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Abstract. An analytic group G is called (CA) if the group of inner
automorphisms of G is closed in the Lie group of all (bicontinuous) automor-
phisms of G. It has been previously proved by this author that each non-
(CA) analytic group G can be densely immersed in a (CA) analytic group H,
such that the center of G is closed in H. We now show that there is no
(CA) analytic group “smaller” than H into which G can be densely immersed,
but H, however, is not the “smallest” such (CA) analytic group. Further-
more, we will isolate those properties of H which determine it uniquely up to
dimension, diffeomorphism, diffeomorphism together with local isomorphism,
and finally isomorphism.

1. Introduction. By an analytic group and an analytic subgroup of
a Lie group, we mean a connected Lie group and a connected Lie sub-
group, respectively. If G and H are Lie groups and @ is a one-to-one
(continuous) homomorphism from G into H, ¢ will be called an immersion.
@ will be called closed or dense, as ¢(G) is closed or dense in H. G, and
Z(G@) will denote the identity component group and center of G, respec-
tively.

If G is an analytic group, A(G) will denote the Lie group of all
(bicontinuous) automorphisms of G, topologized with the generalized
compact-open topology. G will be called (CA) if I(G), the Lie group of
all inner automorphisms of @G, is closed in A(G). It is well known that
G is (CA) if and only if its universal covering group is (CA).

If G is a normal analytic subgroup of an analytic group H, then
each element h of H induces an automorphism of G, namely, g — hgh™.
We will denote this homomorphism from H into A(G) by pgx. Ix(h) will
denote the inner automorphism of H determined by h € H. More generally,
if A is a subset of H, I,(4) will denote the set of all inner automor-
phisms of H determined by elements of A. Iy(H) will be written as
I(H), and the mapping h+— I4(h) of H onto I(H) will be denoted by I;.

If N is an analytic group and H is an analytic subgroup of A(N),
then N@® H will denote the semidirect product of N and H. On the
other hand, if G is an analytic group containing a closed normal analytic
subgroup N and a closed analytic subgroup H, such that G = NH,
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NN H = {e¢}, and such that the restriction of p,,; to H is one-to-one, we
will frequently identify G with N@® pye(H) and H with oy.(H), that is,
we may write G = NQ® H.

In Zerling [5] we proved the following theorem.

MAIN STRUCTURE THEOREM. Let G be a non-(CA) analytic group.
Then there exist a (CA) analytic group M, a toral group T in AM),
and a dense vector subgroup V of T, such that:

(i) H=MQ@ T is a (CA) analytic group.

(ii) @G 1s isomorphic to the dense analytic subgroup M QS V of H.

(iii) Z(G) s contained in M.

(iv) Z(G) = Z(H), and n(Z(H)) is finite, where © 1is the natural
projection of H omto T. Moreover, if G/Z(G) is homeomorphic to
Euclidean space, then Z(G) = Z(H).

(v) Each automorphism o if G can be extended to an automorphism
e(o) of H, such that e: A(G)— A(H) s a closed immersion.

In Section 2 we show that there is no (CA) analytic group “smaller” than
H into which G can be densely immersed, but H, however, is not the
“smallest” such (CA) analytic group. In Section 3 we will isolate those
properties of H which determine it uniquely up to dimension, diffeomor-
phism, diffeomorphism together with local isomorphism, and finally
isomorphism.

2.

LEMMA 2.1. Maintaining the notation in the Main Structure Theo-
rem, we have that Z(G) is of finite index in Z(H).

PrOOF. Simple calculation reveals that Z(M® T') = {(m, 7): T = I,(m™),
7(m) = m for all T€T}. Now let 7, 7, ---, 7, be the & distinct elements
in w(Z(H)). Then there exist k¥ distinct elements m,, m,, ++-, m, in M,
such that 7, = I,(m;"), and (m, 7,)e Z(H). Let (m,7)eZ(H). Then
T = I,(m™). Hence, m = zm, zecZ(M). Therefore, z=m'm and
T(2) = T(mi'm) = T(m)-T(m) = mi'm =z for all TeT. So z=(z¢€)¢€
Z(G). Hence each (m,7)e Z(H) can be written as (m, 7) = (m,;, 7,)-2,
2€ Z(@). Letting A={m;7):1=1,2, ---,k} we have Z(H) = Z(G)- A,
that is, Z(G) is of finite index in Z(H).

THEOREM 2.1. Let G and H represent the groups in the Main
Structure Theorem and let +:G— H be the given demse tmmersion.
Suppose that L is a (CA) analytic group and a: G — L is an immersion
Sfor which there exists a dense immersion ¢: L — H, such that 4 = poa.
Then H s isomorphic to L.
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Proor. Since L is (CA), H = ¢(L)-Z(H) from van Est [4, Theorem
2.2.1]. But Z(H) = ¥(Z(G))-A, where A is a finite set, from Lemma 2.1.
Therefore, H = ¢(L)-A. Since ¢(L) is of finite index in H, H = ¢(L),
that is, H is isomorphic to L.

THEOREM 2.2. Let us maintain the motation of the Main Structure
Theorem and let +:G— H be the given dense immersion. Then there
exist a (CA) analytic group P and a dense immersion B:G— P for
which there is mo homomorphism ¢:. H— P, such that B = @oqp.

PrOOF. The construction of our (CA) analytic group P will be based
on the proof of the proposition in Goto [1]. Let 7" = pgu(T). Since
(m, v)t™' = (z(m), v) for me M, ve V, e T, we see that pyz is 1-1 on
T. Let S=GQ® T'. We first show that S is a (CA) group.

Simple calculation reveals that Z(GQ T") ={(g, '):7' = I(¢g7), "(9) = ¢
for all z” ¢ T"}. However, if I(¢g7') e T, then I, (¢~') commutes with all
elements of T". Since 1" keeps Z(G) elementwise fixed, we have 7"(g) = g
for all z”7e¢T' by Lemma 4 of Goto [1]. Therefore Z(S) = {(g, 7'):
7' = Iy(g7™")}.

Since I,(V) is contained in 7", we see that {(v, I;(v™%)): ve V}c Z(S).
Therefore, I (v) = I;(I;(v)) € I(T") for all ve V. Thus, I(V)c I(T") and
80 I(S) = I;(M)-I(V)-I(T") = I{(M)-Is(T"). Hence S will be (CA) if we
can show that Iy(M) is closed in I(S).

To this end let {I;(m,)} converge to ¢ in A(S), where m, is in M for
all n. Since Iy(m,)G) = G for all n, gz € A(G). Since {I;(m,)} converges
to ols in A(G), and since I (M) is closed in A(G) from the proof of
Theorem 2.1 in Zerling [5], we have o|; = I (%) for some m € M.

We now want to show that ¢ = Iy(). Let ve Vand let v' = I;(v)eS.
Then {I;(m,)(v")} converges to ¢(v') in S. But Iy(m,) (') = (m,v'(m;"), v') =
(m,om;w™, v'), and {m,vm;'} converges in G to I(m)(v). Hence, {Is(m,)(v")}
converges to (mvm v v') = (mv'(m™Y), v') = Ig(m)(v'). Therefore, o(v') =
I(m)(v") and so o(z') = Iy(m)(7’) for all ' € T". Thus, ¢ = Iy(m) and Iy(M)
is closed in A(S). This proves that S is (CA).

By Goto [3; p. 163] we can find some v, € V’, such that v; generates
a dense subgroup of T'. Let Iy (v,) = v;. Let D denote the subgroup of
S generated by (v,, v;™!). Since {v;} is free and discrete in V, D will be
a free discrete central subgroup of S.

Let P=(G® T")/D. Then the homomorphism B:G— P given by
g+ (g, ¢)D is a proper dense immersion. Now suppose that there exists
a homomorphism ¢: H— P, such that 8 = po+. Since H=M® T and
T = T, clearly dim H < dim P. We will now show that o(H) is closed
in P, which leads to a contradiction.
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Since @(H) = ¢(M)-p(T), we need only show that o(M) is closed.
However, (M) = B(M) = {(m, e)D: m e M}, and (M) is closed in P if
and only if 6 Y(8(M)) is closed in S, where 0:S— P is the canonical
homomorphism. But 6 (8(M)) = MD is closed in the topological space
M x V x T, since D is closed in V x T". Hence ¢(M) is closed in P
and so @(H) is a proper closed subgroup of P. This completes the proof
of our theorem.

3.

LEMMA 3.1. Let L be an analytic group. Let M and H be a closed
normal analytic subgroup and a closed abelian analytic subgroup of L,
respectively, such that L = MH, M N H = {¢}. Let G be a dense analytic
subgroup of L and let S be a subset of H. Then 0, (S) is closed in
A(M) if and only if pg(S) is closed in A(G).

PrOOF. Let 4 and ¢ denote the respective restrictions of 0,, and
pez to H. For each « in y(H) let Ea denote the automorphism of L
defined by (Ea)(m, h) = a(m)-h. Then a+— Ea is a closed immersion of
V(H) into A(L).

Let I and G be the universal covering groups of L and G, respec-
tively, and let 7: L — L be the natural projection. For ac+(H) let
(Ea)’ denote the unique automorphism of L, such that 7o (Ea) = (Ea)ox.
Since G is closed and normal in I, each (Ea) keeps G invariant. There-
fore, each Ea keeps G invariant.

Hence a+— (Ea)|; is a closed immersion of 4(H) into A(G). Since
o(h) = (B(y(h)) g, ¥(S) is closed in A(M) <= 4(S) is closed in J(H) <
(E((S))) e is closed in A(G) = ¢(S) is closed in A(G).

LEMMA 3.2. Let G be o dense analytic subgroup of a (CA) analytic
group L. Then 04(L) = I(G).

PrROOF. Suppose that o, (L) is not closed in A(G). We may then
appeal to [2]: Let N be a maximal analytic subgroup of 04.,(L), which
contains the commutator subgroup of o, (L) and is closed in A(G). Then
there is a closed vector subgroup V’ of p4.(L) such that o, (L) = N-V’,
NN V' ={e}, and po (L) = N- V', where V' is toral group. Hence, each
one dimensional vector subgroup of V’ is not closed in A(G). Let V' =
Ve Vi, +++ Vi be a direct product decomposition of V’ into one dimen-
sional subgroups: pg(L) = N-V,-V,_, --- V..

For pgr: L— 0o (L) let M and H,, 1 <1 <q, denote the identity
component groups of the complete inverse images of N and V), respec-
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tively. M is closed and normal in L, and each H, is closed in L. More-
over, L=M-H,-H,_, --+- H, where M N H, is contained in Z(L) for each
2. The restriction of p,, to H; is a homomorphism of H, onto V; having
kernel Z(L)N H,. Therefore, Z(L)N H, is connected, and so it is con-
tained in M. Also

H, = (Z(L)NH)-V,;, ZIL)NHNV,=ZL)NV, = {e} ,

where V, is a one dimensional closed vector subgroup of H,, such that
(V) = Vi. Therefore,

L=MZLNH)-V,--- (ZLNH)V,=M-V-V_,--- V..
If os(mvg ---v,) =e, then o4 (m): 0 (v,) -+ 0e(v,) = €. Therefore

Per(m) = P (Vy) = +++ = P (v,) = €.

Since Z(L)N V, = {¢}, we have v, = -+ = v, =e. Hence, Z(L) is con-
tained in M. In the same way we see that each element z in L can be
written uniquely in the form z = mv,v,_,+-- v, meM, v,e V,. There-
fore, L is homeomorphic to M x V, X V,_, X -+« X V..

Let M\,=MV,-V,_,--- V,. M, is closed and normal in L, and L =
M,V,, M,NV, = {e}. Let +: V,— A(M,) be given by v,(v,)(m,) = v,m,v;".
Since Z(L) is contained in M,, and since V| is abelian, we see that qr,
is an immersion. From Lemma 3.1 we see that 4 (V,) is not closed in
A(M,), since p4(V,) = V. is not closed in A(G). Consider M, ® v¥,(V,),
where +r(V,) is the closure of (V) in A(M,). L is properly dense in
M,® +,(V,). Since Z(L) is contained in M, and since L is (CA), we
have a contradiction by van Est [4, Theorem 2.2.1]. Hence p,(L) = I(G).

COROLLARY. Let us maintain the notation of the Main Structure

Theorem and let L be a (CA) analytic group containing G as a dense
analytic subgroup. Then dim L = dim H + dim Z(L) — dim Z(G) = dim H.

ProOOF. Since H/Z(H) = I(G) = L/Z(L), and dim Z(H) = dim Z(G) £
dim Z(L), we have our result.

THEOREM 3.1. Let us main the notation of the Main Structure
Theorem and let L be an analytic group with the following properties,
which we know to be exhibited by H.

(i) L s (CA).

(ii) There is a dense immersion f: G — L.

(iii) Z(AQ®)) 1s of finite index in Z(L).

Then L is diffeomorphic to H, and Z(f(G)) is closed im L.

PrOOF. Since G is non-(CA) we can appeal to Goto [2]: Let N be
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a maximal analytic subgroup of I(G), which contains the commutator
subgroup of I(G) and is closed in A(G). Then there is a closed vector
subgroup V' of I(G), such that I(G) = N-V', NN V' = {e}, and I(G) =
N-V’, where V' is a toral group. Moreover, NN V' is finite, and the
space of I(G) is diffeomorphic to the product space N x V’. In the proof
of the Main Structure Theorem in Zerling [5], H is constructed in such
a way that 0,z(M) = N, 0ea(V) =V, and pa(T) = T' = V'. Moreover,
Ogz is 1-1 on T.

Therefore, since p;:(N) = f(M)-Z(L), and Z(L) = Z(G)-F, where F
is a finite set, we have p;i(N) = f(M)-F because Z(G) is contained in M
from the Main Structure Theorem. Hence f(M) is the identity component
group of pzi(N), and so it is closed in L. Thus, Z(f(@)) is closed in L.

Since py.(L) = I(G) from Lemma 3.2, there is a unique closed immer-
sion ¢&": I(G) — A(L) such that the following diagram commutes:

Hﬁi]@LA(L)

q‘ﬁj; L} lﬁaz,/{

Because f(M) is closed in L, and f(G) and L have the same commuta-
tor subgroup, there exists a maximal analytic subgroup J of f(G), which
contains the commutator subgroup of f(@) and is closed in L, so that
from Goto [2] we have L = J-T”, where T” is a toral group, and
JNT" is finite. Moreover, the space of L is diffeomorphic to the space
of Jx T"”. We will show that J may be taken to be f(M).

There exists such a group J containing f(M); assume that this con-
tainment is proper. Since f(M) is the identity component group of p;i(N),
we see that 0..(J) properly contains N. Hence, 0. (J) is not closed in
A(G) by the maximality of N. N is also the maximal analytic subgroup
of 0s.(J), which contains the commutator of p4.(J) and is closed in A(G).

Following Goto [2] there exists a closed vector subgroup W’ of 04.(J)
so that o (J) = N-W', NN W’ = {e}, and Cl, W’ is a toral group. Let
W' = W, .- Wi be a direct product decomposition of W’ into one dimen-
sional subgroups:

Ps(J) = N-W., W' _, -+ W..

Since ker pq.l; = J N Z(L), we may repeat the technique of Lemma
3.2 in order to construct closed one dimensional vector subgroups
W, Wy ---,W,of J, such that J = f(M)- W,-W,_, --- W,, where p;(W,) =
W; and JN Z(L) is contained in f(M). Moreover, each element z €J can
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be written uniquely in the form z = f(m)-w,:--w,, meM, w,eW..
Therefore, J is homeomorphic to f(M) x W, X ++- x W,. In particular
WeWo_,--+ W, is closed in J, and so it is closed in L. We will now
show that W = W, ... W, is actually a closed vector subgroup of L.

We have L =J.-T" = (f(M)-W)-T" = (f(M)-T")-W where f(M)-T"
is a closed analytic subgroup of L. Since 7" N .J is finite and contained
in f(G), it is contained in f(M). Hence, if (f(M)-T")N W # {e}, then
w = f(m)-7"”, and so " = f(m)™*-w. Hence "’ € T” N J, which is contained
in f(M). By the uniqueness of the decomposition in J, we have w = e.
So L =(fAM)-T")-W, (AM)-T")N W = {e¢}. Moreover, W N Z(L) = {e},
since J N Z(L) is contained in f(M), and W N f(M) = {e}.

Let Y, = fAM)-T" - W,--- W,. Y,is closed and normal in L, since
f(M)-W,+-- W, is closed in J, and L =Y, -W,, Y, N W, = {e}. Let o
W,— A(Y,) be given by o,(w,)(¥%,) = wy,wi'. Since W N Z(L) = {e} and
since W, is abelian, we see that ¢, is an immersion.

Since W is not closed in I(G), &'(W.) = I,(W,) is not closed in A(L).
Hence, ¢,(W,) is not closed in A(Y,) by Lemma 3.1. Consider Y, ® ¢,(W,).
Let w,e W, and w;e W;, 2= j < q. Then I (p,(w,)(w;) = I(www") =
€' (og(ww;wi)) = I(w;), since W’ is abelian. Therefore, (@,(w,)(w;)) - w;' €
Z(L). Hence, o(w;)-w;* is in Z(L) N Y, for all o€ p(W)).

Since Z(L) N Y, is a closed central subgroup of Y,, and each element
of (W, keeps Z(L)N Y, elementwise fixed, we see by Lemma 2.2 of
Zerling [5] that o(w;) = w; for each o€ (W, and each w; in W;, 2 <
j £ q; in particular, ww; = w;w,.

Since L = f(M)-T"W,q +++ Wy for each permutation 7 on {1, 2,
.-+, q}, we can show that w,w; = w;w, for all w,e W,, w; e W;, 1 <4, j=q.
Hence W= W, --- W, is a closed vector subgroup of L, which is isomor-
phic to W’ under poy,. Hence, L = (f(M)-T")® W.

Let ¢: W— A(f(M)-T") be given by p(w)(y) = wyw™. ¢ is an im-
mersion. Since W’ is not closed in I(G), we see as before that o(W) is
not closed in A(f(M)-T”). In fact, each one parameter subgroup of
@(W) is not closed in A(f(M)-T"); therefore, (W) is a toral group.

Next let 2e€ Z(L). Then z = 2"-b, 2’ € Z(G), be F. Therefore, z =
2 -fm)-"w, f(m)ef(M), t"eT”, we W. But 2'f(m) = f(m,) for some
m,eM. So z=f(m)-t"-w. Since F is finite, the projection of Z(L)
into W is finite, and, therefore, trivial. So w = e and we have that Z(L)
is contained in f(M)-T".

Therefore, L is properly dense in L' = (f(M)-T"") ® @(W), and Z(L)
is closed in L’. This contradicts the fact that L is (CA) by van Est [4;
Theorem 2.2.1]. Hence J = f(M) and so L = f(M)-T", and IM)NT" is
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finite. Therefore, the space of L is diffeomorphic to the space of
(M) x T" by Goto [2]. However, dimI(G) = dim H — dim Z(H) =
dimH—dimZ(G)=dimM+dimT —dimZ(G), and dimI(G)=dimL —dimZ(L)=
dim L — dim Z(G) = dim f{iM) + dim T” —dim Z(G). Thus, dim T'=dim 7",
and H is then diffeomorphic to L.

REMARK. We have actually proved more than what was stated in
Theorem 3,1. If Z(f(G)) is of countably infinite index in Z(L), then f(M)
is still closed in L (see the proof of Theorem 3.4) and we still have
L=((fM)-T")® W. To show that W = {¢}, however, requires that
“countably infinite” be replaced by “finite”.

If the index of Z(f(G)) in Z(L) is not at most countably infinite,
then the dimension of L may actually exceed the dimension of H, as is
seen in the construction of P in Theorem 2.2.

THEOREM 3.2. Let us maintain the hypothesis and mnotation of
Theorem 3.1, and let Z(G) be compact. Then L s also locally tsomorphic
with H.

PROOF. 0;.: L— I(G) is now a closed mapping. Therefore, f(V) is
a toral group, since each one parameter subgroup of f(V) is not closed
in L because each one parameter subgroup of 0,.(f(V)) = V' is not closed
in I(G). Hence, L = f(M)-f(V). Let T, denote the identity component
group of f(M) N f(V). Then there is a toral subgroup T, of f{V) so that
fVy=T,-T,, T.NT,={e}. Therefore, L =f(M)-T, and f(M)NT, is
finite. Now 7" = pgu(V) = 06(AV)) = 061(T,+ T:) = 06u(T1)+ 0c2(Ts). But
0ez(T,) is contained in the finite group NN I'. Therefore p;.(T,) = {e}
and so 7" = py(T,). Since dim Z(L) = dim Z(G), we see that dim T, =
dim 7". Hence T,N Z(L) must be discrete and, therefore, finite.

Since f(M)N T, is finite, we can find neighborhoods A4 of ¢ in f(M)
and B of ¢ in T, so that AN B = {¢} and U = AB is open in L. More-
over, each w e U can be written uniquely as v = a-b, acd, beB. U
can be assumed symmetric and since T, N Z(L) is finite, U can be selected
so that U*N T, N Z(L) = {e}.

Since oy is 1-1 on T, for f(m)e A and be B we can define B: U— H
as follows:

B(f(m), b) = (y(m), 0G1(06(D))) -
Hence L is diffeomorphic and locally isomorphic with H.

THEOREM 38.3. Let wus maintain the hypothesis and motation of
Theorem 3.1 and let G have trivial center and be homeomorphic to
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Euclidean space. If L possesses the property (possessed by H) that Z(L)
18 trivial, then H = L.

Proor. H = I(G) = L from Lemma 3.2.

THEOREM 3.4. Let us maintain the hypothesis and mnotation of
Theorem 3.1, except let Z(f(@)) be of countably infinite index in Z(L).
Then dim L = dim H and Z(f(@)) s closed in L.

Proor. Let @ denote the identity component group of o;:(N). Then
since Z(f(G)) is of countably infinite index in Z(L), and f(M) contains
Z(f(®@)), we see that Q@ = f(M)-C, where C is a countable set. By going
to the universal covering group of @, where analytic normal subgroups
are closed, we see that @ = f(M). Hence f(M) and, therefore, Z(f(G))
are closed in L. Since Z(L) is now a countable union of closed subsets,
we see that dim Z(L) = dim Z(G). Thus, dim L, = dim H by the corollary
to Lemma 3.2.
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