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Introduction. In [7] Stein has considered one-parameter semigroups
of operators {T*}^ defined simultaneously on all spaces Lp(G)t 1 ^ p ^ °o,
for a Lie group G, which satisfy the following properties:

(a) || Γ'/H,^ 11/11,.
(b) T% is a self-adjoint operator on L2(G).
(c) Γ 1 / ^ 0 for / ^ 0.
(d) Γ Ί = 1.
Leading examples of such a semigroup are the heat diffusion semi-

group and the Poisson semigroup. Our purpose is to develop the analogue
of results in classical harmonic analysis in the context of these semi-
groups.

In Section 2, we state the known facts about these semigroups,
which are due to [2], [3], [5] and [7], and we prove the convergence
theorems by using these facts.

In Section 3, we shall obtain results analogous to the classical prop-
erties of harmonic functions and subharmonic functions. The main result
in this section is the representation theorem for harmonic functions.
The basic tool which is used there is the maximum (minimum) principle
for the heat equation and the Laplace equation on Lie groups.

In Section 4, we study the Hp space theory in a noncompact Lie
group, analogous to classical one, which has been developed in Coifman
and Weiss [1] for the case of a compact Lie group. In this section, to
obtain an extension of the theorem of F. and M. Riesz, we apply the
idea of a theorem concerning nontangential boundedness.

I wish to thank Dr. Igari, J. Tateoka and K. Mikami for helpful
conversations.

1. Notations. In this section we fix notations which will be used
in Sections 2-4. If S is a topological space, Cb(S) denotes the set of all
bounded continuous real valued functions on S. The set of all / in
Cb(S) which vanish at infinity is denoted by C0{S). The set of all / in
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Cb(S) whose support is compact is denoted by C£S). If S is a differ-
entiable manifold, the set of all real valued m-times continuous differ-
entiable functions on S is denoted by Cm(S). C°°(S) denotes the space
of real valued indefinitely differentiable functions in S. The set of func-
tions / in C°°(S) of compact support is denoted by C?(S). If S is a
locally compact Hausdorff space, M(S) denotes the set of all real valued,
bounded, regular Borel measures on S. We write the total variation
measure and the total variation norm of μ in M(S) by \μ\ and \\μ\\
respectively. If G is a locally compact group and dx is a right invariant
Haar measure on (?, then if l^p< «>, LP(G) denotes the set of all
real valued Borel functions f on G for which the norm

is finite. L°°(G) is the space of all essentially bounded real valued Borel
functions on Gf normed by \\f\\^ = ess. sup I/O) I- If E is a measurable
subset of G, we write

= \ dx .
\E

Let G be a connected Lie group with dimension n. By © we denote its
Lie algebra. A basis {Xlf •••, Xn) in © defines a Riemannian structure
on G:

gx(Xx, Yx) = ± a Λ if I = Σ ajXj , Γ = Σ &Λ .
j=i j=i i=i

This defines a Riemannian metric d(xt y) on G by

where the infimum is taken over all O-curve 7: [0, 1] —> G such that
7(0) = x, 7(1) = y and 7(Q is the element of the tangent space at 7(t0)
defined by

Then d(xz, yz) = d(x, y) for all a?, yf z in G,

d(x, y) ^ d(α?f 2) + d(z, y) , 1, 1/, z in (ϊ .

Let d(α?) = d(a;, β): then we have

d(xy) ^ d(a ) + d(y) and d(a ) = d{x'1)

e means the identity of G throughout this paper.
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2. The convergence theorems. Let G be an (unimodular) connected
Lie group with dimension n. By & we denote its Lie algebra as the
space of differential operators of the first order acting on C?(G) and
commuting with right translations. We select the basis Xlf " ,Xn of
the Lie algebra @ and we write

Δ - XI + + XI .

We consider Δ as an operator on L\G) with the domain C™(G) which is
dense in L\G). Let I be the closure of Δ and let D{3) be the domain
of I. Then I is an elliptic, self-adjoint and negative operator, and 3
commutes with right translations (see [7], p. 35 and [2]). We can con-
struct a semigroup {T%^ corresponding to the operator Δ. This semi-
group {T*}feo has the following properties (we refer the reder to [2],
[3], [5] and [7] for these properties):

THEOREM 1. ( i ) {T*}^ satisfies the semigroup axioms: τtί+t2 =
ThT*2 and T° = the identity operator.

(ii) Each Tt is a bounded operator of norm less than 1 defined
simultaneously on spaces C0(G), LP(G)(1 <: p <Ξ oo) and M(G). Moreover•,
the norms of operators Tι are all 1 on the spaces L\G), L\G) and L°°(G).

(iii) Each Tι is positive, that is, /g: 0 implies Γ*/^ 0.
(iv) Each Tt is a self-adjoint operator on L\G).
(v ) ΓΊ = 1.
(vi) Each Tt commutes with right translations.
(vii) We put Rx = (λ - J ) " 1 for λ > 0;

then the norm of the operator Rλ on C0(G) equals to 1/λ, and for λ > 0
we have

Jo

for all feC?(G). Moreover, we have

for allfeC?(G).

(viii) If feLp(G), l ^ p ^ co, then (T*f){x) e C~(G x (0, oo)) and

ot

If μeM(G), then Ttμ(x)eCco(G x (0, oo)) and

ot
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( ix ) Tt may be written in the convolution form:

T*JXx) = Kt*f(x) = \ Kt(y)f(y-'x)dy
JO

for 0 < έ < c>o.

This kernel function Kt{x) has the following properties:
( x ) Each Kt is a nonnegative function and symmetric, that is,

Kt(x) = Kt(x~ι) for all x in G. Furthermore, we have

Ktι*KH(x) = Kh+t2(x) = Kh*Ktl(x) .

( xi ) Each Kt belongs to CQ(G) nLp(G), l^p^ ». Moreover, we have

\ Kt(y)dy = 1 .

(xii) Kt(x) is an analytic function of x for each t > 0, and

Kt(x)eC™(G x (0, oo)) .

(xiii) For each neighborhood U of the identity e in G,

lim \ Kt{y)dy = 1 .
tQ JUt~*Q JU

We define the operator Pt by

Vπ
(t > 0)

and P° = the identity operator. Then we have P*f = pt*f, for t > 0,
where

π Jo

2λ/π

The operator Pt and the kernel function pt satisfy the properties (i)-(vi)
and (ix)-(xiii) in the above theorem. Instead of the property (viii), we
have

^(PVXx) + ΔP*f{x) - 0 .

By using these properties we have the following convergence theo-
rems for these semigroups.

THEOREM 2. Let f be a measurable function or a measure on G.
Then lim^o T*f = f holds in the following senses;

( i ) in the Lp norm if feLp(G), 1 ^ p < oo.
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t

(i i) in the weak star topology of L°°(G) if feL°°{G).
(iii) uniformly on each compact subset of G if feCb(G).
(iv) uniformly if feC0(G),
(v) in the weak star topology of M(G) if feM(G).
(vi) almost everywhere if feLp(G), 1 < p ^ oo.

PROOF. By Minkowski's inequality for integrals, we have, for a
neighborhood U of ef

- \X\jf(y~lχ)"
+ 2II/H, t ^ (

for all feLp(G), 1 <Ξ p ^ oo. The map # —• f(y~ιx) is a uniformly con-

tinuous map of G into LP(G), 1 t^ P < °°, and the integral \ Kt(y)dy
JG-U

tends to zero as ί~>0. This fact completes the proof of (i). In order
to prove (ii), we see that for all φβL\G) and all feL°°(G),

I \ Ttf(x)φ(x)dx - ( f(x)φ(x)dx
1 JG J<?

= \\ Kt(y)(φ(yx) - φ(x))f(x)dydx
I JGJG

, \ \ Kt(y) I φ(yx) - φ(x) \ dydx
JGJG

\ \ Kt(y)\φ(y-ιx) - φ(x)\dydx .
JGJG

By the proof of (i), the integral \ \ K^lφiy^x) — φ(x)\dydx tends to
JGJG

zero as £-+0. Therefore, (ii) has been proved. If feCb(G), then / is
uniformly continuous on each compact subset F in Gt that is, given
ε > 0 there exists a neighborhood U of e such that

Ifiy-'x) - f(x)\ <ε/2

whenever a e F and y e U. Therefore, we have

I T'f(x) - f(x)\ S \ \f{y~xx) - f(x)\Kt(y)dy
Ju

+ \ \f(y~ιχ) - f{χ)\Kt{y)dy
JG~U

<e/2 + 2 | | / | U Ϊ Kt(y)dy
JG-U
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whenever xeF. Since the integral \ Kt{y)dy tends to zero as t—>0,
JG-σ

for a sufficiently small t > 0. Hence (iii) has been proved. If /eC0(G),
then it is uniformly continuous on G. In the same way as above, we
can prove (iv). If μeM(G) and φeC0(G), then we have

I \ Ttμ(x)φ(x)dx - \ φ{x)dμ{x)
\ JG JG

= I 1 Kt(y)(φ(yx) - φ(x))dydμ(x)
JGJG

By (iv), we get (v). For (vi), we show only in the case p = oo. For
other cases, see [7], p. 73. We fix compact neighborhoods V and U of
e such that U^UdV. For any feL°°(G), we write / = / x + / a where /x

is the restriction of / to V and f2 = / — / t. Then for all # 6 Z7 we have

= \\f2(y~lx)Kt{y)dy

^\\f\\Λ Kt(y)dy-+Q as t — 0 .

Since /jSL^G), 1 ^ ί> < «>, T%{x) converges to /^a;) for almost every
ireG. This shows that lim^0 T*f(x) = f(x) for almost every xe Z7. Since
G has the Lindelδf property, we have Iim^0 T*f(x) = f{x) for almost
every xeG.

THEOREM 2'. Let f be a measurable function or a measure on G.
Then lim^o P*f = f holds in the following senses;

( i ) in the Lp norm if feL%G), 1 <; p < oo.
(ii) in the weak star topology of L°°{G) if feL°°(G).
(iii) uniformly on each compact subset of G if feCb(G).
(iv) uniformly if feC0(G).
(v) in the weak star topology of M(G) if feM(G).
(vi) almost everywhere if feLp(G), 1 <i p 5Ξ oo.

PROOF. TO show (vi), we need two following lemmata.

LEMMA 3 ([7], p. 48). For feLp(G), 1 ^ p ^ oo, We define the maxi-
mal function Mf as

Then Mf satisfies the inequalities:
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( i ) ||Λf/||p 5Ξ C|]/| |p for each p with 1 < p ^ ^o, where C is a con-
stant independent of f

(ii) \{xeG: Mf(x) > a}\ ^ (C/^WfW, for each a>0 and any fe
L\G), where C is a constant independent of f and a.

LEMMA 4 ([7], p. 49). For all feLp(G), 1 ^ p ^ °o, and all fe M(G),
there exists a constant C such that P*f(x) ^ CMf(x) for each t > 0.

PROOF OF (vi). This is in the line of classical limit process (see [6],
p. 64).

REMARK. Let feCb(G); then extensions F(x, t), of the functions
T*f(x) and Ptf(x)f equal to f(x) for t = 0 are continuous on G x [0, oo).
This can be showed in the same way as the proof of (iii) in the above
theorems.

3. The representation theorem. Suppose that a (real valued) func-
tion u on an (unimodular) connected Lie group G with dimension n is
of class C\G). For a fixed basis {Xlf , Xn) of the Lie algebra of G we
write An = Σ?=i ^u- The mapping

e x p faXi + + xnXn)x - » ( x i f '"yXn)

gives a coordinate system on a neighborhood of each element x in G.
Then we have, in a local coordinate,

*=i dx\

We can easily prove the following lemmata because these are local ver-
sions. We refer the reader to [4] and [8] for the proof.

LEMMA 5. ( i ) (Mean value property) Suppose a function u is of
class C2(G). // the function u on G satisfies the equality An = 0, then
for any ball B centered at x in G contained in a local coordinate
neighborhood

= — \ u(y)dy .
B\

The converse is also valid.
(ii) Suppose a function u is of class C2(G). If the function u on

G satisfies the inequality Δu ^ 0, then for any ball B centered at x in
G contained in a local coordinate neighborhood.

u(x) ^ — \ u(y)dy .
B\ JB
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The converse is also valid.
(iii) If ue C2(G) satisfies the inequality An Ξ> 0 and φ is a non-

decreasing convex C2-function defined on an interval containing the
range of u, then the composition s — φ°u satisfies the inequality
Δs ^ 0.

(iv) (Maximum and minimum principle) Suppose a function u, de-
fined in a open domain D contained in a local coordinate neighborhood,
satisfies the equality Δu = 0. If u satisfies sup u(x) = C < °o (inf u(x) —
C > -oo); then u(x) < C for all x e D (u(x) > C for all xe D respectively),
provided u is not a constant function on D.

If a (real valued) function u(x, t) is of class C\G x (0, oo)), we write,
from now on,

L(u) = Σ f t + — u and H{u) = f^X'u - — u .
*=i dt2 t=i dt

Let U be any open subset of G such that closure Ό of the set U is
compact. The product U x (0, ί0), t0 > 0, in G x (0, oo) will be written
as Zλ The boundary of U will be denoted by dll. The closure D of
D is the product Ό x [0, t0]. Γ denotes the union of Ό x {0} and dU x
[o, ίol.

LEMMA 6 (Maximum and minimum principle for the heat equation
and the Laplace equation) Suppose that a function u(x, t) is of class
C\G x (0, oo)) and continuous on D.

( i ) // the function u(xf t) satisfies the inequalities H(u) 5Ξ 0 in
D — Γ and u(x, t) Ξ> 0 on Γ9 then u(xf t) ^ 0 in D.

(ii) // the function u(xf t) satisfies the inequalities H(u) ^ 0 in
D — Γ and u(xf t) S 0 on Γ, then u(xf t) ^ 0 in D.

(iii) // the function u{x, t) satisfies the inequalities L(u) 5Ξ 0 in
D ~ Γ and u(x, t) ^ 0 on Γ, then u(x, t) Ξ> 0 in D.

(iv) // the function u(xf t) satisfies the inequalities L(u) Ξ> 0 in
D — Γ and u(x, t) ^ 0 on Γ, then u(xf t) ^ 0 in D.

PROPOSITION 7. Suppose that a function u(xt t) is of class C\G x
(0, oo)) and continuous on G x [0, c>o).

( i ) // the function u(xf t) is bounded below in G x [0, °°) and it
satisfies the inequalities H{u) 5Ξ 0 in G x (0, oo) and u(xf 0) ^ 0 for all
xeG, then u(x, t) ^ 0 in G x [0, oo).

(ii) // the function u(xf t) is bounded above in G x [0, oo) and it
satisfies the inequalities H(u) Ξ> 0 in G x (0, oo) and u(x, 0) <Ξ 0 for all
xeG, then u(x, t) ^ 0 in G x [0, oo).
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(iii) // the function u(x, t) is bounded below in G x [0, oo) and it
satisfies the inequalities L{u) ̂  0 in G x (0, oo) and u(x, 0)2^0 for all
xeG, then u(x, t) Ξ> 0 in G x [0, oo).

(iv) // the function u(x, t) is bounded above in G x [0, oo) and it
satisfies the inequalities L(u) Ξ> 0 in G x (0, oo) and u(x, 0) 5Ξ 0 for all
xeG, then u{x, t) <* 0 in G x [0, oo).

PROOF. Let Br be the ball of radius r centered at e in G, that is,
Br = {x 6 G: d(x) < r}, and let / be a nonnegative function in C~(G) such

that support of / is contained in Bt and \ f{x)dx = 1. Then there

exists a constant M such that

Σ < Jtf

for all x in G (see [2]). In order to prove (i), suppose u(x, t) > — m;
m > 0, on G x [0, oo)? and rQ any positive number. We consider the
auxiliary function

V(x9 t) - ΈL((f*d)(x) + 1 + Kt) + u(x9 t) .

The constant K > 0 can be chosen so that for all r0 > 0 the quantity
H(v) is negative. In fact,

H(v) - ^ - ( Σ -ϊ!(/*d) -K) + H(u)

^ ^ ( M - iΓ)< 0 if M<K.
To

We have v(x, 0) ̂  u(x, 0) ^ 0 and

f*d(x)= \ d(y-ίx)f(y)dy
JG

^ ( d(x)f(y)dy - \ d(y)f(y)dy
JG JG

^ r0 \ f(v)dy - I /(y)di/ = r0 - 1

whenever d(x) = r0. Thus

v(a?f t) ^ — ( n + ΛΓt) + u(x, t)
r

^ m + w(ίc, t) > 0

whenever d(a ) = r0 and 0 ^ t < t0. By Lemma 6, we have v(x, t) ^ 0
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on D — Bro x [0, £0]. Any fixed point (x, t) in G x [0, oo) lies in some D
for sufficiently large r0 and ί0. Hence, at such a point, we have v(x, t) ^ 0.
On letting r0 tend to oo, we get u(x, t) Ξ> 0 in G x [0, oo).

Similarly we can prove (ii).
We can also prove (iii) and (iv) by considering the auxiliary func-

tion

v(x, t) = ™L((f*d)(x) + 1 + Kcos—) + u(x, t)
r 0 V 4ί0 /

instead of t h a t in the proof of (i).

COROLLARY 8. Suppose that a C2-function u(x, t) is a bounded con-
tinuous function on G x [0, oo).

( i ) // the function u(x, t) satisfies the heat equation H(u) — 0 on
G x (0, oo) and u(x, 0) = 0 for all x in G, then u(x, t) = 0 on Gx[0, co).

(ii) If the function u(x, t) satisfies the Laplace equation L(u) = 0
on G x (0, co) and u(x, 0) = 0 for all x in G, then u(x, t) = 0 on G x
[0, - ) .

LEMMA 9. Suppose that a function u(xf t) is of class C\G x (0, oo))
such that sup ί > 0 ||w( , t)\\p < oo for some 1 S P ^ ^ J and u(x, t) converges
to zero as t —> 0 in the weak star topology of LP(G) when 1 < p ^ oo

I %(3/, t)φ{y)dy —> 0 / o r αίZ ^ e C0(G) -
JG

when p = 1.
( i ) 7/ έ&e function u(x, t) satisfies the inequality H{u) ^ 0 on G x

(0, co), έ&ew we &αi?e w(aj, ί) ^ 0 on G x (0, co).

(ii) If the function u(x, t) satisfies the inequality H(u) ̂  0 on G x
(0, co), then we have u(x, t) ^ 0 on G x (0, oo).

(iii) // the function u(x, t) satisfies the inequality L(u) ^ 0 on G x
(0, co), then we have u(x, t) ^ 0 on G x (0, co).

(iv) // the function u(x, t) satisfies the inequality L{u) ^ 0 on G x
(0, co), £&ew we have u(x, t) <Ξ 0 on G x (0, oo).

PROOF. For any nonnegative function φ e C?(G), a function v =
belongs to C6(G x [0, oo)) if we define v(x, 0) = 0. The function v satisfies
the inequality H(v) ̂  0 when H(u) ^ 0. By Proposition 7, we get v(x, t) ^ 0
on G x [0, oo). Since φ is an auxiliary nonnegative function in C?(G),
u(x, t)^Q on Gx(0, co). This completes the proof of (i). Another parts
of the lemma are proved in the same way.



Hp SPACE THEORY ASSOCIATED WITH SEMIGROUPS ON LIE GROUPS 141

COROLLARY 10. Suppose that a function u(x, t) is of class C\G x
(0, co)) such that sup ί > 0 |[w( , t ) | | p < co, 1 <; p <; °°, and u(x, t) converges

to zero as t—>0 in the weak star topology of LP(G) when 1 < p ^ co and

in the sense \ u(y, t)φ(y)dy —> 0 for all φ e C0(G) when p — 1. / / the
JG

function u(x, t) satisfies the heat equation H(u) = 0 or the Laplace equa-
tion L(u) = 0 on G x (0, oo)f then u(x, t) = 0 on G x (0, oo).

THEOREM 11 (The representation theorem), (i) A function u(xt t)
is of class C°°(G x (0, oo)) such that sup< > 0 | |w( , t)\\p < co for some 1 <:
p <Ξ co α^td ΐ£ satisfies the heat equation H{u) = 0 on G x (0, co) if and
only if it is of the form u(xf t) — T*f(x) such that when 1 < p 5ΞΞ co,
feLp{G) and when p = 1, feM{G).

Moreover, this representation is unique and \\f\\ — sup t > 0 ||w( , έ)| |P,
where \\f\\ means the Lp norm for 1 < p <J co αwd £/^ ίotαί variation
norm for p = 1.

(ii) 1̂ function u(xf t) is of class C°°(G x (0, co)) suc/t έ/iαί
sup ί > 01|«( , t ) | | p < °° /or some 1 <; ί) <Ξ co αwd i ί satisfies the Laplace
equation L(u) = 0 cm G x (0, co) if and only if it is of the form u(x, t) =
P*f(x) such that if 1 < p £ co, feLp(G) and if p = 1, feM(G).

Moreover, this representation is unique and \\f\\ = sup t > 0 | |w( , t) |]P

where \\f\\ means the Lv norm for 1 < p ^ co and ίfee ίoέaZ variation
norm for p = 1.

PROOF. We will show (i). Let ttβ(a;) — w(x, e) where e > 0. We put
ve(x, t) = u(xf e + t) — r*we(a?). Then from Theorem l(ii), (viii) and Theo-
rem 2(i), (ii), v£x, t) is of class C°°(Gx(0, co)) S U ch that sup ί>0 | |vβ( f t ) | | P <°°,
and vε(x, t) converges to zero as t —•> 0 in the weak star topology for

1 < P ^ °° and in the sense \ v£y, t)φ{y)dy —> 0 for all φ 6 C0(G) when

p — 1. Moreover, we have fl"(t;e) — 0. By Corollary 10, vε = 0, that is,
u(x9 ε + t) = Tιue{x) for all (a?, t) in <? x (0, co). Since ^ ε is uniformly
L p bounded, there exists a subsequence {uε,} such that wβ, converges to
feLp(G) when 1 < p <; co and feM(G) when p = 1 in the weak star
topology as ε'—^0. Hence Tιuεf{x) converges to T*f(x) pointwise for
each t > 0. On the other hand, u(x, ε' + t) converges to u(x, t) pointwise
as ε'->0. Therefore we obtain u(x, t) = T*f(x) for all (x, t) in G x (0, oo).

Since / is a weak star limit, we have | | / | | ^ sup ί > 0 \\u( , t)\\p. On
the other hand, by Theorem 2(ii), sup f > 0 | | ^ ( , t)\\p = sup ί > 0 | | T*f\\p ^ | | / | | .
Hence | | / | | = sup |[«( , t)\\P. Uniqueness of this representation is an
immediate consequence of Theorem 2.

The converse argument of (i) is easy.
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We can also prove (ii) in the same way.

PROPOSITION 12. Suppose a function s(xt t) is of class C°°(G x (0, °°))
satisfying s u p ί > 0 | | s ( , t)\\p < co for some 1 :g p <Ξ oo.

( i ) // the function s(xf t) satisfies the inequality H(s) ΞΞ 0, then
there exists a function u(x, t) in C°°(G x (0, oo)) which is a minimal
majorant of s(x, t) on G x (0, oo) satisfying H(u) = 0.

If s(x, t) is, in addition, nonnegativef then sup ΐ > 0 \\u( , t)\\p —
s u p ί > 0 | | s ( , t)\\p.

(ii) If the function s(x, t) satisfies the inequality H{s) <Ξ 0, then
there exists a function u(x, t) in C°°(G x (0, oo)) which is a maximal
function in all of functions satisfying the heat equation and less than
s(x, t) on G x (0, co).

(iii) If the function s(x, t) satisfies the inequality L{s) ^ 0, then
there exists a function u{x, t) in C°°(G x (0, oo)) which is a minimal
majorant of s(x, t) on G x (0, oo) satisfying L(u) = 0.

// s(x, t) is, in addition, nonnegative, then supf>0 \\u{ , t)\\p —
s u p ί > o f | β ( , t)\\p.

(iv) // the function s(x, t) satisfies the inequality L(s) ^ 0, then
there exists a function u(xf t) in C°°(G x (0, oo)) which is a maximal
function in all of functions satisfying the Laplace equation and less
than s(x, t) on G x (0, oo).

PROOF. In order to prove (i), we put s$(x) — s(x, e) and uε(x, t) =
T%(x) where ε > 0. Let vε(x, t) = s(x, e + ί) - uε(x, t). Then H(vε) ^ 0
when H(s) ̂  0. Since v£x, t) converges to zero as t —* 0 in the weak

star topology for 1 < p <Ξ oo and in the sense I vε(y, t)φ(y)dy~>0 for all

φ e C0(G) when p = 1. By Lemma 9, vB(xf t) ^ 0, that is, s(xy e + t) ^
uε(x, t) for all (x, t) in G x (0, oo). Since sε(x) is uniformly bounded in
LP(G), there exists a subsequence {sε,(x)} such that sε>(x) converges to
fe LP(G) for 1 < p S °° and fe M(G) for p = 1 in the weak star topology
as ε'-+0. Then ue>(x, t) converges to Tιf{x) pointwise for each t > 0.
On the other hand, s(x, εf + t) converges to s(x, t) pointwise. Therefore
Tιf{%) ^ s(x, t) and u(x, t) — Tιf(x) satisfies the heat equation.

In order to prove the minimality of u(xt t)f we choose any function
h(x, t) satisfying H{h) = 0 and u(x, t) Ξ> h(x, t) ^ s(x, t) on G x (0, oo).
By Theorem 11, h may be represented as the form h(x, t) — Tιg(x) where
g e LP(G) for 1 < p <; oo and g e M(G) for p = 1; then we have

uε(xft) = T%(x) S T'T'gix)

= Tt+εg(x) - h(x, t + ε) .
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Since h(x, t 4- ε')—+h(x, t) as e' —>Q, u{x, t) ̂  h(x, t) on G x (0, ©o). Hence
u(x, t) is a minimal majorant of s(x, £).

Next suppose s is a nonnegative function. Since the representing
function (measure) / of u is a weak star limit,

£ sup | | * ( . f t ) | | ,
i

where 11 /11 means the Lp norm if 1 < p ^ oo and the total variation
norm if p = 1, On the other hand, s being nonnegative,

sup| | s( , t)\\p ̂  s u p | | < , ί ) | | p .
ί>0 ί>0

By Theorem 11, sup ί > 0 ||s( , ί ) | | p = sup f > 0 \\u( , t)\\p = \\f\\. These conclude
the proof of (i).

In the same way we can prove (ii), (iii) and (iv).

4. The Hp space theory. We assume that G is a semisimple con-
nected noncompact Lie group with dimension n, K is a maximal compact
subgroup and (G, K) is a Riemannian symmetric pair of the noncompact
type. Then we have a Cartan decomposition of the Lie algebra g of
G: Q = ΐ + p. Let now {Xlf , Xrf Xr+U , Xv} a basis in g such that
{Xlr '* ,Xr} is an orthonormal basis for p with respect to the Killing
form B and {Xr+1, ••-, Xn) is an orthonormal basis for f with respect to
-B. Then the Casimir operator Γ = Σί=i -3ΓΪ - Σ*=r+i ^ ? is not only
right translation invariant, but also left translation invariant. Hence
the Laplace operator Δ = Σ?=i XJ is translation invariant under K, This
operator z/ leads to semigroups which we have written as Tι and P f

before. If / is any smooth zonal function, that is, /{k^xk^ = f(x) for
all x e G and all kίf k2 e K, then XJ — 0 for r <i <* n. Therefore Δf =
Γ/ for all smooth zonal functions /. Hence XT*f = Γ*-X/ and XP*f =
PtXf for all X e g and all £ > 0 whenever / is a smooth zonal function.
We consider a function /0 of the form f0 — (dPt/dt)(f)\t=tQ where t0 > 0.
For these fQ we define the Riesz transforms by

These i2< are well-defined on a dense subset of LP(G) for 1 < p < co. (See
[7], p. 132-p. 133.) Furthermore, Σϊ=i IIΛ t(/)| |p ~ | | / | | , for a zonal / e
L*{G), Kp<oo (see [7], p. 134).

The Killing form is denoted by ( , •) from now on. This form is
nondegenerate and has properties:

(σX, ffF) = (X, Y) , σ automorphism of g.

(X, [Y, Z}) = (Y, [Z, XI) = (Z, [X, Y]) , X, Y, Ze
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We shall say that an (r + 1) tuple of (real valued) functions F =
(%bOful9 , ur) on G x (0, oo) is a (generalized) Cauchy-Riemann system
if F is smooth on G x (0, oo) and zonal on G for each ί > 0, and satisfies
the equations:

(a) —u3- = XjUQ9 j = 1, , r.
at

(b) XtUj = X3 uif i, j = 1, , r.

(c) £ « 0 + Σ-£,•% = o.

LEMMA 13 (cf. [1]). If F = (uot uίt , wr) ΐs α Cauchy-Riemann
system, then

Liu,) = -ξ-uj + Σ ^ ^ i = 0 , i = 0, 1, ., r .

PROOF. Since [)?, p] c f,

Σ [-X"i» -XίK = o , i = l, , r .

By (a), (b) and (c),

U*i) = -^-tty + Σ -X"5uy

= x/|r«o + Σ Xί*) - Σ [Xi, X,K
\θt *=i / *=i

= - Σ [Xy, XilMi = 0 .
ΐ = l

Therefore L(uy) — 0, i = 1, * , r. When j — 0, by (a) and (c),

dt \dt ° i=i 3 / 9ί2 ° ί^Ί ~~Jdt

We say t h a t a Cauchy-Riemann system .F7 = (u0, u19 •• , u r ) belongs
to the space Hp

9 p > 0, if

,, nπ /f \ 1 / P

IIF\\p = sup (I \F\pdx)

{ul -\- uf + + ^)p / 2dίc 1 < co ,
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LEMMA 14 ([8], p. 234). Let F = (uQf ulf , ur) be a Cauchy-Riemann
system; then s = \F\P = (ut + u\ + + u*)*172 satisfies the inequality
L(s) ^ 0 /or p ^ (r - 1/r).

We shall now show the fact that the space Hp may be identified
with the space of all zonal functions in LP(G) when 1 < p < oo.

THEOREM 15. Suppose that F = (uύ, ul9 , wr) 6 ί P , 1< p< oo. T/te^
there exists a zonal function fQ e LP(G) such that

uo(x, t) = P*fo(x) , uά{x, t) = P -̂Ca;) , j = 1, ., r

where fά = i25 (/0) Jίίes^; transforms of fOf j = 1, , r. Conversely, if
foeLp(G), Kp<oot is zonal and fj=Rj(fo)t uo(x, t)=^P%(x) and Uj(x, t) =
PVsfa), i = If " f Λ ίλβw F = (u0, uί9 , wr) 6 i i p . Furthermore \\fo\\P **
\\F\\P. Hence for 1 < p < oo tfee space fί^ is identified with the space
consisting of all zonal functions in LP(G).

PROOF. Let f0 be of the form f0 = (3PV3t)(/)|t=ίo, t0 > 0 and a zonal
function in LP(G), l<p<oo. We put u0 = P'/o> /y - i^/0 and ttj -
j = 1, , r. Then we have, since we may assume / is zonal,

and so

xίUί = xix,Pt+t°f= xjxip
t+t°f+

= xjUi + [xe, XΛP'^f

= XjUt , ί, j = 1, •••, r ,

because [p, p\ c f. We also have

s * + s * - = k p t ( l p ' / u ) + s xlP"v

= ( f + δ X ! ) p ' + ' / = °
Since Σί= 1 HΛ,/!!, ~ | | / | | , (1< p < ~), it follows that

sup I
ί>0

that is, F^(uorulf *--,ur)eHp and.[ |F| | p ~ | |/0[|,.
Since the set of /0 of the above form is dense in the subspace of

all zonal functions of Lφ(G), 1 < p < °o, the above result is also valid
for every zonal f0 e LP(G) by a limiting argument and the fact that
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ΣIW/II,
dP*

dt
-(/)

t

(see [7], p. 60 and p. 131).
Conversely if F = (u0, uιt , ur)eHp, then sup ί > 0 \\UJ( , t)\\p < oo and

L(ui) = 0, j = 0, l, , r by Lemma 13. By Theorem 11 there exist
zonal functions f^Lp{G)t j = 0, 1, , r such that ud = P'/, , j" = 0,
1, , r. We set Vy = P*R3 f0, j = 1, -, r. Then we have

—% = X^o = TT î , i = 1, , r ,
at dt

that is,

p\R,ft)
at at

since (uOf vίf •••, vτ) is a Cauchy-Riemann system. Hence P\Rsf^ —
(see [7], p. 133). By Theorem 2', Rjf0 = fjf j = 1, , r.

In order to prove F. and M. Riesz's theorem, we need the idea of
nontangential arguments.

Denote by & a family of all balls B ~ B(r) with center e and
suitably small radius r contained in a local coordinate neighborhood of
e in G.

LEMMA 16 (The covering lemma). Let £f be a family of forms Bx
(xeG, Be&) whose union covers a measurable subset E of G. Then
we can select a disjoint subsequence {Bάxά} in φ such that Σil^il Ί^C\E\,
where C is a positive constant depending only on the dimension of G.

PROOF. See [6], p. 9.

We define the maximal functions for a locally integrable function /
and μeM(G) by

mf(x) = sup -ί- \ I f(y) \ dy
Be&t \H\ JBX'\B\

mμ(x) =

LEMMA 17. The following inequalities hold:
( i ) If feL\G) and a > 0, then

} \ \

where C is a constant independent on f and a.
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(ii) If μ e M{G) and a > 0, then

where C is a constant independent on μ and a.
(iii) If feLp(G), 1 < p £ oo, then

\\mf\\p^C\\f\\p

where C is a constant independent on f.
Hence the maximal function mf and mμ is finite almost everywhere.

PROOF. See [6], pp. 19-22.

PROPOSITION 18. Let f be a function in LP(G), 1 ̂  p ^ °o. Then
we have

( i ) lim —f— \ f(y)dy = f(z)
r^O \B(r)\ JB(r)x\B(r)\

at almost all x in G.

(ii) l im—1— \ \f(y) - f(x)\dy = 0
r-0 \B(r)\ JB(r)x

at almost all x in G.
(iii) For any measurable set E of G,

\B(r)\

at almost all x in E.
Let μ be a measure in M(G), and dμ = fdx + dv the Lebesgue de-

composition. Then we have

(iv) urn £f|$!M = f(x)

at almost all x in G.

PROOF. These follow from the routine argument by Lemma 17.

Let Γa(x0) = {(x, t)eG x (0, h): d(x0, x) < at}, and call it a truncated
cone at x0. We say that a function u(x, t) on G x (0, ©o) is nontangen-
tially bounded at x0 provided that for some a and h,

sup{\u(x, t)\: (x, t)eΓh

a(x0)} < oo .

LEMMA 19 (cf. [6], p. 201). Suppose u is a smooth function on Gx
(0, oo) satisfying the equation L{u) = 0. Let E be a measurable subset
of G and suppose that u is nontangentially bounded at every x0 e E.
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Then u is convergent as i—*0 at almost every xoeE.

PROOF. We may assume E is compact and is contained in some
local coordinate neighborhood U of G. We define the open region & by
& = \JX^EΓ\{X^). We can assume that \u\<\ in & and {xeG: d(x, E)<
2βk} c U. For fixed a and h with β > a and k > h, we also define the
open region & by ^ = (J^i? ^ W For sufficiently small ε > 0 let
Dε = {x 6 (?: (x, ε) e ^ } and <p£ a continuous function on G and less than
1 in absolute value, equal to u(x, ε) in E and vanishing outside Dε. Let
&(#, t) = P*9?β(a:). Define .̂(sc, ί) by «(», ί + ε) = ê(a;, t) + ψ β(a;, t). Since
{9?s(α;)} are uniformly bounded in the L°°(G) norm, we can find a φ(x) e
L°°(G) and a subsequence { êJ such that φε,-^φ weakly as ε'-^0. Hence

ΦΛX, t) = P%φt.(x)-+P*φ{%) = φ{x, t)

for each (xt t). Since it is obviously true that lime^0«(«, t + ε) = w(a;, t),
we have the existence of the limit ψ(x, t) = lim£^0 ê/(flc, t) = u(xf t) —
(̂ίc, ί). Since almost everywhere convergence holds for the function φ,

it remains to show that lim^0 ψ(xf t) = 0 a.e x in £?• To this end we
consider an auxiliary function H(x, t) on U x (0, oo) with the following
properties. We divide the boundary d& of & into three parts: d& =
^ 0 U ̂ + U M , where ^ 0 == {(a;, 0) e 3^}, ^ + = {(x, t) e ^ : at = d(x, E)}f

and ^ A = {(x, h)ed&}. H will have the following properties:
(a) H satisfies the equality L(H) = 0 in U x (0, oo).
(b) H^0 on U x (0, oo).
(c) H^2 on ^ U ^ A .

(d) limt^0H(x, t) = 0 for almost all x in £/.
We shall now construct a function H satisfying above properties.

Let χ denote the characteristic function of the complement of E. For
a constant C to be determined later we set

The properties (a) and (b) are obvious. For ^ h we can assure (c) by
taking C large enough. For any (x, t) e &+, the ball B(x, at) in G whose
center is x and which has radius at lies inside Ec Π U. Hence

r -L

c, 2/)T + 1 / 2 i

4-

-ί m-r«
 iy =constant
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Taking C large enough we see that the property (c) has been verified.
For any x e E with d = d(x, Ec) > 0, we have

\U-E\~>0 as ί « - 0 .+1/2

Since the set {x e E: d(x, Ec) = 0} is of measure zero, this verifies the
property (d). We shall now prove that \ψε(x, t)\ ^ H(x, t) when (x, t)e
&* If this were not so, Lemma 5(v) implies the existence of a sequence
of points (xkf tk) converging to a point on the boundary of έ% such that
lim inf (H(xk, tk) ± ψε(xkf tk)) < 0. The functions u and ψε are both bounded
by 1 in absolute value, and therefore |^ β | ^ 2 and so by property (c)
the limit of {(xk, tk)} must be on . ^ . But, since ψε(xkf tk) —• 0 there, we
obtain a contradiction by (b). Consequently we obtain | ψε(x, t) \ ̂  H(x, t)
when (a?, t) e ^ . Hence | f(x, t) \ ̂  H(xf t) for all (x, t) e &. Property
(d) gives us the desired result, limt^0 ψ(x, t) = 0 for almost all x in E.
This concludes the proof of Lemma 19.

PROPOSITION 20. Suppose s is a smooth nonnegative function satis-
fying the inequality L(s) ^ 0. Let Γ(x) be a suitably small truncated
cone of x in G contained in a product of a local coordinate neighborhood
of x and (0, oo). We put

8*(x) = sup \s(y, t)\
(y,t)eΓ(x)

and

s+(x) = sup I s(x, t) ]
ί>0

Then there exists a positive constant C not depending on x and s such
that

s*(x) ^ Cms+(x) .

PROOF. Bt(xf t) will denote the ball of radius t centered at (x, t)
and B(t) the ball of radius t centered at e in G. Then we have by
Lemma 5,

s(x, t) £ *• \ s(y, t')dydt'
Bt{X, t)\ JBt(x,t)

t, t')dydt'
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tn \B(t)\ JBίίϊβo

5Ξ Cms+(ίuo)

for any (a;, t) e Γ(#o).

THEOREM 21 (F. and M. Riesz's theorem). Let F = (u0, ult " tur)
be a Cauchy-Riemann system. If FeH1, then there exist functions
fά e L\G), j = 0, 1, , r such that Uj(x, t) = P'/,•(&), j = 0, 1, , r.

PROOF. Since FeH1, there exist measures μs e M(G), j = Q,lf 'fr
such that %(a?, t) = P*μs(x), j = 0,1, , r by Theorem 11. By Lemma
14, s = | F | P 0 , 1 > ί90 > ( ( r - l)/r), satisfies the inequality L(s) ^ 0. From
Proposition 12, there exists a majorant h{x, t) of s(α;, t) such that L(h) = 0
and

sup| |β( , t ) [ | p = sup | |Λ( . , ί ) | | p = | | / | | P
ί>0 ί>0

where h(xf t) = P*/(^), a nonnegative / e LP(G), p = (l/j)0). From Lemma 4,

s+(a;) = sup |β(a?, t ) | ^ sup | Λ(sc, ί) | ^ CMf(x) .
ί>0 ί>0

By Lemma 3, Lemma 17 and Proposition 20,

| |s*| |J = \s*p(x)dx ^ C \{ms+y(x)dx

^ C \s+*(x)dx ^ C tjwy(x) ^ C \f*(x)dx

= C\\f\\>

where s*(x) = snpίy,t)er(x) \s(y, t)\ for a truncated cone Γ(x) of x. Hence
s is nontangentially bounded at almost every xeG. By Lemma 19, we
get the existence of the almost everywhere limit lim^0 us(x, t) = / / # ) ,
j = 0,1, , r . Since sup ί > 0 h{x, t) = sup f > 0 Pιf(x) e LP(G), we obtain /y e
L^G) by the dominated convergence theorem, and the fact that dμ$(x) =
fj(x)dx, j = 0,1, •••, r, follows immediately from Theorem 2'.

COROLLARY 22. Lei F = (u0, u19 • , wr) 6e α Cauchy-Riemann system;
then FeHp, 1 5Ξ p < co i/ α?ιώ ô Ẑ / i /

sup I JFXX, t) I - F+(x) e L*(G) .

Moreover, \\F\\pp*> \\F+\\P.

PROOF. We will use notations used in the proof of the above theo-
rem. In the above theorem, we see that F+(x) ^ CMf(x)1/Po. Hence, by
Lemma 4,
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IIJΓ+iu = iF+{x)'dx ^ c ί A f / W ^ x

This proves the "only if" part.
Conversely,

^ (sup [F(a;, t)|»dx = \\F+\\ζ < - .
J ί>0
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