy,
we get
PPl = PP+ Pup O for aecep,.

Using these formulae, we get

PPl = PupsS + e MP  for «a,Be(l — e)p,,
and
<P2¢EZo = @E?’zzo + 5022_077)
= (Pu + PP 2y + T ® + PiZ e MP + Z|2Z - iZ,
P = (@, + Pu)p,w € MP ,
P2y = P2y + @ZO%ZO e M. q.e.d.
THEOREM I. Let w, n’ be two standard w-regular elements of P such
that
T=7 mod p, .

Then there exists an automorphism o of AP that satisfies the following
conditions.
1) o(x'"») = x'»

oY) =y
ol@) =a modp, for vaecAP.
2) If p+#2
=7,
If p=2,

=7 [w, x*- Zy for some p,veZ,.

PrROOF. Since AP is generated by =z, y, 2, w, 6 € W, be determined by
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o(x), 0(z), o(w). And so we can define the topology on W, such that W,
becomes compact and totally disconnected and it operates continuously
on AP. Consequently the orbit W,-mw of 7 is closed in P. Therefore, it
is sufficient to prove that in the case p # 2, if 7 = 7’ mod p,,, r = 2, there
exists ¢ of W, such that 7° = 7’ mod p,,,; and in the case p =2, if 7 =
7' mod p,., r = 2, there exists ¢ of W, such that

° = a'[w, 2" “ZY* mod p,,,, p,v=0 or 1.

But these are the immediate consequences of Propositions 7.10 and 7.11.
q.e.d.

Theorem I shows that for a standard w-regular element m of P, the
structure of the residue group AP/{z) is determined essentially by the
residue class @ of 7= in P, for p # 2. But in the case of p = 2, the same
result as the above is not clear and so we shall discuss this case in the

followings.
Let S be the normal subgroup of AP generated by =, y, z and w’.

PROPOSITION 7.12. Let w be the same as in Proposition 6.10. Then
the normal subgroup () = ker (p — B) contains the gemerator ©' such
that if we take the suitable generator of AP ©' is written in the form

' = wlw, z]* mod|[S, S]A P.

PROOF. Let S be the normal subgroup of AB =G = Gal.(Q,/Q,)
generated by z, ¥, Z and @® and let 0 be the primitive root of unity of
degree 4. Then k = Q,(0) is the field corresponding to S.

Let K[ W] = Q,[]6, W] be the Q,-algebra generated by 6, W with relations

oW +Wo=W*+1=0.

Then @Q;[6, W] is the quaternion field over @,, and has the invariant 1/2.

Let U be the subgroup of k[W]* generated by %k° and W, then U is
isomorphic with a dense subgroup of G/1S, S] by the extended norm
residue mapping ; U—G/[S,S]. By changing the generator of G if
necessary, we may assume that

Pl +0) =2, o(W)=®
in G = G/5, S].
Since
W{W, 1 + 6]
= —-WQ1+ W1 + 6)*
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_ _<1 — 0)2 -1
1L+6

W, 2 =1 mod[S, S].
This concludes the proof. q.e.d.

We get

PROPOSITION 7.138. Let © be the same as in Proposition 6.10. Then
there exists an automorphism o of AP such that

7’ = ww, P ZY[ Z,, xlx, ,
n,.elZt, Z{],
where Z, = Z'* 18 defined in Definition 6.3.
Proor. By Proposition 7.12, we get
7’ = ww, x> Z¥'[Z,, xlr, T e[ Z4, Z1] .

We assume that v = 1 mod 2.
Let 7 be the automorphism defined by

(%) = #[Z,, wlZ,, @)=y
(w) = wZz:, (4)=12.
Then
" = ww, 2P[Z,, z]r; modp, .
By Theorem I, there exists o, of W, such that
ig, e W, n°t = ww, """ ZMZ, xln, , =m elZi, Z]. q.e.d.

DEFINITION 7.6. In the followings we assume that any standard -
regular element satisfies

T = ww, v Z, z]r, modp,, = €[Z%, Z{].

PROPOSITION 7.14. Let @ be a standard w-regular element of v, and
r = 2, then there exists o of W, such that

7°=nZ¥" modp,, .
Proor. It is sufficient to define o such as
o(w) = wZy ,
o(x) =227,
and
o) =7 . q.e.d.
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PROPOSITION 7.15. Let m be a standard w-regular element of P then
there exists o of W, such that
7’ = ww, P2, 7, , 7w, €[Z%, Zi] for some peZ,.

DEFINITION 7.7. Let N be the normal subgroup of AP generated by
w?, [Z,, 2], Z¢ N\ p,. Then, we define the groups N, as follows.

N,=N,N,;,, N=N,N,,, = [p, NN r=1.

Then we can define the operations @, @, {p.}.€p, on N =@ 3,., N..
Let I be the ring generated by ¢, @., {p.}.€D, and M the right ideal
of I' generated by ¢, + ¢z, @., {pzla € Z4.

PROPOSITION 7.16. Let m be an element of P such that
T = wlw, [ Z,, x]r, mod N A py; &, €[nf, nf] .
Then there exists o of W, such that
7° = ww, 2P Z,, z]x, .
PRroOF.

1) eRA SN, C MR + Z)2Z]p.) (0. ®, p.Z,).
Because, it is sufficient to show that

P DD QP C MR
This follows from that
PPB = PupiB + Prx € MN .
This concludes the proof.
2) There exist two elements o and 7 of W,, r = 2, such that
= mwew’,
and
wt=x-[Z,2 " modNAP,,.
For, it holds that
o(®) = x, 0(Z) = Z, o(w) = w¥",
(Z) = 2l Zy o, ©(Z) = Z§,
and
(w) =w.

3) By Proposition 7.10, our assertion follows immediately from 1)
and 2). q.e.d.
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THEOREM II (p = 2). Let m, @' be any standard w-regular elements
in the sense of Definition 7.6.
If © =n"modp, then there exist ¢ of W, and p of Z, such that

Tt — gl
ProOOF. By Proposition 7.15, it is sufficient to prove in the case of
T = wlw, z[[Z,, z]z, ,
' = wlw, x]***[Z,, z]r; ,
T, w €[Z4, Z{), ®, =, mod p, .
Since
7wt = [w, 2]* mod N A p,,
we get
ot = ww, P2, x2]r, = mod N A p; .
By Proposition 7.16 there exists ¢ of W, such that
it = g | q.e.d.

By Theorems I and II, in order to determine the structure of the
total Galois group G = AB = Gal.(Q,/Q,), it is sufficient to determine the
residue class 7, of «, in

H =1z, Z})/12¢, | Z2: Z2)] = (Z2/1Z4; Z2) A (Z31Z2, Z3)) -
In the case of p = 2, the following fact is known by Koch
7, is of the form e (a A B) where
4. D 4, = 7}/ 22, Z1] .

This is proved by investigating the Hilbert Norm residue simbol on the
local fields.
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