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Let C(T) be the Banach algebra of complex valued continuous functions
on the unit circle 7 in the complex plane and P(T) be the subalgebra
of C(T) consisting of those functions with continuous extensions to the
closed unit disc which are holomorphic in the open unit dise. Let m be
the normalized Lebesgue measure on T and H*T) be the L*(m)-closure
of P(T). Let P denote the orthogonal projection of L*m) onto H*T).
For ¢ in L*(m) the Toeplitz operator T; on H*(T) is defined by T,(f) =
P(sf) for f in HXT). Let .7 (C(T)) be the C*-algebra generated by
the set {T,; ¢ € C(T)} and Z°(C(T)) be the commutator ideal of .7 (C(T)).
Then it is known that there exists a *-homomorphism o from .7 (C(T))
onto C(T) such that the following sequence is exact,

(%) {0) — 2 (C(T)) —— T~ (C(T)) ~2~ C(T) — {0}

and o(T,) = ¢, where ¢ is the inclusion map. Further in this case &
coincides with the closed ideal F & (H*T)) consisting of all bounded
linear compact operators on H* T) and it holds

(+%) {0} — L F(HYT)) — .7 (C(T)) —2— C(T) — (0}

is exact and o(T,;)=¢ for all ¢ C(T). This fact is generalized to many
cases, to multiply connected domains in the complex plane [1] and to
strongly pseudo-convex domains in C* [16], [10], [L7] and in Stein spaces
[18]. In order to obtain the exact sequence (xx) it is important to get
the exact sequence (x). On the other hand, from an exact sequence of
type (x), itself, one can deduce some consequences (see [7, Section 3] and
Corollaries 1.6, 2.2, 2.3 and Proposition 2.8 in this note).

In this note we regard the notion of .77 (C(T)) as a linear represen-
tation 7 of C(X) = C(T) on a compact Hausdorff space X = T into the
C*-algebra of all bounded linear operators on a Hilbert space H = HXT)
satisfying

(1) Jlz]] £1 and z(1) = 1: identity operator,

(2) 7 is isometric on the uniform algebra A = P(T),

(3) t(gp) = t(g)r(p) for all g€ C(X) and pec A.
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In Section 1 we set up this formulation for any uniform algebra
and will obtain an exact sequence of type (*) (Theorem 1.4). Relating
to it we give an ideal theoretic characterization of joint approximate
point spectrum within the category of C*-algebras. These are closely
related to the Bunce’s results in [2]. In Section 2 we introduce a notion
of Toeplitz operator for uniform algebras and apply our results in
Section 1. In Section 3 we treat applications of the results in Section 2
to some concrete cases.

For any topological space X we always denote by C(X) the C*-algebra
of all complex valued continuous functions on X, endowed with supremum

norm.

1. Toeplitz operators in an abstract setting. Let X be a compact
Hausdorff space and A be a uniform algebra on X, i.e., 4 is a uniformly
closed subalgebra of C(X) which contains the constants and separates
points in X. We will denote by I'(4) the Shilov boundary of A and by
Q(A) the Choquet boundary (=strong boundary) of A. A bounded linear
functional @ of A is said to be a state if it satisfies the condition a(l) =

= |la|l. The set of all states of A forms a weak* compact convex
subset in the dual space of A. We also call an extreme point of this
state space a pure state of A. One may employ these definitions for any
linear subspace of a C*-algebra which contains the unit of the algebra.
In case of the algebra A, the set of pure states corresponds to the
evaluations of the Choquet boundary points (ef. [12, Section 6]). Thus,
a pure state of A has a unique pure state extension to C(X), and hence
by the theorem of Krein-Milman its state extension is unique, too. We
shall often use this observation in our subsequent discussions. We identify
the points of X with characters. The Shilov boundary is, as a subset
of characters of A, the weak™ closure of the set of pure states.

Now let = be a linear representation of C(X) into the algebra of
all bounded linear operators, & (H), on a Hilbert space H. We assume
that ¢ is contractive, i.e., ||7]| £ 1, and z(1) = 1, the identity operator
in H. This implies that 7 is a positive map of C(X) into ¥ (H).

PROPOSITION 1.1. Suppose that T is tsometric on A. Then for every
function ¢ of C(X) we have the inequality ||7(¢)|| = max {|¢(t)|; t € I'(A)}.
In particular, 1f X = I'(A) the representation T is an isometry.

ProOF. Let ¢ be a point in Q(A), then it gives rise to a pure state
a of 7(A). Let & be a norm preserving extension of @ on the subspace
7(C(X)). One easily sees that the functional @-7 is a state extension of
the character ¢ of A. From the observation stated before, we have
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l6(t)| = |@o(9)| < |l(@)]l -
Taking the closure of Q(4), we get the conclusion.

From now on we keep the following conditions for t:

(a) 7 is isometric on A4,

(b) z(pg) = t(p)r(p) for all p € C(X) and ¢ A.

The assumptions are abstract setting of the family of Toeplitz opera-
tors (ef. [7]) and our later result (Theorem 1.4) gives a general structure
theorem for the C*-algebra generated by the family {z(8); ¢ € C(X)}. With
these conditions 7|,, the restriction z in A, becomes an algebraic iso-
morphism and 7(A4) is a commutative Banach subalgebra of & (H) containing
the identity operator in H. Moreover we can show the following

LEMMA 1.2. For every function ¢ of A, t(¢) ts a subnormal operator
and hence a hypomnormal operator.

We recall that an operator T is hyponormal if T7T* < T*T.

PROOF. Since the map 7 is a positive map of C(X) into ¥ (H) with
(1) = 1, it is completely positive and by the theorem of Stinespring [14]
there exists a dilation space K of H and a *-homomorphism 7 of C(X)
into &“(K) such that t(¢) = Pr(¢)P, where P denotes the projection of
K onto the subspace H. Hence, by the assumption (b), we have for
every ¢€ A

Pr(¢)*n(¢)P = Pr(¢)*Pr(4)P .
Since 1 — P is also a projection, we get
[Pr(g)*(1 — P)][1 — P)n(¢)P] =0,
and hence
(I — P)m(¢)P =0,
i.e.,
7(¢) = Pr(p)P = n(g)P .
This means 7(¢) is subnormal. As is well known, every subnormal operator
is hyponormal.

Let 97 (C(X)) be the C*-algebra generated by the operators {z(¢);
¢€C(X)}. Since A is a uniform algebra on X the algebra C(X) is the
closed linear span of the set {py; @, »€ A} by the Stone-Weierstrass
theorem, and so one may regard .7 (C(X)) as the C*-algebra generated
by the set {t(p); p € A}, the commutative Banach algebra of subnormal
operators in H. Let @, be the pure state of 7(A) induced by a point ¢
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of Q(A). The following is a key lemma for our main result.

LEMMA 1.3. The state a, extends uniquely to a state of 7 (C(X))
and the extended state is a character of 7 (C(X)).

ProoF. Since 7(A) separates the characters of .7 (C(X)), it suffices
to prove that any state extension @ of @, is necessarily a character of
7 (C(X)). Let L be the left kernel of @ i.e., L={S e.7 (C(X)); &(S*S)=0}.
We note first that &(z(¢)) = ¢(t) for every ¢ of C(X) by the uniqueness
of the state extension of the state ¢t on A. Hence, for every function
@ of A we have

(1) &((z(p) — pE)*(t(p) — (1)) = Ax(P — P®)r(p — P(t)))
=dot(lp — @t)H) = 0.
Thus, the operator t(p) — @(¢) belongs to L and as L is a left ideal of

7 (C(X)) the set .7 (C(X))(z(p) — @(t)) is contained in L. Therefore,
a(S(z(p) — p(t))) = 0 for every element S of .7 (C(X)). This implies that

a(ST) = &(S)a(T) for all Se 7 (C(X)) and Tez(4).
Next, by Lemma 1.2 7(¢) — ¢(t) is hyponormal and so using (1) we get
&(z(®) — et (@) — P)*) =0,

and 7(p — @(¢))* belongs to L. Hence the same argument as above shows
that

AST*) = AS)AT*) = AS)AT) ,
and
aA(TS) = a(T)a(S) for all Se.7(C(X)) and Tez(4).
As 7 (C(X)) is the C*-algebra generated by 7(4) one may easily conclude
that & is a character of .7 (C(X)). This completes the proof.

We denote by 4 the character space of .7 (C(X)) with the weak™
topology. Let &°(C(X)) be the commutator ideal of .7 (C(X)). We define
a map of 4 into X as follows. Take a character & of .7 (C(X)), and
consider the state a = (B|7(C(X)))o7 of C(X) where B|7(C(X)) means
the restriction of B to 7(C(X)). We have

a(pg) = a(pp) = B(z(pp)) = B(z(4)(®)
= B(z(p)B(z(®)) = a(p)a(p) = a(p)a(s)

for all e C(X) and @€ A. Therefore, since C(X) is the closed linear
span of the set {py; @, € A}, @ is a character of C(X) and there is a
point ¢t; of X such that a(¢) = ¢(¢,) for every ¢ € C(X). The map, B —t;,
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is clearly a one-to-one continuous mapping of 4 into X. We denote by
I'(t) the image of this map. The set I'(7) is compact and it is homeo-
morphic to 4. With this preparation we state our main result in the
following.

THEOREM 1.4. I'(z) is a closed boundary for A. Moreover, there is
a =-homomorphism o of 7 (C(X)) to C(I'(t)) such that the short sequence

{0} —> F(C(X)) — .7 (C(X)) —> C(I'(2)) — (0}

18 exact and 0(t(¢)) = ¢|I'(r) for all ¢eC(X), where i s the inclusion
map.

Proor. By Lemma 1.3, I'(7) is a compact subset of X which contains
Q(A), hence it is a boundary for A. On the other hand, the homeomorphism
between I'(z) and 4 induces a *-isomorphism between the algebras C(I'(z))
and C(4), but the latter algebra may be regarded as the quotient C*-
algebra 7 (C(X))/% (C(X)) because the ideal & (C(X)) is the intersection
of the kernels of all characters of .7 (C(X)). Thus, this defines naturally
a *-homomorphism p of .7 (C(X)) onto C(I'(7)) and by definition p(z(¢)) =
6| I'(z) for every ¢ e C(X). This completes the proof.

Next, let J be the kernel of 7, then Jis a closed self-adjoint subspace
of C(X). Besides, from the assumption for 7z, the function ¢p belongs
to J for all gcJ and pe A. Hence, ¢3 = (gp)eJ. It follows that J is
an ideal of C(X), and there exists a closed subset S(z) of X such that

J = {peC(X); ¢ls» = 0} .

One easily verifies that S(z) is the smallest closed set for which = an-
nihilates the set {$€C(X); ¢ls» = 0}. We call S(zr) the support of <.
Then the following corollary of the above theorem is a sharpened estima-
tion of the norm of 7(¢) in the present situation.

COROLLARY 1.5. For every function ¢ of C(X), we have the estima-
tiom;

max {[¢(¢)[; £ € S(0)} = [|z(@)|| 2 [|7(¢) [lp = max {[§(¢)[; € (D)} .
In particular, if ©(¢) is quasi-nilpotent ¢ vanishes on I'(t). Here || |,
denotes the spectral norm.

PrOOF. The last estimation is a consequence of the theorem. For
the first inequality it is enough to mention that the maximum is equal

to the quotient norm of ¢ in C(X)/J.
The above inequalities show that S(z) contains I'(z) but the support
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S(t) may or may not coincide with I'(z). One can say the same thing
about I'(z) and I'(A) as well.

COROLLARY 1.6. Suppose that the weak closure of & (C(X)) coincides
with the weak closure of 7 (C(X)). Then, if >, [1™, ©(4;,;) 18 compact,
the function D%, TI7. ¢:; vanishes on I'(T).

The assumption is particularly satisfied when .7 (C(X)) is irreducible
and & (C(X)) = {0}.

PROOF. Let 8 be a character of .97 (C(X)) and B be its pure state
extension to & (H). Let &% (H) be the ideal of & (H) consisting of
all compact operators on H. Since the dual space of & (H) is the l,-sum
of the dual of <& (H), i.e., the space of o-weakly continuous linear
functionals on &(H) and the polar of &% (H) (Dixmier [4; Theorem 3}),
B is either o-weakly continuous or vanishing on & (H). From the
assumption, however, & can not be o-weakly continuous, hence it vanishes
on & (H). It follows that the intersection ¥ Z(H)N .7 (C(X)) is
necessarily contained in % (C(X)), so that the function >, TI;¢:;; =
(2 115 7(¢:3)) vanishes on I'(7).

In general, the ideal &’ (C(X)) could be zero so that .7 (C(X)) would
become a commutative C*-algebra. But this happens only in trivial cases
because if it is the case then = turns out to be a x-homomorphism of
C(X) to v (C(X)) = 7(C(X)) and there are no nontrivial dilations for z.

Let (T, T,, --+, T,) be an n-tuple of commuting bounded operators
on H. Define the joint approximate point spectrum o.(T,, Ty, ---, T,) to
be the set of all complex n-tuples (A, \,, -+, X,) such that the set

LHYNT, —N) + L HNT, — M) + oo+ LHNT — M)

forms a proper left ideal of <(H). In [2], Bunce has shown that the
joint spectrum o.(T,, T,, -+, T,) for those operators 7T,’s in v(A) consists
of the n-tuples {(a(T)), a(T,), -+, &(T,)); @ € 4. In connection with this
we shall show an improved version of the essential part of Bunce’s
arguments in [2]. Namely, we have

ProposiTiON 1.7. Let (T, T,, -+, T,) be an n-tuple of commuting
operators on H and let B be a C*-subalgebra of < (H) with unit which
contains {T,, To, -+-, T,}. Then, the following statements are equivalent
Jor a complex n-tuple (A, Ny, ** ) Np)e

( 1 ) (7\'1’ Agy =00y 7"%) eak(Tu Tz; tt Tn)

(2) B(T,— )+ B(To — M) + <+« + B(T,, — \,)

s a proper left ideal of B,
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(3) there exists a state a of B such that a(T,) =, and a(ST,) =
a(S)a(T,) for all Se B and 1,

(4) there exists a state B of & (H) such that B(T,)=x, and B(ST,) =
B(S)B(T;) for all Se B and 1.

PrOOF. (1) = (2). Suppose that
B(T, — ™) + BT, —N) + -+ + B(T, —\,) = B
Then, there exists an n-tuple (R, R,, ---, R,) of operators in B such that
Rl(Tl - )"1) + Rz(Tz - )\'2) + oo+ Rn(Tn —A) =1.
But this means that
LHYT —N) + LHNT, = N) + oo + LHNT, — N) = L(H),
whence (A, Ay ++-, \,) does not belong to ¢.(T, T, -+, T,).
(2)=(3). From the assumption one sees that the closure of the
set, B(T, — \,) + B(T, — \y) + -+ + B(T, — \,), is a proper left ideal of
B, too. Hence, there exists a state of B which vanishes on this left

ideal (by [5, Theorem 2.9.5] the state can even be a pure state). Thus,
the assertion (3) follows.

(3)=(4). Let @ be a state extension of @ to < (H) and let L and
L be left kernels of @ and a, respectively. By the assumption, T, — X\, €
Lc L for all 4, so that the set <2 (H)T, — \,) is contained in L for all
i. Hence, & vanishes on these sets. The assertion (4) = (1) is immediate,
for B vanishes on the set

LHNT, —N) + LHNT, — N) + oo + L(H)T, — )
This completes the proof.

The proposition says that at least within the category of C*-algebras
we get a nice ideal theoretic characterization of the joint spectrum that
does not depend on the choice of the algebra containing {7, T, -+, T.}.
It is also to be noticed that in case B=C*T, T,, ---, T,) the required
state a in the assertion (3) turns out to be a character whenever we
have an implication, (A, Mgy ***, M) € 0Ty, Ty <oy To) = (Xy, Ngy =+, Xp) €
o(T¥, Tk, ---, T¥). The hyponormality of operators in Bunce’s theorem
is one of the typical conditions to yield the above implication.

2. Toeplitz operators for uniform algebras. As in Section 1 let X
be a compact Hausdorfl space and A be a uniform algebra on X, and
I'(A) be the Shilov boundary of A. Now let ¢ be a finite nonnegative
regular Borel measure on X. Then we define H*(xt) as the L*y) closure
of A and for every ¢ € L>(z) we denote by M, the multiplication operator
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on LX), defined by M;f = ¢f for feL*y) and by P the orthogonal
projection of L*(x) onto H*(z). We define Toeplitz operator T, on H?*(y)
with L*(y¢) symbol ¢ by

T¢f = PM¢f for f GHZ(/J) .

Let H>(y) be the weak™ closure of A in L>(y¢). Then it is easily seen
that for each ¢ e L=(x) and ¢ € H*(p)

T.f = ¢f and T,T.f = T,f for feH(y).

Hence T, is a subnormal operator on H*(y) if ¢ e H=(x). It is also clear
that the mapping ¢ — T, is contractive for ¢e L~(¢) U C(X). Further
we have

[ Tell = ll@lli= for @& H=(y).
Indeed, if @ e H*(#), we have

({lovar)” = (Jirtian)” s nrpniys < 20

(=12 --).
Letting j— o we have |[@|[y=u = || Ty||. Since T, is a contraction we
have ||@|l o = || Tyll. Now let ¢ be a linear mapping from C(X) into

Z(H*(p)) defined by
(¢) =T, for ¢eC(X).

Then 7 is a linear representation of C(X) into & (H*(u)) satisfying all
the conditions for = in Section 1, whenever supp ¢ D I'(A). Hence applying
Theorem 1.4 we have

THEOREM 2.1. Suppose support ¢ = I'(A). Then there exists «a
*-homomorphism o from 7 (C(X)) onto C(I'(A)) such that the short
sequence

{0} — ZF(C(X)) —— T (C(X)) —> C(I(A)) — (0}
1s exact and O0(T;) = ¢lrwy for all ¢ € C(X), where i is the inclusion map.
ProOOF. In this case we have
I'(A) = supp D> S(t) D I'(t) D I'(4),
and hence I'(4) = I'(z). Using Theorem 1.4 we get the desired conclusion.

REMARK. From a uniform algebra A we can always construct a
model satisfying the assumptions in Theorem 2.1. Let @ be a nonzero
multiplicative linear functional on A and g be a representing measure
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for @, i.e., Sfd/z = @(f) for all f € A, concentrated on the strong boundary
of A (see Gamelin [9, p. 60] for the definition of strong boundary and
p. 60 for the existence of such measures). Then I'(A|.pp) = SUPP K.
Let A’ be the uniform closure of A, Then A’ is a uniform algebra
on supp ¢« and A’ and g satisfy the assumptions in Theorem 2.1.

As consequences of Theorem 2.1 we have

COROLLARY 2.2. Let A, pt be as in Theorem 2.1. Then if ¢c C(X),
I Ts1] = [|T4llsp = max {|g(x)|; € '(A)} .
In particular, if ¢ € C(X), Ty is quasi-nilpotent if and only if |, = 0.

COROLLARY 2.3. Let A, tt be as in Theorem 2.1. Suppose H*(p) +
L¥(pt) and every real valued function in H*(t) is @ constant function. Then
vf {¢ijy 1=1,2,--+,m, §=1,2,+ -, m} are functions in C(X) and 33, [17. Ty,;
18 compact, the function >7, [I7i ¢ =0 on I'(A). In particular, if
0 e C(X), then T, is compact if and only if ¢ = 0 on I'(A).

PrOOF. By corollary 1.6 it suffices to show that .7 (C(X)) is irreducible
and Z(C(X)) # {0}. Assume .7 (C(X)) is not irreducible. Then there
exists an orthogonal projection @ of H*(z) such that Q@ # 0,1 and QT =
T,Q for all ¢ in A. Set g = Qle H*(¢). Then for any pc A we have
Qp = Q(T,1) = T,(QLl) = pg. Hence for any ¢, € A we have

(99, ¥) = Qp, ) = (@, ¥) = (Qp, @¥) = (gp, g¥) = (9P, ¥) ,

and hence
o — lgmpran = 0.

Since A separates points in X, the set {pv; @, 4 € A} is linearly dense in
C(X) by the Stone-Weierstrass theorem. Hence we get

g=1g" p—ae..
By the assumption ¢ must be constant, and hence either g = 0or g = 1.
This contradicts @ # 0,1. Hence .77 (C(X)) is irreducible. Thus it is
weakly dense in &Z(H*y)). Now assume & (C(X)) = {0}. Then 7 (C(X))
is commutative and hence &(H?*(y)) is also commutative in this case.
This implies dim H*g) = 1 and so H*(y) = L*(¢) = C, a contradiction.
This completes the proof.

If we apply Theorem 2.1 to the Banach algebra H>=(y), we have

THEOREM 2.4. Let A be a uniform algebra on a compact Hausdorff
space X and pt a finite nonnegative regular Borel measure on X. Suppose
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I'(H>(p)) 18 homeomorphic with 2 (L>(t)): the space of all mon-zero
multiplicative linear functionals on L=(tt). Then, there exists a *-homo-
morphism o from 7 (L=(y)) onto L>(tt) such that the short sequence

(0} — Z(L=(1)) — T (L(12)) —— L=(4) —> {0}

18 exact and o(Ts) = ¢ for all ¢ L>(y), where ¢ is the imclusion map
and 7 (L>(y)) is the C*-algebra generated by the set {T,; ¢ € L=(pr)} and
& (L=(tt)) is the commutator ideal of 7 (L=(p)).

Proor. Let Y = _#Z(L*(y)). Then, as is well known, L>(y) = C(Y)
and s can be seen as a measure on Y with support ¢ =Y. Further
H>(¢) can be seen as a closed subalgebra of C(Y). The assumption
I'(H*(¢)) =Y implies that H>(z¢) is a uniform algebra on Y. Hence
applying Theorem 2.1 and using the isomorphism L=(y¢) = C(Y) we get
the desired conclusion.

We shall state some conditions to satisfy the assumptions in Theorem
2.4 as a lemma.

LEMMA 2.5. The following statement (1) tmplies (2). (2), (8), and
(4) are equivalent each other.

(1) The set {f = Danue |95]; 95 € H*(0)} is L=(p)-norm dense in the
set of positive L=() functions.

(2) H*(p) separates elements in 7 (L>(p0) and I'(H=(pt)) =7 (L=(t1).

(3) I'(H=() = A (L=()).

(4) I'(H>(p)>D A (L) g=wy and the set {pi; @, 4 € H=(p)} 8
linearly dense in L=(p).

Proor. (1) = (2). Let Y = _#Z(L~(x)) and 7 be the Gelfand transform
from L>=(¢) onto C(Y). Then 7 is an isometrical isomorphism. Note also
a(f) =a(f) and a(g) = 0 forall @e Y, f € L=() and g € L>(¢£) with g = 0,
since « is a state. Now let @, 8¢ Y and a(f) = B(f) for all fe H=(x).
Then for any g H=(z) we have (a(g))) = a(lg) = a(99) = a(g)a(@) =
a(g)a(g) = B(g)B(g) = (B(gl))*. Since a(|g]) = 0, B(lgl) = 0, we get a(g]) =
B(g|). Hence by the assumption and the linearity and continuity of
a, B we have a(f) = B(f) for all feL>(¢) with f = 0, and hence for all
S eL>(y). This shows that H=(y) separates elements in Y. Thus the
mapping & a €Y — a|g=y is a homeomorphism from Y into _Z(H>=(p)).
Now suppose V' is a neighborhood of a point v in Y. By Urysohn’s lemma
there is an h e L=(y¢) such that 0 < nh) <1, p(h)(v) = 1, and p(h)(y) =0
for y€ Y\V. By the assumption there are a finite number of g, ---, g, €
H>(¢t) such that || — 3%, |g;]]l. < 1/4. Hence we get
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7(lg;)(w) > 3/4,

7(g;)(y) <1/4 for yeY\V.

Here we can take 7(|g;))(v) = 7(g;)(v) =0 (4 =1, ---, k), multiplying each
g; by a constant of modulus 1, if necessary. Hence we have

7(30:)0) > 34,

(S e)w| <1t for yer\v.

Thus &(v) is a point in I'(H>(¢)) and hence we have &(Y) = I'(H™(x)).
(2) = (4). Since H=(y) separates points in I'(H=(y¢)) = Y and the set {pv; @,
€ H*(¢)} is conjugate closed, that set is linearly dense in C(Y) = L>(y)
by the Stone-Weierstrass theorem. (4)=(3). As in the proof of the step
(1)—(2) the mapping & @ e Y — @[y is one-to-one. Hence I'(H*(¢)) =
&Y), since I'(H>(t)) D &(Y). (8) = (2). Clear, since H=(yt) separates points
in T'(H=(41)).

Also in this case we can formulate results similar to Corollaries 2.2
and 2.3.

COROLLARY 2.6. Suppose I'(H™(t)) = .4 (L>(t). Then || Tyllsy =
| Tsllop = ll @]l for all ¢ L=(pr). In particular, if ¢ € L=(), Ty is quasi-
nilpotent if and only if ¢ = 0.

COROLLARY 2.7. Suppose I'(H=(w))=.#(L>(tr)) and H*(p)7L*(tt) and
every real valued function in H*(t) is comstant. Then, if ¢c L=(p), T,
is compact if and only if ¢ = 0.

k
>
J=1

k
>
Jj=1

Now as to joint approximate point spectrum for n-tuple of functions
in A or H*(¢t) we have the following.

ProPOSITION 2.8. Let A, pt satisfy the assumptions in Theorem 2.1

(resp. Theorem 2.4). Then for ¢, ¢, -, ¢. €A (resp. H*(1)) we have
Ux<T¢1’ T¢2; ) TM)
= {(g,(@), 8a(®), ++ +, $u(®)); @ € SUPD tUresp. A (L=(1)))} -

PrRoOOF. Immediate from Theorem 2.1 (resp. Theorem 2.4) and Pro-
position 1.7.

REMARK. One can prove the above proposition by a result of Zelazko
([18] p. 240 in the proof of theorem), and then can prove Theorem 2.1
and 2.4 using it and the Bunce’s theorem. Similarly one can prove
Theorem 1.4 combining a result of Zelazko and the Bunce’s theorem.
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Finally in this section we mention essential spectra of Toeplitz
operators.

PROPOSITION 2.9. Let A, pt satisfy the assumptions in Corollary 2.3
(resp. Corollary 2.7). Suppose further <« (C(X)) N L& (H* () + {0}.
Then, if ¢ € C(X)(resp. L=(p)), the spectrum o(M;) of M, is contained in
the essential spectrum o,(T,) of T;.

PRrROOF. In these cases .7 (C(X)) and .9 (L>(x)) are irreducible and
z(C(X)) and & (L>(y)) are non-trivial respectively. Hence the assumption
Z (C(X) N & (H () # {0} implies & & (H* () C & (C(X)) C & (L=(14).
Thus from Theorem 2.1 (resp. Theorem 2.4) it follows that o(M,) is
contained in the essential spectrum (spectrum modulo compact operators)
of T,.

3. Applications. a) Let A be a hypo-Dirichlet algebra on a compact
Hausdorff space X, @ be a non-zero multiplicative linear functional, and
# be the unique logmodular measure for @. Then it is known that
I'(H>(p¢)) = . #(L>(t)). Hence one can apply Theorem 2.4.

b) Let D be a bounded domain in the complex plane whose boundary
X = 0D consists of n non-intersecting analytic Jordan curves and let a
be a point in D. Let A be the uniform algebra on X consisting of
continuous functions on D which are holomorphic in D and let g be the
harmonic measure on X with respect to @ and D. Then A is a hypo-
Dirichlet algebra and supp ¢# = X. Hence by Theorem 2.1 we have C(X) =
T (C(X)|#(C(X)). Thus after proving Z(C(X)) = L& (H*(y) as in
Abrahamse [1, p. 275] one can give a somewhat different proof of the
theorem of Abrahamse.

¢) Let £ be a relatively compact strongly pseudo-convex domain
with smooth boundary X in a Stein manifold M, and A be the uniform
closure on X of functions holomorphic in a neighborhood of 2. Then A
is a uniform algebra on X and I'(4) = X. Let p be the canonical measure
on X induced by a hermitian metric on M. Then supp ¢# = X. Further
by a theorem of Folland-Kohn ([8], p. 102, Theorem 5.4.12) one can show
7z (C(X))c ¥z (H*(). Clearly H*p) + L*p) and every real valued
H?*(pt) function is a constant. Hence .77 (C(X)) is irreducible and & (C(X)) #
{0}, and hence & (C(X)) = ¥ = (H*(#)). Now applying Theorem 2.1 we
have 7 (C(X))/ <& (H*p)) = C(X). This is also true for some Stein
spaces. Similar results are gained if we replace ¢ by the volume form
on 2. These are generalizations of the theorem of Venugopalkrishna and
Janas. Details will appear elsewhere.



{1]
[2]
[31]
[4]

[5]
[61]

(7]
[8]

(9]
{10]

f11]

(12]
(13]

[14]
[15]
(16]
17

[18]

TOEPLITZ OPERATORS FOR UNIFORM ALGEBRAS 129

REFERENCES

M. B. ABRAHAMSE, Toeplitz operators on multiply-connected regions, Amer. J. Math.,
96 (1974), 261-297.

J. BUNCE, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math.
Soc., 29 (1971), 499-505.

L. A. CoBurN and R. G. DoucLas, C*-algebras of operators on a half-space I, THES
Publ. Math., No. 40 (1971), 59-67.

J. DIXMIER, Les fonctionelles linéaires sur 1’ensemble des opérateurs bornés d’un espace
de Hilbert, Ann. of Math., 51 (1950), 387-408.

J. DIXMIER, Les C*-Algébres et leurs Représentations, Gauthier-Villars, Paris, 1964.

R. G. DougLAs, Banach Algebra Techniques in Operator Theory, Academic Press, New
York, 1972.

R. G. DoucLas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS
15, Amer. Math. Soc., Providence, R. I., 1973.

G. B. FoLLaND and J. J. KonN, The Neumann Problem for the Cauchy-Riemann Complex,
Ann. Math. Studies, Princeton Univ. Press, Princeton, N. J., 1972.

T. W. GAMELIN, Uniform Algebras, Prentice Hall, Englewood Cliffs, N. J., 1969.

J. JaNAS, Toeplitz operators related to certain domains in C*, Studia Math., 54 (1975),
73-79.

J. JaNas, Toeplitz operators for a certain class of function algebras, Studia Math., 55
(1975), 157-161.

R. R. PHELPS, Lectures on Choquet’s Theorem, van Nostrand, Princeton, N. J., 1966.

H. Sato AND K. YABUTA, Toeplitz operators on strongly pseudo-convex domains in Stein
spaces, T6hoku Math. J., 30 (1978), 153-162.

W. F. STINESPRING, Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6 (1955),
211-216.

E. L. Stout, The Theory of Uniform Algebras, Bogden & Quigley, Tarrytown-on-Hudson,
New York, 1971. .

U. VENUGOPALKRISHNA, Fredholm operators associated with strongly poseudo-convex do-
mains in C", J. Functional Analysis, 9 (1972), 349-372.

K. YABUTA, A remark to a paper of Janas: Toeplitz operators related to a certain
domains in C", to appear in Studia Math., 62 (1977).

W. ZELAZKO, On a problem concerning joint approximate point spectra, Studia Math.,
45 (1973), 239-240.

DEPARTMENT OF MATHEMATICS
YAMAGATA UNIVERSITY
YAMAGATA, JAPAN

AND

COLLEGE OF TECHNOLOGY
KyoTo TECHNICAL UNIVERSITY
MATSUGASAKI, KYOTO, JAPAN








