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THE GALOIS GROUP OF LOCAL FIELDS
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Introduction. Let Qp be the p-adic number field, k a finite extension
of Qp, and G the Galois group of k/k. In 1968, Jakovlev [1] described
the structure of the Galois group G in the case of p φ 2. In his paper,
he determined the number of generators of G and gave a description of
the relations among the generators. But, as he recognized himself there,
those relations were considerably complicated and it is difficult to look
through the structure of the Galois group only by those relations. In
order to determine the structure of the Galois group up to isomorphism,
as we shall show later, we need not the exact description of the relations,
for we can characterize the relations among the generators by more
general and loose conditions.

Let K be the maximal tamely ramified extension of Qp and let

A = Gal.(JSΓ/Q,) , B = Gal.(Qp/K) .

Then the exact sequence

splits, and G is an holomorph extension of B by A. By fixing one splitting
morphism A—>G, we can consider A as a subgroup of G and B as a
pro-p-group with the operator domain A. In § 6, we define "the protective
envelope" P of the A-pro-p-group B, and consider the relation among
the generators of B as an element of P. In § 7, we define the notion of
^-regularity for the elements of P, and prove that Ker.(P—• B) is generated
by an α)-regular element of P. Furthermore, we prove that for any two
ω-regular elements π, πf congruent to each other modulo certain normal
subgroup of P, there is an automorphism σ of PA such that π° — π',
where PA is the holomorph extension of P by A.

By this fact, the problem of determination of the structure of the
Galois group is entirely reduced to the problem of determination of certain
non-degenerate skew symmetric quadratic form corresponding to the Galois
group. Though we do not show here, we can easily classify such quadratic
forms, and determine the one of them which corresponds to the Galois
group.
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In this paper we restricted the base field to Qp, but this is not
essential and we can easily extend our results to the case of arbitrary
base fields.

Finally I wish to thank Professor Ogawa for his advices and encoura-
gements.

1. Maximal tamely ramified extension of Qp. Let K be the maximal
tamely ramified extension of Qp, and let T be the maximal unramified
extension of Qp.

PROPOSITION 1.1. The Galois group, A = Gal.(K/Qp) is generated "as
a topological group" by the two elements x, y with the unique relation,

x~ιyx = yp,

where x is an arbitrary element of A, such that x induces the Frobenius
mapping of T/Qp, and y is an arbitrary generator of G&\.(K/T).

PROPOSITION 1.2. B — Gsil.(Qp/K) is a pro-p-group and the following
exact sequence splits.

1-+B-+ Gal.(Q,/Qp) — A — 1 .

In other words, G = Gal.(Qp/Qp) is the holomorph extension of B by A.
From now on, we fix a splitting morphism, A = Gal. (K/Qp) —> G =
Gal.(Qp/Qp)9 and by this splitting morphism we regard A as a subgroup
of G.

COROLLARY 1.3. Let (x), (y) be "the closures" of two subgroups of
A, generated by x or y respectively.
Then

(x) ~ lim Z/prZ
r

<»> s lim W - Ϊ)Z

r

and A is the holomorph extension of (y) by (x).
2. Group ring of A. Let Zp be the maximal order of Qp.

DEFINITION 2.1. We define the "group ring", A = Zp(x, y) of A =
(x, y\x~ιyx = yp), by the following formula,

A = lim Z/prZ[A/U]
rTu

where U runs over all normal open subgroups of A.
Let D be the set of all monic irreducible divisors with coefficients in

Zp of polynomials of type Xpr'1 - 1; r ^ 1.



GALOIS GROUP OF LOCAL FIELDS 387

PROPOSITION 2.1. Let F = Zp(y) be "the closure9' of the subring of
A, generated by ye A.
Then

F=UFg; Fg = Zp[ Y]/g( Y)ZP[ Y] .
geD

Π means the direct product of topological abelian groups.

PROOF. By Corollary 1.3, we get

Zp(y) s lim Zp[Y]l{Ypr~ι - 1)ZP[Y] .
r

Our assertion follows directly from this. q.e.d.

Since x~^yx — yp, the inner automorphism σ of A induced by xeA
induces the Frobenius mapping on every Fg.

The unit element eg of Fg is contained in the center of A, and so
Aeg is two sided ideal of A, and

Put dg = άegg, then the center Γg of Aeg is generated by xd*ea over Zpeg = Zp.
Therefore, Γg is isomorphic to the group ring,

Zp{{x*»)) = Inn ZP[X]/(X* - 1). ZP(X) .

r

DEFINITION. Let Z be the completion of the ring of rational integers
Z, i.e.,

Z = lim Z/rZ = Π Zp .
r

In the above product, we denote by ep the unit element of Zp, which is
regarded as an idempotent of Z. For any profinite group H and for any
element h e H, we denote by 7z> "the p-part" of h. If aίf α2, is a
sequence of integers that converges to ep in Z, then he» is the limit of
the sequence hai, h"2, in H.

We put

x0 = χa~ep)ds , and xx = xepdt> dg = d e g g ,

then we have

(xd

gy = <aj0) x (χλ) (direct product) ,

Γ ~ 7. fί'rda}h — Z llv \\ 6?) 7, Kr W
1 g — Zjp\\J0 »)] = /JP\JJQJI \?\J Z/pW^!// ,

and
ZIP%XQ)) Z=Z l im ΔP\Λ.\I\Λ.V — ±)Zrp[JL\

r

feD
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Since (xλ) is a free-pro-p-group, its group ring

ZM s lim ZP[X]/(X*r - 1)ZP[X]
r

is isomorphic to the power series ring in one variable xx — 1 over the
ring Zp.

Thus

where Γftβ is isomorphic to the one variable formal power series ring in
one variable over the ring isomorphic to Zp(X)/f(X)Zp[X].

Let ef>g be the unit element of Γftg, then

where (/, g) runs over all elements of D x Zλ Each Λβ/>ff is a Γ/jί7-algebra
which is free as a Γ/}ί/-module, and

[Λ e / /. Γ / f g ] = d2ff d^ = d e g βr .

We shall write simply Λf>g instead of Aef}9f then we have the following
assertions.

PROPOSITION 2.2.

1) Λ = Π(/,ff) Λftβf

Λft9 = ΛpBLf,, Si/,, - (/(a? ( 1-* ϊ d0, ff(v)M

α^d cίp = d e g βf.

2) Γ/^ is isomorphic to the total matrix algebra (Γfta)dg over its
center Γftg.

3) Γf>g is isomorphic to the formal power series ring in one variable
over the ring isomorphic to Zp[X]/f(X)'Zp[X].

PROOF. 1) and 3) have been already proved.
2) can be proved by means of the theory of crossed product, q.e.d.

PROPOSITION 2.3. Let M be a Λf}g-module and put

U = {σ 6 A = (x, y) \ Vμ e M, σμ = μ} ,

A = A/U, and Λ = ΛfJSΆ .

We denote by x the image of x in A, then it holds that M = Λ under
the following conditions 1), 2), 3):

1) M is Zp-free and finitely generated over Zp.
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2) There is a submodule M! of M such that

M' = Λ, \M/M'\*< oo .

3) The subgroup J = (xdep) of A is finite and

H}(M) = 0

where d — deg g.

PROOF. In the first case of xde* = 1, the center of A is isomorphic
to Zp[X]/f(X)Zp[X] and A is isomorphic to the total matrix algebra of
rank d2 over its center. By assumptions, M is isomorphic to a left ideal
of A, which satisfies

\Λ/I\*< oo..

But A has only one ideal class (Iwasawa [1]) and so

M=A.

In general case, let pr be the order of x. We put

and

Applicating the first case to A and NM, we obtain NM = A. Therefore
NM is generated by one element as a Z-module. On the other hand, by
the assumption pertaining to jff1, we have

NM = AΓ/(1 - x)M .

Since 1 — x is contained in the radical of A, M itself is generated by
one element as a Z-module. By assumptions,

[M:ZP] = [A:ZP]

therefore we see that

M = A q.e.d.

3. Unit groups of tamely ramified extension. Let k/Qp be a tamely
ramified normal extension of Qp of finite degree, and let U be the principal
unit group that is the group consisting of all units of k congruent to 1
modulo the prime ideal of k. U can be regarded as a Λ-module, and
it splits corresponding to the splitting of A such as

u=nuf,g,
where almost all Uf>g are 1.
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If we put

Ak = G*l.{K/k)c:A

σeAk

then

π f i g
f,g k

and each Uf,g is regarded as a if/^-module.

PROPOSITION 3.1. If XJf\g does not contain any primitive p-th root
of unity, then

Uf,g = Λf,g .

PROOF. By Proposition 2.5. q.e.d.

PROPOSITION 3.2. Let Θ eK be a p-th primitive root of unity, then

If we put π = (—p)ί/p~\ then Ίt* is a prime element of Qp(θ), and the
principal unit group U of Qp(θ) splits as a Λ-module, such as

U = Uz-uY^xUzSut- X - X Uz^Y - O)p~2

where ω is a primitive (p — l)-th root of unity. And

Ux_lfY-ω = θz x exp(Zpπ
p)

Uz-ιtγ-ω* = exp (Zjπ*) 2 <; i ^ p — 1 .

PROOF. In the case of p — 2, Proposition 3.2 is trivial. And so we
assume that p = 2.

Since Xp~x + + X + 1 = Π&1 (-X" - θ% we have

θ) = m=ί( l - β«) = 1 + ••• + 1 = P ί N=NQP(Θ)/QP.

On the other hand, the chracteristic polynomial of π is X*'1 + p = 0,
and so

= {-iy-'p = p NQ,(π)/Qp.

Therefore, by class field theory, we conclude that

QPV) = Q,(π) .

We may assume that

πy = ω ^ (i, p — 1) = 1 .

If we put πQ = θ — 1, then ττ0 is also a prime element of Qp(0), therefore
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π = sπ0 mod (π2) for some 1 <; s <; p — 1 .

On the other hand, it is clear that

1 + πy = 0* = r = (l + 7c0)- = l + ωπQ mod (π2) ,

therefore ωιπ = πv = sπl = sωπ0 = α>τr mod (π2). From this we have that
i = 1 and TΓ* = TΓ. Put 0 .= Zp[0] = Z J π ] , then we find

U= θz x exp (Oπ2)

= θz x exp f Σ ZpTΓ*
V=2

= θz x exp (Zpπ
2) x x exp (Zpπ

p) ,

and

exp (ZpTΓ*) e Ux-UY_ω 2 ^ i ^

Since ω p = ω it holds that

ϋz-LΓ- = ^ z x exp

ί/x-^r-^ = exp {Zpπ
ι) 2 ^ i <; p — 1 .

Thus our assertion holds. q.e.d.

PROPOSITION 3.3. Let k be the unramified extension of Q9(θ) of degree
pr; r ^ 1, and U the principal unit group of k. Then Ux-ltY-ω is gener-
ated as a Λ-module by two elements a, βf which satisfy the following
conditions,

Na = θ Nβ = exp (πp) N = Nk/Qp(θ) , a* = β*-1,

where

and

θ = 1 + π mod(τr2) .

PROOF. Let <̂ > be Ga\.(k/Qp(θ)), then

Hence, there exists such an element at of £7z_1,r_β that j^Ί = 0 Since
Net? = 1 and .£P<s>(ϊ7r_i,r- ) = 1, we can find such A e Uz-lιr-ω as αf = /SΓ1.
Now we put

ax = 1 + aπ and &• = 1 + bju mod (π2)

with integers α, &! of k, then
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a{ = 1 + paπ + apπp = 1 + (ap — ά)πp

β?-1 = 1 + (6f — 6 > mod (πp+1) .

Therefore, it holds that

bp - b, Ξ 0 mod (π2) ,

and we may assume ^ e Z without loss of generality. We put β2 = &0~δl,
then

«r = tf-1 = W)--1 = yδr1,
and

δ̂2 = 1 mod (ττ2) .

Let kQ be the unramified extension of Qp of degree pr and let 0 be the
maximal order of k0, then, similarly as Proposition 3.2, we get

{u 6 f/χ_1>F_ω | t t s l (π2)} = exp

Since

αf = 1 + (a

p - α)ττp mod (πp+1)

we see

/32 = 1 + bπp mod (ττp+1) ,

ySΓ1 = 1 + (bp - δ)πp mod (TΓ^1) ,

and so

(α — b)p
 =Ξ α — δ mod (π) .

On the other hand,

1 + 7r = θ — Nax = 1 + t r a^ π mod (τr2) .

By this and the before, we get

t r 6 = t r a = 1 mod (π) ,

iVA = 1 + t r δ Tr̂  = 1 + πp

= exp (πp) mod (πp+1) .

From this and Proposition 3.2, it holds that

Nβ2 = exp (μ-'πη μ~ιeZp,

μ~γ = 1 mod (p) .

Now we put a = αf and /9 = yŜ , then we have
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Na = θt* = θ , Nβ = exp (πp)

and

Since α and /? generate J7x_1>F_ω, this proves our assertion. q.e.d.

PROPOSITION 3.4. Let k, U be the same that of Proposition 3.3, and
let •$Jl1 be the maximal ideal of

PROOF. Since

SOli is generated as a /^-module by two element (x — l)elf peγ with the
unique relation:

p-(x - I K = (x - l j pβi,

where eγ is the unit (idempotent) of Λlm Therefore, we can define a Λγ-
epimorphism

by

(x — 1)^! —• a

peAβ ,

using a, β in Proposition 3.3. Since Λ1 is an integral domain, we get

(x»r - l)ΛJ(x*r - 1W, = Λjm, s ^ / ί ) ^ .

On the other hand, we see that

WJ(x>r - lMr. Z,] = [ΛJ(x*r - 1)4: Z J = [Uz-ltT-JΩ: Zp]

where i2 is the p-torsion part of JTr-^r-e and Ω = Z/pZ. This shows

ker φ = (ΛJpr -

and we get

PROPOSITION 3.5. Leέ k/Qp be a normal extension of finite degree,
contained in k/Qp and let Uk be the princίal unit group of k. If we put
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Ah = {σeA = (x, y) \ Vμ e k, μ" = μ) ,

«» = Σ (σ - 1)Λ ,
σe Ak

and

Wl = (p, x - 1, y - ω)Λ ,

then there is a Λ-left isomorphism:

Uk = SK/3K81, .

PROOF. It is clear that the isomorphism holds except the Λ^-parts
of the both hand sides. On the ΛΓparts, by Proposition 3.4, isomorphism
holds if k is the unramified extension of Qp(θ) of degree pr. Therefore,
by Proposition 3.1, we may assume that k contains the primitive roots
of unity. Let prn be the relative degree of k/Qp with (p} n) = 1, and
let k be the unramified extension of Qp of degree pr which is contained
in k. Then the ^-component of Ut agrees with that of Uk and the A^
component of ΈfljWΆk also agrees with tjiat of SK/2)ϊ5ίΛ

A, and this concludes
the proof. q.e.d.

Easily we obtain the following three propositions.

PROPOSITION 3.6.

Λ\mUk = m

T
where the left hand side is the inverse limit with respect to the norm
mappings and k moves over all tamely ramified normal extensions of
QP of finite degree.

PROPOSITION 3.7. Let B be Gal.(Qp/K) then as the A-modules,

B/[B,B] szm = (x-A,v- ω)Λ .

PROPOSITION 3.8. B is generated as a pro-p-group with the operator
domain A by two elements Z, W, which admit only two relations modulo

Weί = W

where ex is the unit (ίdempotent) of Aγ.

PROPOSITION 3.9. In Proposition 3.8, we can take such w that admits
the relations)

xep~γwxx~ep = w ,

and y~ιwy = wω.
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PROOF. For w in Proposition 3.8, it holds

[χep~ιwxι~ep = w ,

[y-'wy = wω mod [JB, B] .

Let W be a minimal closed subgroup of B that satisfies the following
conditions.

1) W is closed to the operations of a?1"** and 2/.
2) <[£, £], fi?> contains w. Then W =W/[W, W] is indecomposable

as a Λ'^Zpfa^'p, #))-module, and is isomorphic to A'/fa^'p—l, y—ώ)Λf~Zp.
Let ί?! be the element of W such that

w, = ΐδ mod [β, J5] ,

then this Wi satisfies our assertions. q.e.d.

4. Cohomology with coefficient Z/pZ. Let S be a profinite group.
Following facts is well known.

PROPOSITION 4.1. For the S-trivial module Z/pZ,

mzipz) s (S/[s, s]sη*.

The symbol * in the right hand side denotes the Pontrjagin dual of the
compact group.

PROPOSITION 4.2. Let φ; F~>S be a homomorphism mapping the
pro-p-grόup F to S, such that F is free and the homomorphism

F/[Ff F]FP -> S/[8, S]SP

induced by φ is an isomorphism. Then,

Hl(Z/pZ) s (FJ[F9 FJί?)* ,

where Fx = ker {F—>S). Furthemore, for any pro-p-group S, such a
free group F and a homomorphism φ; F—>S always exist. Let St and
S2 be two (additive) pro-abelian groups. We define the tensor product
Sx(g)S2 by

Si ® S2 = lim SJU, (g) SJUt,

where U^U^) runs over all open subgroups of Sx(resp. Sa). Let σ be the
automorphism of S(g) S difined by

σ{a (x)6) = & ( g ) α , a,beS.

We define S Λ S and S®S as
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S A S = coker (S (x) S — S <g> S) ,

S ® S = ker (S (g) S - ^ S®S) .

PROPOSITION 4.3. Let S be a pro-abelian group (additive) such that
pS = 0, and let S* the Pontrajagin dual of S. Then S®S is identified
naturally with the Pontrjagin dual of S* ® S*.

PROOF.

a e S ® S <=* (1 + σ)a = 0

« ( ( l + σ)α, S*(x)S*) = 0

« (α , (1 + (τ)(S* (x) S*)) = 0 . q.e.d.

PROPOSITION 4.4. Let F be a free pro-p-group. We put

Ft = [F,F]F>, F2 =

F = F/F2, and F2

Then, we have

1) ifpΦ2,

2) ifp = 2,

PROOF. We define the mappings D; F x F—> F2 and <pp; F—>F2 by

β(α, 6) = [aΓb] e F 2 ,

9,(α) = άpeF2,

respectively. Then Z? and φp induce the mappings

D) F x F-*F2,

φP» F —+ F2.

It is easily known that D is bilinear and that <pp is linear for p Φ 2.
Let p Φ 2. The homomorphism

F /

is clearly an epimorphism. In order to show that D + φp is a mono-
morphism, it is sufficient to construct in practice a pro-p-group S such that

= *^/O 2 = JO y O 2 — [ O , OJO j

Qt IQ1 s*^s f Ίji Λ C"\ /T\ IT' O — Γ Cf Cf 1 CfP

Regarding E = F/[F, F]FP as a module, we put V = E Λ E/p E Λ E.
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If we define the multiplication on the set S = E x V such as

(a, a)(b, β) = (a + 6, α + β + -i-α Λ &) for α, 6 e E, a, β e 7

then S becomes a group and it satisfies our requirements. Let p = 2.
We put

and define the multiplication on the set S — F x V such as

(α, α)(6, /S) = (α + b, a + /S + a(x) 6) , for a,beF, a, β e V .

As in the case of p ^ 2, S becomes a group. We identify V = F (x) F
with the subgroup of S consisting of all elements of type (0, a). Then
we get the following diagram with the row exact.

F

I
S >S/V >0 S/V= F .

Since F is free, the diagram can be extended to a commutative diagram;

F

f/ I
/ 1

s — > s / v — » o .
Since

(α, af = (0, a (g) α) ,

(α, a)(b, β)(a, <x)~~\b, β)"1 = (0, a (x) 6 — 6 (x) α)

the subgroup /(F) Π V agrees with the submodule F® F of V. But clearly
/"^(V) = F2 and ker/ = JP3, therefore this concludes the proof. q.e.d.

Let S be a pro-p-group. By Proposition 4.1, there exists a free
pro-p-group F and a homomorphism φ;F~+S, such that <p induces an
isomorphism;

F/[F, F]FP ^ S/[S, S]SP .
By Proposition 4.1 and Proposition 4.2, the following homomorphisms exist.

Hl(ZlpZ) = S*(= F*) .

Ή(Z/pZ) = JV* .

Where S = S/[Sf S]SP, N = N/[F, N)NP, and N = ker φ.
Using the injection N^F^ we define the homomorphism h from
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H*(Z/pZ)* to Hϊ(Z/pZ)*@ Hi(Z/pZ) such as

® Hi(Z/pZ)* (PΦ2);

H*(Z/pZ)* = N^F2

S ί ΐ Θ ^ Hϊ(Z/pZ)* ® H8(Z/pZ)* (p = 2) .

PROPOSITION 4.5. Γftβ cup product

... \J:Hi(Z/pZ)ΛHi(Z/pZ)-+H:(Z/pZ)

is the dual of h.

DEFINITION 4.1. Let F be a free pro-p-group, and π an element
of [F, Fll*7*. We put S = F/((π)) where ((π}> is the normal (closed) sub-
group of F generated by π. We call π a regular element of F if the
cup product

W(Z/pZ) A Ή(Z/pZ) - Ή(Z/pZ)

is a non-degenerate bilinear form. Where "non-degenerate" means that
for each non-zero-element a of H8\Z/pZ) there exists at least one element
β of Hi(Z/pZ) such that a\J β ΦO.

5. ft)-regular elements of tensor products. Put

A = <*, 2/> = Gal. WQ,) ,

A = Zpfe »» = Π Λ/,,, iίx = ^x_1 ) F_ω
f,9

be the same as in §2.

PROPOSITION 5.1. There is an involutive anti-automorphism * of A
determined by

X* = x'1 , y * = O)^" 1 .

DEFINITION 5.1. We call A}%9 the ω-dual of Aftg.

PROPOSITION 5.2. Let M(N) be a Aftg(τesp. AfvβJ-non-zero module.
The following two conditions are equivalent.

1) The Ai component of M(x)N is non-zero.
2) Λf.. = Afvex.
We denote the number of Af^-indecomposable components of a Aftβ-

module M by [M; Aft9].
Let A be Gal.(ίΓ, Qp), and let M(ov M*) be a ^/ ) ί 7(resp. AJ>g)-projective
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module of finite type. The tensor product M x M* is regarded as an
A (and consequently Λ)-module by usual way. Thus M x M* is regarded
as a A (x) (End^ (ilf)) (g) (End,* (M*))-module. We call M* the ω-dual of
M if [M; Af,g] = [ilf*; Λ}tβ\.

PROPOSITION 5.3. Let M be a Af>g-projective module of finite type,
and M* its ω-dual. Then, we have, Aγ (g) End^ (M)-modules,

eX&f <g) Af*) = Λι (g) End^ (M) .

PROOF. Let 31 be the maximal two sided ideal of Λftg and U an open
normal subgroup of A such that

VσeU , (σ - l)ef,g e3i.

We put

A = A/U Λ = Zp[A] s AΓZ (σ - 1)Λ ,
σeU

Λf>g = ΛΆftg , Λ}tβ = Λ-Λlg

M = Λ M , and M* = l M* .

We define the right operation of A for M by

μ-a = a*β f o r μeM, aeA.

By this definition M becomes a A},g right module, and the tensor product
M®ΛM* over A is defined. We can easily see that as the End^(M>
modules,

ejjί <g> M*)/(x - Vje^M ®M*) = M ®Λ iίί* .

Let F be the center of Af>g. Then End^ (M) is isomorphic with the total
matrix algebra over F of degree n = [M; Afig] and M(g)ΛM* is protective
over End^(iί?) and

[M®ΛM*; End^(M)] = [M*; A*f>g\ = n .

Hence as End^ (iίf)-modules it hold that

eάMφM^/ix - lk(M(g) M*) = End/iϊ?) .

But clearly M®M* is protective over A and consequently Zj(Λf(g) M*)
is free over J l β This shows that

elM <g) Jtf*) s Λ (g) End^ (M) .

Taking the inverse limits of the both hand sides, we get

βXflf (8)Λf*) = A1 x End (̂ikf) . q.e.d.

PROPOSITION 5.4. Leέ /, g, M, Λf* 6e the same as in Proposition 5.3,
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and let π be an element of ex{M x Λf *). Then the followings are equivalent
to each other.

1) e^M (g) Λf *) is generated by π over Aγ (x) End, (Λf).
2) e^Mζ&M*) is generated by π over Λ1 (x) End, (Λf*).
3) e^M ® M*)/(x — l ^ M ^ i k f * ) is generated by π over End^Λf),

where M == M/WIM, M* = Λf/SKΛf and 3ft is the radical of A, i.e.,

m = pΛ + U (xe»'άes'g - l)Λftβ .
(f,g)

4) For any Λ-module N and for any element a of e^N® M*), there
exists at least one Λ-morphism / ; Λf—>JV such that

Where /(x)l; Λf (g) ikf * —• N (g) M* is £fte Λ-morphism induced by f.

PROOF. By Proposition 5.3. q.e.d.

DEFINITION 5.2. Let /, g, M, M* be the same as in Proposition 5.3,
and π e e^M x Λf *). We call π an ω-regular element of M x M* if π
satisfies the equivalent conditions of Proposition 5.4. By the condition
3 of Proposition 5.4, the co-regularity of π is determined only by the
residue class of π in

βXflϊ® M*)/(x - lJ β^M^M*) .

6. "Projective envelope" of Gal.(Qp/K). The notions of free, pro-
jective, essential etc. can be defined in the Category of pro-p-groups with
operator domain. Namely, we have,

PROPOSITION 6.1. Let Ά a pro-finite group, and M a set. Then there
exists a pro-p-group B with the continuous operator domain Ά and a
map M~+B which satisfy the following universal mapping property.

For any Ά-pro-p-group B1 and for any map M^^Blf there exists a
unique A-morphism B —> B1 such that it makes the following diagram
commutative.

M

B >BX

DEFINITION 6.1. Let Ά a pro-finite group, an B and A-pro-p-group.
We call B an A-projective group if B satisfy the following condition:

for any Jϊ-epimorphism B1 —* B, there exists a A-morphism

a A-morphism B—*B1 such that
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DEFINITION 6.2. Let Bγ^B2 be a A-epimorphism of A-pro-p-group.
We call φ a A-essential morphism if for any proper A-subgroup B[ of
Blf φ{B[) Φ B2.

PROPOSITION 6. 2. For any A-pro-p-group B there exists a Ά-projective
group p and a Ά-epimorphism φ; p^-B such that φ is Ά-essential. (φ, p)
is uniquely determined by B up to Ά-isomorphisms.

PROOF. By Proposition 6.1, B can be written as a residue group
F/N of an A-f ree group F. Let Nt be a minimal A-normal subgroup of
F containing in N such that F/N, —> B is essential. The existence of
such JVΊ can be easily proved. Next, let p be a minimal A-subgroup of
F such that p —• B is onto. Such p also exists. Then p —• B is essential
and F = Nxp. Since F is A-free. There is a commutative diagram:

F

ψ/ I

V > F/N, .

Then, by the commutatively of the above diagram we see,

ker. φ c φ'KN, A P) = N, .

But for

F/ker. φ = p-+ F/N,->B

is essential, by the minimality of Nlf therefore, we get ker φ — N, =
φ^iN, A p), and so

Nx A p = 1 .

Since F is free, this shows that p is A-projective. q.e.d.

PROPOSITION 6.3. For any A-pro-p-group B, there exists the maximal
A-normal subgroup B2 of B such that B —> B/B2 is essential and this B2

is the common part of all maximal A-normal subgroups of B.

PROOF. Since

B-+Bi[8,8]

is essential, we get Proposition 6.3 by adapting the theory of limit
Artineans to the A-module B/[B, B], q.e.d.

In the following, we put

A = <x, y) = GaL(JΓ/Q,) ,

B = ((Z, w)) = GΛ.(QJK) ,
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and we shall construct the A-projective envelope of the A-pro-p-group B.
Let Tt be the "radical" of A, this is,

m = pΛ + U (αe* d e g * - ΐ)Aftg
(f,9)

and let B2 = [B, B]Bm be the inverse image of (B/[B, B])m with respect
to the A-morphism B~»BI[B, B]. Then B/B2 is essential and B/B2 =
A/Wl 0 AJffllA^ Therefore our task is to construct the A-projective envelope
of Aim 0 AJWΛv

Let F be a free pro-finite group generated by four elements x, y,
Zί9 wx and let N be its normal subgroup generated by Z1 and wx. We
denote by Nι the normal subgroup of F generated by three elements

x~ryxy~

where ep e Zp,

and the all elements of type vι~ev, veN, and we put

P = N/N, A N .

We denote by Z, w the images of Zlf wι in P respectively, and we define
the A-epimorphism P~*B by Z-+Z

w —*w .

PROPOSITION 6.4. P—*B is the A-projective envelope of B.

PROOF. P/[P, P] ^ A 0 Ax. q.e.d.

We denote by PA the holomorph extension of P by A.

PROPOSITION 6.5. Let φ\ Γ —* PA he an epimorphism from a pro-
finite group Γ to PA such that ker φ is a pro-p-group. Then φ splits.

PROOF. Let N — φ~\p), then N is a pro-p-group by the assumption.
The fact that the epimorphism

Γ-+PA-+A

splits is well known, and so the Γ is isomorphic with holomorph extension
NA of N by A. Consequently N is regarded as an A-pro-p-group and
so the A-epimorphism N—>P is splits, this concludes proof. q.e.d.

PROPOSITION 6.6. Let ΓXA and Γ2A be the holomorph intensions of
A-pro-p-group Γ19 Γ2 respectively. In the following diagram the row
exact be exact.
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pA

F 2

We assume that

φ^r^a) = φz{ua) = α mod Γ2 ,

/or αiί ^eΓu u e P , α e i .

ίfeβrβ exists a morphism φ; PA—tΓ^A which makes the diagram
commutative:

PA

9/ I
/ \

ΓγA > Γ2A .

PROOF. Let the diagram

C >PA

i
be the pull back of <plf φ2. Since C —> PA satisfies the condition in Pro-
position 6.5, it splits.

Let PA —• C be its splitting morphism, then φ; PA —* C —> ΓXA satisfies
our requirement. q.e.d.

Let N be a A-normal subgroup of P containing p2 = [P, P\P™, and
put N2 = [P, iNΓ]iSΓ. Further let φ; P/P2 -> N/N2 be a A-morphism and
V(veN) be a A-invariant element of iSΓ/iSΓ2. We define an automorphism
f of PA/N2 by

f (») = xv ,

Ϋ(») = y,
f(a) = a φ(a) for α 6 P

where ϋ is residue class of α e P in P/P2. We easily see that ψ is well-
defined.

PROPOSITION 6.7. There exists an automorphism ψ of PA such that
it fixes N2 and induces f over PA/N2.

PROOF. Apply Proposition 6.6 to the diagram
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pA

PA • PA/N2 q.e.d.

PROPOSITION 6.8. The p-cohomological dimension of PA is 1; Cdp(PA) =
1 and consequently the p-Sylow subgroup (xep, P) of PA is a free pro-p-
group.

PROOF. G; ίree-pro-p-group <=* Cdp(G) = 1 (Tate [5]). q.e.d.

PROPOSITION 6.9. Let G = BA = Gal.(Qp/Qp), and let Ω be the group
of all p-th roots of unity, then

Where Gp = (B, xe*>) is the p-Sylow subgroup of G.

PROOF. Since the sequence

is exact, and

we get

Similarly from the fact,

Hl{Ω) s ker (Q/Z-^Q/Z) = Z/pZ

ill
Z/QZ1^ Z\±\l Z

we get

Hh(Q)*£Hhp(Ω) = Z/pZ . q.e.d.

PROPOSITION 6.10. N= ker. (P—+B) is generated as a normal subgroup
of Gp — <(P, xep} by an element π, that satisfies

π = w~pZ{χ-1)eί mod [P, P] .

(The notation Z{x~1)ei is explained below.) And as the A-groups
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N/[GP, N]N*> = Ω^ Λjm,; Tt, = (p, x - 1)4

and consequently we may assume that

y-'πy = πω .

PROOF. The first half is the consequence of Proposition 6.9 and the
latter half can be proved as in Proposition 3.9. q.e.d.

Here we shall give an account of the notation Z{x~l)ei in Proposition
6.10.

In general for any aeP we denote by aA the A-subgroup of P
generated by a. For any xeΛ we denote by a1 the any one of the
inverse images of arλ e aA/[aA, aA\. Especially if e is an idempotent con-
taining in the center of A, we can choose ae such that the A-epimorphism
aeA~+(aA/[aΛ, aA])e is essential where aeA is the A-subgroup of aA generated
by a\ so in the followings we shall always choose ae as above. Similarly
for any A-normal subgroup N of P the meaning of [p, N]Nm etc. may
be clear. Where SK is the "radical" of A, that is,

m = (p, e)Λ ,

ε = lim Σ (χ *'Λβ*'β - l)ef>g .

DEFINITION 6.3. Especially we put and fix

ZQ = Z°o, Z, = Z^9

Z2 = Z1'60'^ (p Φ 2) ,

and

Z, = Z*\ Z, = Zι-° (p = 2) ,

where e0, px are the unit elements (which are idempotents of A) of Ao =
AX-^Y-U Λ1 — Ax_UΫ_ω respectively. In the case of p = 2, we note that

PROPOSITION 6.11. Let Gp be the p-Sylow subgroup of Gal. (Qp/Qp).
The cup product

H'Gp(Z/pZ) A H'Gp(ZlpZ)-*mp(Z/pZ) s Z/pZ

is a non-degenerate skew symmetric form.

PROOF. Let L/Qp be the algebraic extension corresponding to Gp,
and Ω be the group of p-th roots of unity. By taking the Kummer-
character of Gp induced by the elements of L% we get
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H'Op(Ω) = L*/L*p

On the other hand,

= Ω (x) Z/pZ ~ Ω .

Hence we have the following commutative diagram.

H'Gp{Ω) Λ Hhp(Ω) -¥-+ Hp

ill - i
(L*IL*P) A (L*/L*p) > Ω

We can easily prove that the second row of the diagram agrees with
the Hubert norm residue symbol of Lx, and consequently it is non-dege-
nerate. Since Ω is trivial as Gp-module, this concludes the proof, q.e.d.

PROPOSITION 6.12. Let π be the same as in Proposition 6.10. Then
π is a regular element of the free pro-p-group Gp = (p, xep} in the sense
of Definition 4.1.

7. Successive approximation.

DEFINITION 7.1.

P i - P , Pr+l = [P, Pr]P?

Vr = Pr/Pr+1 ί T ^ 1 ,

arc - ( P , e ) ,
ε = lim Σ (x'*'deB'a - l)ef,g .

(f,9)

PROPOSITION 7.1. The commutator mapping

(a9 6) —*> [a, b] = aba~xb~x

and the mappings

a —> aε , mod [aA, aA]

a—>ap

induce the bilinear form

Dr,s\ Pr®Ps~+ Pr+s fθV Vf S ^ 1 ,

and the linear mapping

φ ε ; P r - + P r + i f o r r ^ l

and the mapping
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φP\ Vr -+ Pr+i for r ^ 1 .

Further these mappings commutes with the operation of A, and <pp

is linear except for the case of p — 2, r — 1.

PROOF. These are easily obtained by direct computations. q.e.d.

PROPOSITION 7.2. Except for the case of p = 2, r = 1, the A-homo-
morphism

is onto, and especially

Pi A pjmfa A Λ) θ ft θ ft ^h^

for p Φ 2.

PROOF. This can be proved in the same manner as in Proposition
4.4. q.e.d.

NOTE. In the followings we regard each pr as an additive group as
in Proposition 7.2.

In § 4 we have defined S1 (g) S2y S A S as follows

lim
Si Θ S2 = ^ SJUX ® SJU2 ,

S A S = S (g) S/(l + <τ)S <g) S ,

σ(α 0 6) = 6 (g) α .

For ί9 ^ 2, the definition oΐ S A S agrees with usual one but not for
p = 2. So we define S A S by

S AS = Im(S <g) S - ^ S (g) S) .

PROPOSITION 7.3. Lβί ^2(Pβ°) &β *Λβ subgroup of p9 generated by
{φ2(cc)\aepi}. Then

where i is the injection and

p\~e° A Pl~e° = pj" i o A pΓ °/2B(Pί" ° A p}"'°)

DEFINITION 7.2. Let Λί, ilίi be Λ-projective modules of finite type.
We call Mx the ω-dual of M if for any indecomposable component Aftg of A,

[ef,gM; Λftβ] = [ β ; . ^ ; ii; ι f] .
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We denote by Λf * the ω-dual of Λf. Clearly Λf * is uniquely determined
by Λf up to ^-isomorphism. Let πee^M (x)ilf*). We note that

eγ{M (x) Λf *) = Π ei(e/ gM (x) e* gM*) .
f,g

Let

π = lim

and let

be the decomposition of π. We call π an ω-regular element of Λf (x) Λf *
if each πf}g is ω-regular in the sense of Definition 5.2. Let

M <g> M = M (g) M*/SK(M g) Λf*) ,

M = M/SDΪM , and M* = M*/3KM* .

By Proposition 5.4 the ^-regularity of π depend only on the residue class
π of π in M® M, and so we call π an ft)-regular element of Λf ® Λf*
if e^M ® F ) is generated by TΓ over End^ (M).

Further if Λf = Λf * by the natural imbedding of Λf A Λf into Λf (x) Λf,
we can define the ω-regularity of the elements of Λf A Λf, also those of

Λf A M - M A M/m(M A M) .

Finally we note that the Λ-module

p[ = (P/[P, P ] ) i - - i (p * 2) ,

= (P/[A Pi)1"60 (P - 2)

is ω-dual with itself and

Pi A ft = A,i(Pί A PΊ) ,

and so we can say about the ω-regularity of the elements of Dltl(p[ A p[).

PROPOSITION 7.4. Let π be the same as in Proposition 6.10. // we
take suitable generators of AP, π is written in the form

π = wp[x, Z^w, Z,\π, (p Φ 2)

= w2[x, Zolπ, (p = 2)

and

Ki 6 A.i(Pl A pί) ,

where p[ is the one in Definition 7.2. Further π1 is an ω-regular element
of A , I ( P Ί A pi) W the sense of Definition 7.2.
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PROOF. We prove only in the case of p = 2. By Proposition 6.12,
we conclude that π is of the form

π = w2[x, Z0][x, w]ι[w, ZQ]jπι ,

and

tfi e Dul(p[ A vΊ) = 2>Ί A 2>ί

is ω-regular, where ί, j = 0 or 1.
We put

Z' = Zw* , a?' = αw'" .

Then π becomes of the form

π = w»[Z;, x'fa

and

But xf, y, Z', w satisfy the same relations as x9 y, Z, w in AP and generate
AP, so this completes the proof. q.e.d.

DEFINITION 7.3. Let π be an element of pa. We call π a standard
ω-regular element of p if it satifies the following conditions.

1) x't^πx1''* = π, y~γπy — π.
2) If we put

π = wp[x, Z&w, Z0]πλ (p Φ 2)

= w2[x, Z0]π {p = 2)

then the residue class π1 of π1 in p2 is an ω-regular element of

A , I ( P Ί A ί>ί) = Pί A p[

in the sense of Definition 7.2.

DEFINITION 7.4. We denote by Wr; r ^ 2 the group of all automor-
phisms of A P those satisfy

ίτ(α) = α mod ί9r for a e

PROPOSITION 7.5. Leέ σ e TFr; r ^ 2. Γfee^, έfcβ mapping δσ; p->p
defined by

δ(a) = σ(ά). α"1

induces the A-morphism
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δ α β ) ; P s - > P s + r - i f o r s ^ l .

Further δ{

σ

8) s ^1 is determined only by the residue class σ of σ in Wr =
Wr/Wr+1.

PROPOSITION 7.6. Let

Uσ — U\Js) ΛJ XZ pr

Then δ{0) e pe

r

ι and it is determined only by the residue class σ of σ in

Wr=WJWr+1.

PROPOSITION 7.7. Let ψ; Wr —> Horn Λ (plf pr) 0 pV defined by

ψ(σ) = δϊ] 0 δ{

δ

0) for σeWr.

Then ψ is an isomorphism.

PROOF. Proposition 7.5 and Proposition 7.6 can be obtained by direct
computations. Proposition 7.7 is the consequence of Proposition 6.6. q.e.d.

DEFINITION 7.4. For an arbitrary a e plf we define a Λ-homomorphism
tpai Pr '—*" Pr+l't ^ = ^ b y

φa(β) = Dltr(a®β)epr+ι .

PROPOSITION 7.8. Let σ eWr and i the natural imbedding of pγ A Pi
into Pi ® px. Then the following diagram is commutative.

Pi A Pi — ^ Pi ® P

PROOF. By direct computations.

PROPOSITION 7.9. Let

π = wp[x, Zx\[w, Z,\πγ (p Φ 2)

- w\x, Z,]π, (p - 2)

by standard ω-regular element of p, then

DEFINITION 7.5. Let
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Then <pp, φε, φay {a e pj , are regarded as the operators on the graded
module ^5. Let Γ be the operator ring generated by φp, φe and {φa},
aep1 over Z/pZ. Let M be the right ideal of Γ generated by

Ψv - <Pϊo> <P«> <Pzlf Φe, {φa}a e S" e°" e i (p Φ 2 ) ,

ψi + <pτ, <pε, <PzQ, {<pa}a e v\-e° (p = 2) .

PROPOSITION 7.10. Leέ π be a standard ω-regular element of p.

Then for any a e M?β A e$r+u there exists σeWr such that

3{

σ

2\π) = a , for r ^ 2 .

PROOF. By Propositions 7.7, 7.8, 7.9, and the regularity of π. q.e.d.

PROPOSITION 7.11.

for p Φ 2 ,

+ φt.ZQ) - Σ β0Pr /or p = 2 .

PROOF.

CASE, p Φ 2. Let 5β' = Σr^i Pr T h e n the operation of Γ on ^ can
be extended to 5β\ Clearly

Therefore it is sufficient to prove that φvpx c M^3'. If a 6 (1 — e0 — eι)p1 +
Z/pZ-(ϊd, ZO, we have

For ZoGP!

9PZ 0 = (φ, - φzJZo €

CASE, p = 2. Since Γ = M + Z/2Z[φ2], it is sufficient to prove that

φM° C M5β + Z/2Z(φtZQ, φ2φεw) .

By Proposition 7.3, we get

+ Z/zZ- (φ2W, <p2Z0, ψΰZ0, φεW, φ£ZQ) .

On the other hand for a,bep1
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[α, b2] = aVa-'b-2

= [α,

= [α,

- [[a, b], b]b[a, b]*b~l

This shows that for a, β epί

ψaψβ =

Similarly, if we note that

φεa = [ίu, α] ep2 for α e p ? ,

we get

φεφ2a = φ2φεcc + ψaψ^ for a e eop1 .

Using these formulae, we get

ψiψaβ = ψaψzβ + φ\a 6 ikfφ for a, βe(l - eo)pί ,

and

φ2φεZQ = φεφ2Z0 + φzoφεZQ 6 M?β . q.e.d.

THEOREM I. Let π, πr be two standard ω-regular elements of P such
that

π = πf mod p3 .

Then there exists an automorphism σ of AP that satisfies the following
conditions.

1) σ(x1~ep) = x1"'*

<y(v) = y

σ(a) — a mod p2 for vα 6 AP .

2) IfpΦ2

πσ = π' .

πσ = π' [w, a?]2// Z5V /or some μ,veZ2.

PROOF. Since AP is generated by a?, y, z, w, σ e ΫF2 be determined by
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σ{x), σ(z), σ(w). And so we can define the topology on W2 such that W2

becomes compact and totally disconnected and it operates continuously
on AP. Consequently the orbit W2 π of π is closed in P. Therefore, it
is sufficient to prove that in the case p Φ 2, if π = π' mod pr+1 r ^ 2, there
exists σ of Wr such that πσ = πf mod pr+2; and in the case p = 2, if π =
TΓ' mod p r + 1 r ^ 2, there exists σ of FPr such that

πσ = π'[w, x\2r~lμZf'v mod pr+2 , μ, v = 0 or 1 .

But these are the immediate consequences of Propositions 7.10 and 7.11.
q.e.d.

Theorem I shows that for a standard ω-regular element π of P, the
structure of the residue group AP/((π} is determined essentially by the
residue class π of π in p2 for p Φ 2. But in the case of p = 2, the same
result as the above is not clear and so we shall discuss this case in the
folio wings.

Let S be the normal subgroup of AP generated by x9 y, z and w2.

PROPOSITION 7.12. Let π be the same as in Proposition 6.10. Then
the normal subgroup ((TΓ)) = ker (p —+ B) contains the generator πf such
that if we take the suitable generator of AP πf is written in the form

πr = w2[w, xf mod [S, S] A P .

PROOF. Let S be the normal subgroup of AB = G = Gal. (QJQ2)
generated by x, y, z and w2 and let 0 be the primitive root of unity of
degree 4. Then k = Qa(0) is the field corresponding to S.

Let k[ W] = Q2[θ, W] be the Q2-algebra generated by θ, W with relations

ΘW + WΘ=W2 + 1 = 0 .

Then Q2[θ, W] is the quaternion field over Q2, and has the invariant 1/2.
Let U be the subgroup of £[17]* generated by kx and W, then U is

isomorphic with a dense subgroup of G/]S, S] by the extended norm
residue mapping <p; U—+G/[S,S]. By changing the generator of G if
necessary, we may assume that

in G = G/[S, §].
Since

W2[W, 1 + θf
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= -(τΐτ)"-
We get

w2[w, x]2 = 1 mod [S, S] .

This concludes the proof. q.e.d.

PROPOSITION 7.13. Let π be the same as in Proposition 6.10. Then
there exists an automorphism σ of AP such that

πσ — w2[w, x]

where Z2 = Z1'*0 is defined in Definition 6.3.

PROOF. By Proposition 7.12, we get

π° - w2[w, xY+>v'Zr[Z0, x]π[, π[ e [Zi, Zf] .

We assume that vf = 1 mod 2.
Let τ be the automorphism defined by

τ(x) = x[Z0, w]Z0 , τ(y) = y

τ(w) = wZl , r(Z) = Z .

Then

πστ = -M; 2 [^, X]2[Z0, x]π[ moάp4 .

By Theorem I, there exists 0\ of Ws such that

3^ e W3 πστσi = w2[w, x]*+irZ?[Z09 x]πx , πx e [Z2̂ , Zί] . q.e.d.

DEFINITION 7.6. In the followings we assume that any standard to-
regular element satisfies

π = w2[^, x]2[Z0, x]πJ mod p4 , πx e [Zf, Zi] .

PROPOSITION 7.14. Let π be a standard co-regular element of p, and
r ^ 2, έftew there exists σ of Wr such that

πσ = πZf+1 mod pr+3 .

PROOF. It is sufficient to define σ such as

σ(w) = ^ ^ § r ,

σ(x) = α Zf"1 ,

and

σ(z) = Z . q.e.d.
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PROPOSITION 7.15. Let π be a standard ω-regular element of P then
there exists σ of W2 such that

π° = w*[Wf x]2+i"[Z0, x]π, , π, e [Z(, Z%\ for some μeZ'2.

DEFINITION 7.7. Let N be the normal subgroup of AP generated by
w2, [Zo, x], Zi Λ p2. Then, we define the groups Nr as follows.

Nr = NJNr+ί, N, = N, Nr+1 = [pf Nr]N~, r > 1 .

Then we can define the operations φif φε, {φa}a ep, on 9ί = φ Σr^i ^ r

Let Γ be the ring generated by <p2, φε, {φa}a e p, and M the right ideal
of Γ generated by φ2 + <pΰ, φε, {φi}a e ZΛ.

PROPOSITION 7.16. Let π be an element of P such that

π = w2[w, x]2+iμ[Z0, x]π, mod N Λ p3; π, e [πf, πf] .

Then there exists σ of W2 such that

π° = w\w, x]2+4μ[Z0, x]π, .

PROOF.

1) eQyi A Σr^p. NrcMyi + Z/2Z[φ2] faw, φεZ0).
Because, it is sufficient to show that

This follows from that

φ2φaβ =

This concludes the proof.

2) There exist two elements σ and τ of Wr, r ^ 2, such that

πσ = π-w2r,

and

π 2 = π [Zo, x]2r~ι mod N A Pr+2.

For, it holds that

σ(x) = x, σ(Z) = Z, σ(w) = w1^'1,

τ{Z) = x[Z0, xY~\ τ{Z) = Z J ^ " 1 ,

and

τ{w) = w .

3) By Proposition 7.10, our assertion follows immediately from 1)
and 2). q.e.d.
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THEOREM II (p = 2). Let π, πf be any standard ω-regular elements
in the sense of Definition 7.6.

// π = πf mod pz then there exist σ of W2 and μ of Z2 such that

PROOF. By Proposition 7.15, it is sufficient to prove in the case of

π = w2[w, x]2[Z0, x]π,,

π' = w2[w, x]2+i«[Z0, x]π[ ,

π19 π[ G [Zi, Zf], πx = π[ mod p3 .

Since

π2 = [w, x]4 mod N A pd ,

we get

πi+2μ _ w^Wf xγ+*μ[Z0f χ]π, = π' mod N Λ pz.

By Proposition 7.16 there exists σ of W2 such that

By Theorems I and II, in order to determine the structure of the
total Galois group G = AB = Gal.(Qp/Qp), it is sufficient to determine the
residue class π1 of πγ in

H = [Zί, ^]/[Zί, [ZίZί]] - (Zi/[Zi; Zi]) A (ZiUZί, Zi]) .

In the case of p Φ 2, the following fact is known by Koch
π 1 is of the form ex{a A β) where

This is proved by investigating the Hubert Norm residue simbol on the
local fields.
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