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Introduction. In [7] Stein has considered one-parameter semigroups
of operators {T'%},., defined simultaneously on all spaces L?(G), 1 £ p =< <»,
for a Lie group G, which satisfy the following properties:

@) T AL = 1S

(b) T'*is a self-adjoint operator on L*G).

(¢) Tif=0 for f=0.

(d T1=1.

Leading examples of such a semigroup are the heat diffusion semi-
group and the Poisson semigroup. Our purpose is to develop the analogue
of results in classical harmonic analysis in the context of these semi-
groups.

In Section 2, we state the known facts about these semigroups,
which are due to [2], [3], [5] and [7], and we prove the convergence
theorems by using these facts.

In Section 3, we shall obtain results analogous to the classical prop-
erties of harmonic functions and subharmonic functions. The main result
in this section is the representation theorem for harmonic functions.
The basic tool which is used there is the maximum (minimum) principle
for the heat equation and the Laplace equation on Lie groups.

In Section 4, we study the H? space theory in a noncompact Lie
group, analogous to classical one, which has been developed in Coifman
and Weiss [1] for the case of a compact Lie group. In this section, to
obtain an extension of the theorem of F. and M. Riesz, we apply the
idea of a theorem concerning nontangential boundedness.

I wish to thank Dr. Igari, J. Tateoka and K. Mikami for helpful
conversations.

1. Notations. In this section we fix notations which will be used
in Sections 2-4. If S is a topological space, C,(S) denotes the set of all
bounded continuous real valued functions on S. The set of all f in
C,(S) which vanish at infinity is denoted by C,(S). The set of all f in
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C,(S) whose support is compact is denoted by C.(S). If S is a differ-
entiable manifold, the set of all real valued m-times continuous differ-
entiable functions on S is denoted by C™(S). C=(S) denotes the space
of real valued indefinitely differentiable functions in S. The set of func-
tions f in C=(S) of compact support is denoted by CZ(S). If S is a
locally compact Hausdorff space, M(S) denotes the set of all real valued,
bounded, regular Borel measures on S. We write the total variation
measure and the total variation norm of g in M(S) by |g| and ||l
respectively. If G is a locally compact group and dx is a right invariant
Haar measure on G, then if 1 < p < «, L*?(G) denotes the set of all
real valued Borel functions f on G for which the norm

1£1 = (] 1@ pdz)”

is finite. L=(G) is the space of all essentially bounded real valued Borel
functions on G, normed by ||f||.. = ess.sup |f(x)|. If E is a measurable
subset of G, we write

\B| = Sde .

Let G be a connected Lie group with dimension n. By & we denote its
Lie algebra. A basis {X|, ---, X,} in & defines a Riemannian structure

on G:

0.(X,, Y)=Sab, if X=XaX, YV=30bX.
This defines a Riemannian metric d(z, ¥) on G by
d(a, ) = inf | gu(t), 1(®)dt
T

where the infimum is taken over all C!-curve 7:[0,1]— G such that
v(0) =z, Y(1) =y and (¢, is the element of the tangent space at 7({,)

defined by
tof — &
V@) = 7 tf (V@) le=ty -

Then d(xz, yz) = d(x, y) for all z, y, 2z in G,
diz, y) < d(z, 2) + d(z, ¥) , x, Y, 2 in G.
Let d(z) = d(x, ¢): then we have
d(xy) = d(x) + d(y) and d(z) = d(z™)
¢ means the identity of G throughout this paper.
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2. The convergence theorems. Let G be an (unimodular) connected
Lie group with dimension n. By ® we denote its Lie algebra as the
space of differential operators of the first order acting on C2(G) and
commuting with right translations. We select the basis X, -+, X, of
the Lie algebra & and we write

4=X{+ -+ X5.

We consider 4 as an operator on L*G) with the domain C;°(G) which is
dense in L*G). Let 4 be the closure of 4 and let D(4) be the domain
of 4. Then 4 is an elliptic, self-adjoint and negative operator, and 4
commutes with right translations (see [7], p. 35 and [2]). We can con-
struct a semigroup {7'‘},», corresponding to the operator 4. This semi-
group {7T%,», has the following properties (we refer the reder to [2],
[3], [5] and [7] for these properties):

THEOREM 1. (i) {T'.s, satisfies the semigroup axioms: T"" =
TuT* and T° = the identity operator.

(ii) Each T*! is a bounded operator of nmorm less than 1 defined
simultaneously on spaces Cy(@), L*(G)1 < p < =) and M(G). Moreover,
the norms of operators Tt are all 1 on the spaces LY(G), L}(G) and L=(G).

(iii) Fach T® s positive, that s, f = 0 implies T'f = 0.

(iv) Fach T' is a self-adjoint operator on LXG).

(v) T1=1.

(vi) Each T' commutes with right translations.

(vii) We put Ry = (A — 4)™" for x> 0;
then the morm of the operator R, on Cy(G) equals to 1/n, and for N >0
we have

Rof = Sme‘“thdt
for all feC2(G). Moreover, we have
e 13 n "
T'f = lim (LR,.)'f

for all feC2(@).
(vili) If fe L*(@), 1 £ p £ oo, then (T'f)(x) € C=(G x (0, «)) and

0 /v _ ¢
ﬁ(T @) = AT f(x) .
If pre M(G), then T'm(z)eC=(G x (0, =) and
(%—(Tt#)(w) = AT'p(x) .
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(ix) T*' may be written in the comvolution form:

T'f@) = Ko+ f@) = | K@)f - o)dy

for 0 <t < oo,

This kernel function K,(x) has the following properties:

(x) FEach K, is a monnegative function and symmetric, that 1is,
K,(x) = K,(z™") for all x in G. Fm'thefrmore, we have

K, (@) = K, (%) = K, () .
(xi) FEach K, belongs to Cy(G) DL”(G), lépé co, Moreover, we have

|, Ky =1.
(xii) K,(x) ts an analytic function of x for each t > 0, and
K (x) e C~(G x (0, c0)).
(xiii) For each neighborhood U of the identity e in G,
limS K(dy = 1.
t—0 U
We define the operator Pt by

pr=_1 S‘”‘*'l TeREN, (> 0
2N ¢>0)

and P° = the identity operator. Then we have Pif = p,xf, for t >0,
where

px) = 1/_ S V_Ktzmdx

= | te N K d
21/7Z So *
The operator P‘ and the kernel function p, satisfy the properties (i)-(vi)
and (ix)-(xiii) in the above theorem. Instead of the property (viii), we
have
a—t;(P‘fXx) + 4P'f(x) = 0.

By using these properties we have the following convergence theo-

rems for these semigroups.

THEOREM 2. Let f be a measurable function or a measure on G.
Then lim,_, T'f = f holds in the following senses;
(i) wn the L® norm +f fe L*(G), 1 £ p < oo.
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(i1) 1im the weak star topology of L=(G) if fe L*(@).
(iii) wumniformly on each compact subset of G if feCy(G).
@iv) wuniformly if fe Cy(G).

(v) in the weak star topology of M(G) +f fe M(G).

(vi) almost everywhere if fe L*(G), 1 < p £ oo.

ProoF. By Minkowski’s inequality for integrals, we have, for a
neighborhood U of e,

17—l = | (| 17670 - f@Prde) " K@y
=\, (| 11w - r@1rae) "m0y

+ 2071, |, Ky

for all feL?(G), 1< p < . The mapx— f(y &) is a uniformly con-
tinuous map of G into L*G), 1 £ p < «, and the integral S K, (y)dy
a-U

tends to zero as t— 0. This fact completes the proof of (i). In order
to prove (ii), we see that for all p € LY(G) and all fe L=(G),

|, rr@p@ads — | fop@is]
= | | x@wows) - p)s@adyds|
<171 | | Kl pwa) - (@) dyde
=171 | | Bw)low o) - pwldyds .

By the proof of (i), the integral S S K,(y) | p(y ') — p(x)|dydx tends to
GJG

zero as t— 0. Therefore, (ii) has been proved. If feC,(G@), then f is
uniformly continuous on each compact subset F in G, that is, given
€ > 0 there exists a neighborhood U of e such that

fly7'w) — f@)] < e/2

whenever xc F and ye U. Therefore, we have
| T(@) —~ f@)| = | 179) — @) K)dy
+, 11w — f@) Ky

<ez+2fll|  Kay
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t

whenever x € F. Since the integral S K, (y)dy tends to zero as t— 0,
G-

[T f(@) — f@)] <e

for a sufficiently small ¢ > 0. Hence (iii) has been proved. If feC/(G),
then it is uniformly continuous on G. In the same way as above, we
can prove (iv). If pe M(G) and ¢ e C(G), then we have

‘ SGT‘#(xW(x)dw - S(g)(x)dﬁ(w) ’

= ILLKM/X@(W — P@)dydpu(z)|

=ellTe — ellw .
By (iv), we get (v). For (vi), we show only in the case p = . For
other cases, see [7], p. 73. We fix compact neighborhoods V and U of
¢ such that U*UcV. For any fe L*(G), we write f = f, + f, where f,
is the restriction of f to V and f, = f— fi,. Then for all x€ U we have

7@ = || fao K@iy

= I fll SG_UKt(y)dy—» 0 as t—0.

Since f, e L*(@), 1 £ p < o, T'f,(x) converges to fi(x) for almost every
2 €@G. This shows that lim, , T'f(x) = f(x) for almost every x ¢ U. Since
G has the Lindelof property, we have lim,., T'f(x) = f(z) for almost
every z€G@.

THEOREM 2. Let f be a measurable function or a measure on G.
Then lim,., Pf = f holds in the following senses;

(i) in the L* norm +f fe L*(G), 1 £ p < oo,

(ii) in the weak star topology of L=(G) if fe L=(G).

(iii) wumiformly on each compact subset of G if feCy(G).

(iv) wuniformly if fe C(G).

(v) in the weak star topology of M(G) if fe M(G).

(vi) almost everywhere if fe L*(G@), 1 £ p £ co.

PrROOF. To show (vi), we need two following lemmata.

LEMMA 8 ([7], p. 48). For feL*(®), 1 £ p £ =, we define the maxi-
mal function Mf as

W5 = sup (G | 700 )

Then MS satisfies the inequalities:
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(i) [|Mfll, = C|fl, for each p with 1 < p < oo, where C is a con-
stant independent of f.

(ii) HxeG: Mf(x) > a}| £ (Cla)||fll, for each a >0 and any f€
LYG), where C is a constant independent of f and a.

LEMMA 4 ([7], p. 49). For all fe L*(G), 1 < p < oo, and all fe M(G),
there exists a constant C such that Pif(x) < CMf(x) for each t > 0.

PrOOF OF (vi). This is in the line of classical limit process (see [6],
p. 64).

REMARK. Let feC,(G); then extensions F(x,t), of the functions
T'f(x) and P'f(x), equal to f(x) for ¢ = 0 are continuous on G X [0, o).
This can be showed in the same way as the proof of (iii) in the above
theorems.

3. The representation theorem. Suppose that a (real valued) funec-
tion # on an (unimodular) connected Lie group G with dimension % is
of class C¥G). For a fixed basis {X|, ---, X,} of the Lie algebra of G we
write du = >, X*u. The mapping

exp (xle SRR o ann)w - (xn Tty x,,)

gives a coordinate system on a neighborhood of each element x in G.
Then we have, in a local coordinate,

n 12

du = 3 U

i=1 0

U .

We can easily prove the following lemmata because these are local ver-
sions. We refer the reader to [4] and [8] for the proof.

LEmMMA 5. (i) (Mean value property) Suppose a function u s of
class C¥@). If the function w on G satisfies the equality du = 0, then
Sor any ball B centered at x in G contained im a local coordinate
netghborhood

_ LS
w(®) = TB] Bu(y)dy-
The converse is also valid.
(ii) Suppose a function w is of class CXG). If the function u on
G satisfies the inequality Adu = 0, then for any ball B centered at x in
G contained in a local coordinate neighborhood,

1
u(x) = B SBu(y)dy .
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The converse is also valid.

(iii) If weCX@G) satisfies the inequality Ju = 0 and @ is a non-
decreasing convex C*-function defined on an interval containing the
range of u, then the composition s = @ou satisfies the inequality
4s = 0.

(iv) (Maximum and minimum principle) Suppose a function u, de-
fined in a open domain D contained in a local coordinate neighborhood,
satisfies the equality du = 0. If w satisfies sup u(x) = C < oo (inf u(x) =
C > — o); then u(x) < C for all x € D (w(x) > C for all x e D respectively),
provided w 18 not a constant function on D.

If a (real valued) function u(x, t) is of class C*G x (0, «)), we write,
from now on,

Loy =5 X+ 2w and  Huw = 33Xt~ Zu.
Let U be any open subset of G such that closure U of the set U is
compact. The product U x (0, t,), ¢, > 0, in G x (0, ) will be written
as D. The boundary of U will be denoted by dU. The closure D of
D is the product U x [0, ¢,). I" denotes the union of U x {0} and U x

[01 tO]‘

LEMMA 6 (Maximum and minimum principle for the heat equation
and the Laplace equation) Suppose that a function wu(x,t) is of class
CxG % (0, ) and continuous on D.

(i) If the function u(x,t) satisfies the inequalities H(u) < 0 wn
D—T and u(x,t) =0 on I', then u(x, t) =0 in D.

(ii) If the fumction wu(w,t) satisfies the inequalities H(u) =0 in
D—T and wx,t) <0 on I, then u(z, t) < 0 in D.

(iii) If the function wu(x,t) satisfies the inequalities L(u) =0 in
D —1T and w(zx, t) =0 on I', then u(x, t) =0 in D.

(iv) If the function u(x, t) satisfies the inequalities L(u) = 0 in
D—T and u(x,t) <0 on I', then u(x, t) < 0 in D.

PROPOSITION 7. Suppose that a function u(x,t) is of class C*G X
(0, <)) and continuous on G x [0, ).

(1) If the function wu(x, t) s bounded below im G X [0, =) and <t
satisfies the imequalities Hu) < 0 in G X (0, «) and u(x, 0) = 0 for all
x €@, then u(x,t) = 0 in G x [0, o).

(ii) If the function u(x, t) is bounded above in G X [0, ) and it
satisfies the inequalities H(u) = 0 in G x (0, «) and w(z, 0) < 0 for all
xe@, then u(x,t) <0 wn G X [0, o).
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(iii) If the fumction u(x, t) ts bounded below in G X [0, =) and it
satisfies the inequalities L(u) <0 in G X (0, ) and u(x, 0) = 0 for all
xe@, then u(x, t) = 0 in G X [0, ).

(iv) If the function u(x, t) is bounded above in G X [0, ) and it
satisfies the imequalities L(u) = 0 in G x (0, o) and u(x, 0) < 0 for all
xe@, then u(x, t) <0 in G X [0, ).

ProoOF. Let B, be the ball of radius » centered at e¢ in G, that is,
B, = {xe€G:d(x) < 7}, and let f be a nonnegative function in C?(G) such
that support of f is contained in B, and S f(x)de = 1. Then there

By
exists a constant M such that
3 XU+ d)(e)| = M

i=1

for all z in G (see [2]). In order to prove (i), suppose u(z, t) > —m;
m >0, on G x [0, ), and 7, any positive number. We consider the
auxiliary function

v, t) = ji<<f*d><w> + 1+ Kt) + ux, t) .

The constant K > 0 can be chosen so that for all 7, > 0 the quantity
H(v) is negative. In fact,

H(v) = ”_’”<z X{f+d) — K) + Haw)
7‘0 7=1
g’%(M—KKo if M<K.
0
We have v(x, 0) = u(x, 0) = 0 and

frd@ = | dw o @y

= | dwrwiy - | dwrwy

v

7 ng (y)dy — SGf (dy =r, — 1
whenever d(x) = 7,. Thus
v(z, t) = m(7‘0 + Kt) + u(z, t)
,rO

=Zm + ux, t) >0
whenever d(x) =7, and 0 <t <t. By Lemma 6, we have v(x, t) = 0
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on D =B, x[0,¢]. Any fixed point (2, ¢) in G X [0, <) lies in some D
for sufficiently large », and ¢, Hence, at such a point, we have v(x, t) = 0.
On letting 7, tend to o, we get u(x, t) = 0 in G X [0, o).

Similarly we can prove (ii).

We can also prove (iii) and (iv) by considering the auxiliary func-
tion

oz, t) = %((f*d)(x) +1 + Kecos Zt") + ulz, ©)

instead of that in the proof of (i).

COROLLARY 8. Suppose that a C*-function wu(x, t) 18 a bounded con-
tinuous function on G x [0, o).

(i) If the function u(x, t) satisfies the heat equation H(u) = 0 on
G % (0, ) and u(xz, 0) = 0 for all x in G, then u(x, t) = 0 on G X0, ==).

(ii) If the fumction u(zx, t) satisfies the Laplace equation L(u) =0
on G X (0, ) and ulx,0) =0 for all x in G, then u(x,t) =0 on G X
[0, ).

LEMMA 9. Suppose that a function wu(x, t) is of class C*(G x (0, «=))
such that sup,., ||u(-, ), < co for some 1 < p < oo, and u(x, t) converges
to zero as t—0 in the weak star topology of L*(G) when 1 < p = oo
and in the sense

[ 2, pdy—0 for all pecy@ .

when p = 1.

(1) If the function u(x, t) satisfies the inequality Hu) <0 on G X
(0, =), then we have u(x,t) = 0 on G X (0, ).

(ii) If the function u(x, t) satisfies the inequality H(u)=0 on G X
(0, =), then we have u(x, t) = 0 on G X (0, o).

(iii) If the fumction wu(w, t) satisfies the imequality L(u) <0 on G X
(0, =), then we have u(x,t) = 0 on G X (0, ).

(iv) If the function wu(x, t) satisfies the inequality L{u) =0 on G X
(0, ), then we have u(z,t) <0 on G X (0, ).

Proor. For any nonnegative function ¢ € C7(G), a function v = uxp
belongs to C,(G X [0, «)) if we define v(x, 0) = 0. The function v satisfies
the inequality H(v) £ 0 when H(u) <0. By Proposition 7, we get v(x, £)=0
on G X [0, ). Since @ is an auxiliary nonnegative function in C2(G),
w(x, t)=0 on G X (0, «). This completes the proof of (i). Another parts
of the lemma are proved in the same way.
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COROLLARY 10. Suppose that a function wu(x, t) is of class C¥G X
(0, =0)) such that sup,s,||ul, t)||, < o, 1 £ p £ =, and u(x, t) converges
to zero as t—0 tn the weak star topology of L*(G) when L < p < « and

in the sense SGu(y, He(y)dy — 0 for all peC(G) when p=1. If the

Sfunction u(x, t) satisfies the heat equation H(u) = 0 or the Laplace equa-
tion L(u) =0 on G X (0, =), then u(x,t) =0 on G X (0, ).

THEOREM 11 (The representation theorem). (i) A function u(x,t)
is of class C*(G X (0, «)) such that sup,.,| u(-, t)}|, < « for some 1 <
p £ o and it satisfies the heat equation H(u) = 0 on G x (0, =) if and
only if it is of the form wu(x, t) = T'f(x) such that when 1 < p = oo,
fe L*(@) and when p =1, fe M(G).

Moreover, this representation is unigue and || f|| = sup,s, [|u(-, t)],
where || f|| means the L? norm for 1 < p < « and the total variation
norm for p = 1.

(ii) A function wu(x,t) s of class C=(G X (0, «)) such that
SUD;so [Ju(s, B, < oo for some 1 < p < o and it satisfies the Laplace
equation Lu) = 0 on G X (0, =) if and only if it is of the form u(x, t) =
Pif(x) such that if 1 < p < oo, fEeL? (@) and if p =1, fe M(G).

Moreover, this representation s unique and || f|| = sup;s, ||ul-, £)|],
where ||f|| means the L” morm for 1 < p £ o and the total variation

norm for p = 1.

Proor. We will show (i). Let u.(x) = u(x, ¢) where ¢ > 0. We put
v(z, t) = u(x, ¢ + t) — T*u(x). Then from Theorem 1(ii), (viii) and Theo-
rem 2(i), (ii), v.(z, t) is of class C=(G X (0, <)) such that sup,,||v.(+, O)|l,< o,
and v.(x, t) converges to zero as t— 0 in the weak star topology for

1 < p < o and in the sense S .y, )p(y)dy — 0 for all peCy(G) when
[ed

p = 1. Moreover, we have H(v,) = 0. By Corollary 10, ». = 0, that is,
u(x, ¢ + t) = T'u (x) for all (x,t) in G X (0, ). Since %, is uniformly
L? bounded, there exists a subsequence {u..} such that u, converges to
feL?(@) when 1 < p < o and fe M(G) when p =1 in the weak star
topology as & — 0. Hence T'‘u.(x) converges to T°f(x) pointwise for
each t > 0. On the other hand, u(x, ¢’ + t) converges to u(x, t) pointwise
as ¢’ —0. Therefore we obtain u(z, t) = Tf(x) for all (z, £) in G X (0, ).

Since f is a weak star limit, we have [|f]|| < sup,,/ju(-, t)[,» On
the other hand, by Theorem 2(ii), sup,.,||u(:, t)|l, = sup.s, || T*fll, < 1]
Hence ||f|| = sup ||u(-, t)|l,, Uniqueness of this representation is an
immediate consequence of Theorem 2.

The converse argument of (i) is easy.
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We can also prove (ii) in the same way.

PROPOSITION 12. Suppose a function sz, t) is of class C=(G x (0, =))
satisfying sup,s, ||s(, )i, < o= for some 1 < p < oo,

(i) If the function s(x,t) satisfies the imequality H(s) = 0, then
there exists a function wu(x,t) in C=(G X (0, «)) which is a minimal
majorant of s(x,t) on G X (0, =) satisfying H(u) = 0.

If s(x,t) is, im addition, monnegative, then sup,,|u(-, )|, =
SUP;so [18(+, D)l

(ii) If the function s(x,t) satisfies the inequality H(s) < 0, then
there exists a function u(x,t) in C=(G x (0, «)) which 18 a& maximal
Sunction in all of functions satisfying the heat equation and less than
s(x, t) on G x (0, o).

(iii) If the function s(x,t) satisfies the inequality L(s) = 0, then
there exists a funmction u(x,t) in C*(G X (0, «)) which is @ minimal
majorant of s(x, t) on G X (0, o) satisfying L(u) = 0.

If s(z,t) s, im addition, nonnegative, them suD,.,| u(-, t)|l, =
Sup;s |[s(+, )|,

(iv) If the fumnction s(x,t) satisfies the inequality L(s) £ 0, then
there exists a function u(x,t) in C=(G X (0, )) which is a maximal
Sunction n all of fumctions satisfying the Laplace equation and less
than s(x, t) on G x (0, o).

PrROOF. In order to prove (i), we put s.(x) = s(x, ¢) and wu.(x, t) =
T*s.(x) where ¢ > 0. Let v./(x, t) = s(x,e + t) — u.x, t). Then H(v.) = 0
when H(s) = 0. Since v.(x, t) converges to zero as t— 0 in the weak
star topology for 1 < p £ -~ and in the sense Savs(y, te(y)dy — 0 for all
@€Cy(G@) when p =1. By Lemma 9, v (x, t) <0, that is, s(x, ¢ + t) =
u(x, t) for all (x,t) in G X (0, ). Since s (x) is uniformly bounded in
L?(G), there exists a subsequence {s..(x)} such that s..(x) converges to
feL?(@) forl<p< « and fe M(G) for p =1 in the weak star topology
as ¢ —0. Then w.(x,t) converges to T'f(x) pointwise for each ¢t > 0.
On the other hand, s(zx, ¢ + t) converges to s(x, t) pointwise. Therefore
Tif(x) = s(x, t) and u(x, t) = T'f(x) satisfies the heat equation.

In order to prove the minimality of u(x, t), we choose any function
h(x, t) satisfying H(h) =0 and u(x, t) = h(z, t) = s(x,t) on G x (0, ==).
By Theorem 11, 2 may be represented as the form h(x, t) = T'g(x) where
g€ L?(@) for 1 < p £ « and g€ M(G@) for p = 1; then we have

U, 1) = T'se(x) = T*T*g(x)
= T g(x) = h(x, t + ¢€) .
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Since h(x, t +&')— h(x, t) as ¢’ —0, u(x, t) < h(x, t) on G X (0, ). Hence
u(x, t) is a minimal majorant of s(x, t).

Next suppose s is a nonnegative function. Since the representing
function (measure) f of u is a weak star limit,

Hf” = S}:P HS(', t)Hp

where ||f|| means the L? norm if 1 < p < - and the total variation
norm if » = 1. On the other hand, s being nonnegative,

sup IIs(-, DI, = sup Hu(-, &), .

S1ll. These conclude

By Theorem 11, supes, |[8(+, ¢)|l, = sup,s, [[u(-, ){l, =
the proof of (i).
In the same way we can prove (ii), (iii) and (iv).

4. The H? space theory. We assume that G is a semisimple con-
nected noncompact Lie group with dimension », K is a maximal compact
subgroup and (G, K) is a Riemannian symmetric pair of the noncompact
type. Then we have a Cartan decomposition of the Lie algebra g of
G:g=*t+p. Let now {X, ---, X,, X,.,, -+, X,} a basis in g such that
{X,, ---, X,} is an orthonormal basis for p with respect to the Killing
form B and {X,,, ---, X,} is an orthonormal basis for f with respect to
—B. Then the Casimir operator I'= >7., Xi:— 3" .., X% is not only
right translation invariant, but also left translation invariant. Hence
the Laplace oparator 4 = >'7, X} is translation invariant under K. This
operator 4 leads to semigroups which we have written as T and P!
before. If f is any smooth zonal function, that is, f(kxk,) = f(x) for
all x€ G and all &, k,e K, then X,f = 0 for » <7 <mn. Therefore 4f =
I'f for all smooth zonal functions f. Hence XT!f = T'Xf and XP'f =
PtXf forall Xeg and all ¢ > 0 whenever f is a smooth zonal function.
We consider a function f, of the form f, = (6P*/0t)(f)|,-,, Where ¢, > 0.
For these f, we define the Riesz transforms by

R(f) = XP(f), t1=1+--,m.

These R, are well-defined on a dense subset of L?(G) for 1 < p < . (See
[7], p. 182-p. 133.) Furthermore, >, ||R.(f)||, ~ |/ f]], for a zonal fe
LP(G), 1 < p < = (see [T], p. 134).

The Killing form is denoted by (-, -) from now on. This form is
nondegenerate and has properties:

X, Y) =Y, X), X, Yeg.
(X,0Y)=(X,Y), o automorphism of g.
(XY, Z)=(Y,|Z, X))=(Z,[X, Y), X, Y, Zeg.
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We shall say that an (» + 1) tuple of (real valued) functions F =

(uo; WUy =

-y u,) on G X (0, ) is a (generalized) Cauchy-Riemann system

if F'is smooth on G x (0, =) and zonal on G for each t > 0, and satisfies

the equations:

(a) gzu —-Xuo,j:].’-..’7’.
(b) Xiuj = Xju,-, ’L., j = 1, oo .

@ aituo + 3 X, = 0.

LEMMA 13 (ef. [1]). If F = (e %y -+, u,) 8 @ Cauchy-Riemann

system, then

L(u;) = u,+2X2u,_0 G =01, 00, 7.

6t2

ProOF. Since [p, p] Cf,

[b,
SUX, XJue=0,  G=1,,7.
By (a), (b) and (c),

L(“J) = u; + E Xlu,

:;%Xuo—f-ZXXu

- X( o + zzm) 31X, Xilu,
= 31X, XJu = 0

Therefore L{u;) =0, j=1,-.-, 7. When j =0, by (a) and (¢),
0 0

0/(0
at<atu°+;‘xu> atzuojLZX—m
= 2w, + 3 Xoug = L(w) .

We say that a Cauchy-Riemann system F = (u, u,, -+, %,) belongs

to the space H?, p > 0, if
1/
1y, = sup (] | Flrdz)”

t>0 G

1/
=sup<s (wg + ui + - +ui)”/2dx) ﬁ< o,
G

t>0
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LEMMA 14 ([8], p. 234). Let F = (uq, %y, * -+, ,) be a Cauchy-Riemann
system; then s = |F|? = (us + u? + -+ + ud)?? satisfies the inequality
L(s) = 0 for p = (r — 1/r).

We shall now show the fact that the space H” may be identified
with the space of all zonal functions in L?(G@) when 1 < p < oo.

THEOREM 15. Suppose that F = (u, 4, -+, %,) € H?, 1 <p<oco. Then
there exists a zonal function f,e L*(G) such that
u‘o(x’ t) = Ptﬁ)(x) ’ ui(xy t) = Ptf](x) ’ j = 1; ce, T

where f; = Ri(f,) Riesz transforms of f,j=1, ---,r. Conversely, if
fie LX(G), 1<p< o, 18 zonal and f;=R;(f,), u,lx, t)=P!f(x) and w;(x, t)=
Pifx), 5=1, ---, 7, then F = (Uy, Uy, -+, ,) € H*. Furthermore ||f;|l, ~
|| F'll,. Hence for 1 < p < o the space H? is identified with the space
consisting of all zonal functions in L*(G).

Proor. Let f, be of the form f, = (0P*/dt)(f)],=¢,» ¢t > 0 and a zonal
function in L?(G), 1 < p < . We put u, = P, f; = R;f, and u; = P'f;,
j=1,-.-,7. Then we have, since we may assume f is zonal,

u; = P'f; = P'R;f, = P'X;P%f = X;Pt f,
and so

_a.. e . ‘2. t — Ptf — )
Zu,; = X,P (at Pflt:to) = X,P'f, = Xyu, ,

Xu; = X XProf = X,X,PHof + X, X,|Ptf
= Xju; + [X;, X;]P'Hof
:Xjui’ 7:!.7.:1:"'}7“:

because [p, pjct. We also have

Doyt 3, X = L P (LPyI) + 5 Xiprer

ot i= at ot
= (& + S xi)Prer=o.
ot =

Since >, ||R.fll, ~ || fll, A < p < ), it follows that
sup [[(ud + ut + -+o + udl, < oo,

that iS, F = (um Wiy =y u,) € H? and ”F”p ~ ”f;)”P'

Since the set of f, of the above form is dense in the subspace of
all zonal functions of L?(G), 1 < p < o, the above result is also valid
for every zonal f,e L?(@G) by a limiting argument and the fact that
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S1xpvl, s c|Zon| =Cys,

(see [T], p. 60 and p. 131).

Conversely if F = (uy, %y, *++, %,) € H?, then sup,., ||u;(-, t)||, < o and
Lu;)=0, =0,1, ---,7 by Lemma 13. By Theorem 11 there exist
zonal functions f;eL?(G), j=0,1,.--,7 such that u; = Pif;, j =0,
1, .--,r. We set v;=P'R;f,, 3=1,---,7. Then we have

iu, X, 9

at 5 :ﬁvj’ j:l,oo-,qﬂ’

that is,
ipt(Rjj;)ziPtfj, =1, e, r
ot ot

since (%, v, + -+, ¥,) is a Cauchy-Riemann system. Hence P! R;f,) = P'f;
(see [7], p. 133). By Theorem 2/, R;f, = f;, =1, -, 7

In order to prove F. and M. Riesz’s theorem, we need the idea of
nontangential arguments.

Denote by <# a family of all balls B = B(r) with center ¢ and
suitably small radius 7 contained in a local coordinate neighborhood of
e in G.

LEMMA 16 (The covering lemma). Let & be a family of forms Bux
(xe G, Be &) whose union covers a measurable subset E of G. Then
we can select a disjoint subsequence {B;x;} in @ such that 3;|B;| =C|E|,
where C is o positive constant depending only on the dimension of G.

Proor. See [6], p. 9.
We define the maximal functions for a locally integrable function f
and pe M(G) by

mf@) = swp | 15 @ldy

le:5y
| B]

LEMMA 17. The following inequalities hold:
(i) If feLXNG) and a > 0, then

mie) = sup

o e G:mf@) > a}| < -g-nfm

where C is a constant independent on f and «.
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(ii) If pe M(G) and a > 0, then
e G mpta) > @) = 2 ul

where C is a constant independent on tt and .
(iili) If fe L*(@), 1 < p £ o, then

fmfll, < CIIFl

where C is a constant independent on f.
Hence the maximal function mf and mp is finite almost everywhere.

PrROOF. See [6], pp. 19-22.

ProPOSITION 18. Let f be a function in L°(G), 1 < p £ . Then
we have

(1)l ST Smm
at almost all 2 in G.

oy o1 B
(i) lim ot | 1) — f@ldy = 0

at almost all x in G.
(iii) For any measurable set E of G,

lim |E N B(r)x] _ 1
B

f)dy = f(x)

at almost all x© in H.
Let p be o measure in M(G), and dp = fdx -+ dv the Lebesgue de-

composition. Then we have

: o H(Bx)
(iv) lim B] S()

at almost all z in G.

Proor. These follow from the routine argument by Lemma 17.

Let I'(x,) = {(x, ) € G X (0, h): d(x,, ) < at}, and call it a truncated
cone at x,. We say that a function u(x, ) on G X (0, =) is nontangen-
tially bounded at x, provided that for some @ and #,

sup {|u(x, t)|: (x, t) € I'i(x,)} < oo .

LeEMMA 19 (cf. [6], p. 201). Suppose u s a smooth function on G X
0, =) satisfying the equation L(u) = 0. Let E be a measurable subset
of G and suppose that w is nmontangentially bounded at every x,¢ E.
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Then w 1s convergent as t — 0 at almost every x,¢€ E.

PrROOF. We may assume F is compact and is contained in some
local coordinate neighborhood U of G. We define the open region <2 by
B = U.,ex I5(2). We can assume that |u|<1in # and {xeG:d(x, B)<
2Bk} c U. For fixed @ and h with 8> a and k > h, we also define the
open region #Z by #Z = U, .z i(x,). For sufficiently small ¢ > 0 let
D, = {xeG: (v, ¢) ¢ 2} and @, a continuous function on G and less than
1 in absolute value, equal to u(x, ¢) in E and vanishing outside D,.. Let
o.(x, t) = Pip(x). Define . (z, t) by u(x, t + &) = ¢.(x, t) + (2, t). Since
{p(x)} are uniformly bounded in the L*(G) norm, we can find a ¢(x)e
L~(G) and a subsequence {p,.} such that ¢.,—¢@ weakly as ¢’— 0. Hence

955’(97’ t) = Pt@t’(“’) - Pt@(m) = ‘;75(97; t)

for each (x, t). Since it is obviously true that lim.., u(x, t + €) = u(x, t),
we have the existence of the limit +r(z, £) = lim, g . (2, t) = u(x, t) —
é(x, t). Since almost everywhere convergence holds for the function g,
it remains to show that lim,.,«(z, t) =0 a.e ¢ in E. To this end we
consider an auxiliary function H(z,t) on U x (0, ) with the following
properties. We divide the boundary 0.7 of <#Z into three parts: 0.7 =
B .U B, where &, = {(x, 0) c 0.2}, &, = {(x, t) € F#: at = d(z, E)},
and <7, = {(x, h) €0.2}. H will have the following properties:

(a) H satisfies the equality L(H) =0 in U x (0, <o).

() H=0on U x (0, ).

(¢) H=2 on &, U Z,.

(d) lim,., H(x, t) = 0 for almost all z in E.

We shall now construet a function H satisfying above properties.
Let y denote the characteristic function of the complement of E. For
a constant C to be determined later we set

. t
H(x, t) = C<t + Sv(ﬁ + d(x, y)H)"+/e

The properties (a) and (b) are obvious. For <%, we can assure (c) by
taking C large enough. For any (z, t) € <Z,, the ball B(x, at) in G whose
center is # and which has radius at lies inside £°NU. Hence

X(y)dy) .

t
d
Sl’(t2 + d(x, y)z)nﬂ/zx(y) Y
t
=
= SB(z,at](tz -+ d(x, ’y)z)"+1/7 dy

t
N dy = stant .
SB(e,at) (t2 + d(y)z)”*‘l/z Y con
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Taking C large enough we see that the property (¢) has been verified.
For any z € E with d = d(z, E°) > 0, we have

t
S”(tz + d(z, y)H~tve x(w)dy

< S __t

- v (tz + dz)n-ﬂ/z

"—“—(—tz—-_:tzl-z)”—m’U—El'—’o as t—0.
Since the set {re E:d(x, E°) = 0} is of measure zero, this verifies the
property (d). We shall now prove that |+.(x, t)] < H(x, t) when (z, %) €
2. If this were not so, Lemma 5(v) implies the existence of a sequence
of points (z,, ¢t,) converging to a point on the boundary of <# such that
lim inf (H(x,, t,) = 4.(,, t)) < 0. The functions % and ¢, are both bounded
by 1 in absolute value, and therefore |+.| < 2 and so by property (c)
the limit of {(«x,, t,)} must be on .<%,. But, since +.(x;, t;,) — 0 there, we
obtain a contradiction by (b). Consequently we obtain |v.(x, t)| < H(zx, t)
when (z,t)c.Z. Hence |vy(x, t)| < H(z, t) for all (x,t)e.c2. Property
(d) gives us the desired result, lim,_ ., y(z, t) = 0 for almost all x in E.
This concludes the proof of Lemma 19.

1 (y)dy

PROPOSITION 20. Suppose s 18 a smooth nonnegative function satis-
Sying the tnequality L(s) = 0. Let I'(x) be a suitably small truncated
cone of x in G contained in a product of a local coordinate neighborhood
of x and (0, ). We put

s*(x) = sup )IS(y, t)|

(y,t)el(z

and
s*(x) = sup |s(x, t)]| .
t>0

Then there exists a positive constant C not depending on x and s such
that
s*(x) < Cms™(x) .

ProOF. B,(x,t) will denote the ball of radius t centered at (x,t)
and B(t) the ball of radius ¢ centered at ¢ in G. Then we have by
Lemma 5,

__1
| B, )|

Y SMS s(y, t"dydt’
[} B(t)a:o

= gttt

s, t) = S sy, )dydr
Bylx,t

A
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_CB®l ., _1 +
T+ TBO SB(mos W)dy

= Cms™(x,)

for any (z, t) € I'(x,).

THEOREM 21 (F. and M. Riesz’s theorem). Let F = (g Uy, +++, U,)
be a Cauchy-Riemann system. If Fe H', then there exist fumnctions
fieL(G), j=0,1, «««, r such that u;(x, t) = P'f;(x), j=0,1, ---, 7.

ProOOF. Since F'e H', there exist measures p; € M(G), j = 0,1, «--, r
such that w;(z, t) = Pipix), 7=0,1, -++,r by Theorem 11. By Lemma
14, s =|F|*, 1> p,> ((r — 1)/r), satisfies the inequality L(s) = 0. From
Proposition 12, there exists a majorant h(zx, t) of s(x, t) such that L(h)=0
and

sup [|s(-, &)ll, = sup ||, Hlly = 1 £

where h(x, t) = P'f(x), a nonnegative fe L*(G), p = (1/p,). From Lemma 4,
§"(2) = sup [s(z, )| = sup | W@, 1) = CMSf(x) .
>0 >0

By Lemma 3, Lemma 17 and Proposition 20,
Is*112 = [s*2(@)de = ¢ {(msy(@)de

<C Ss“’(x)dw <C SMf”(x) < CSf”(x)dac
=Clfl3

where 8*(x) = SUDy.1erw |8(¥, t)| for a truncated cone I'(x) of x. Hence
s is nontangentially bounded at almost every x€G. By Lemma 19, we
get the existence of the almost everywhere limit lim,., u;(z, t) = fi(x),
i=0,1,---,7. Since sup,., h(x, t) = sup,, P'f(x) € L*(G), we obtain f;e
L'(@) by the dominated convergence theorem, and the fact that dy;(x) =
fitx)dx, 7 =0,1, ---, r, follows immediately from Theorem 2’

COROLLARY 22. Let F'= (uy, Uy, + -+, u,) be a Cauchy-Riemann system,;
then Fe H?, 1 £ p < o ¢f and only if

sup | F(z, t)| = Ft(x) e L*G) .

Moreover, ||F||, ~ || F*|,.

Proor. We will use notations used in the proof of the above theo-
rem. In the above theorem, we see that F*(x) < CMf(x)/». Hence, by
Lemma 4,
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IE* 1 = §F+(w)”dx <c SMf(x)”“dx
=ClrEn=ClFl;.

This proves the “only if” part.
Conversely,

\Fi; = sup || Fw, 1) pda

= {sup | Fla, )lrde = || Fr i1y < oo .
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