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0° Introduction. A Banach-Lie group is a combined concept of a
Banach manifold and a topological group. Namely, a topological group
G is called a Banach-Lie group (modeled on a Banach space E), if G is
a C*-Banach manifold on E, %k = 3, and the group operations are of class
C*. As in the case of finite dimensional Lie groups, G carries a real
analytic structure ([13]), and the tangent space g at the identity being
canonically identified with the model space E has a structure of a Lie
algebra such that the Lie bracket product [u,v] on g is a bounded
bilinear operator, i.e. there is a constant C such that ||[u, v]|| < C||u]| ||v]|,
where by taking a suitable multiple of the norm, C may be taken to
be unity or zero.

A normed linear space with a bounded bilinear Lie bracket product
is called a mormed Lie algebra, and if it is complete with respect to the
norm topology, it is called a Banach-Lie algebra. A Banach-Lie algebra
is called enlargable ([20]) if it is a Lie algebra of a Banach-Lie group.
Finite dimensional Lie algebras are always enlargable. However, there
exist non-enlargable Banach-Lie algebras ([20]), while every Banach-Lie
algebra is a Lie algebra of a local Banach-Lie group (cf. [3] and [6]).

The existence of non-enlargable Lie algebra is, however, the only
known fact with no finite dimensional analogue. Moreover, there are
good criteria for enlargability, one of which is stated as follows: Let
g, b be Banach-Lie algebras such that there is a continuous Lie algebra
monomorphism ¥ into g. If g is enlargable, then so is §. (Cf. [20].)
Most of the theorems hold, and indeed are proved by the classical pro-
cedures from the theory of finite dimensional Lie groups. (Cf. [3], [6]
and [13].) The implicit function theorem and Frobenius theorem hold
also in the category of Banach manifolds under the restriction that the
considered linear space has a direct summand (splitting).

There are a lot of examples of Banach-Lie groups in operator cal-
culus ([8] and the bibliography therein). Most of them are generaliza-
tions of classical groups with various topologies for spaces of operators.
In many of those groups, separability does not hold anymore even if
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the group is connected. In addition to the closedness of the linear sub-
spaces which we consider, a second point about which we must worry
to generalize the theory of finite dimensional Lie groups to the infinite
dimensional case is the lack of separability. Anyway, Banach-Lie groups
are properly enlarged mathematical object which covers the classical
theory of Lie groups.

So, the following seems to be a natural question: Is there a finite
dimensional manifold on which an infinite dimensional Banach-Lie group
acts effectively and transitively? The answer is “yes,” but there might
be few examples as we can see in this paper.

Throughout this paper, a manifold M means always a connected,
separable, finite dimensional and C~»-manifold without boundary. Let
I'(TM) be the Lie algebra of all C~-vector fields on M with the C>-
topology. By 2(M) we denote the group of all C~-diffeomorphisms on
M. Separability is not assumed for the Banach-Lie groups in this paper.

First of all, we shall prove the following theorem in 1°, which re-
duces our problem to the corresponding problem on Lie algebras:

THEOREM A. If a commected Bamach-Lie group G acts smoothly and
effectively on a manifold M, then there is a continuous imbedding of
the Lie algebra g of G into I'(TM) satisfying the following:

(=) Ewvery wecg s complete, i.e. there is a one parameter tranms-
formation group exptu generated by the vector field wu.

(x+) Ad (exptu)g = g, where for a smooth diffeomorphism ¢ of M,
Ad (p)u s defined by (Ad (p)u)(x) = dpu(p™x).

Conversely, let g be a Banach-Lie algebra such that there is a con-
tinuous inclusion of g into I'(TM) and that g satisfies (x). Then g s
enlargable. Indeed there is a Bamnach-Lie group G such that the Lie
algebra of G is g and that G is a subgroup of Z(M). In particular,
g satisfies (xx).

The method of the proof of the above theorem yields also that G
acts smoothly and transitively on a manifold, if and only if the action
is ample, i.e. infinitesimal transitive at every point. (Cf. 1°.) Therefore
by the implicit function theorem, the isotropy subgroup H of G is a
closed Banach-Lie subgroup such that the manifold is diffeomorphic to
the factor space G/H. Thus, our problem is reduced to the following:
Find a pair of infinite dimensional Banach-Lie groups (G, H) such that
(i) G is connected, (ii) H is a closed Banach-Lie subgroup of G, (iii)
dim G/H < oo and (iv) N,cq 9H9™ = {e}.

However, the following theorem shows that such examples are not
so rich (cf. 2°):
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THEOREM B. If a connected Banach-Lie groun G acts effectively,
transitively and smoothly on a compact manifold, then G must be a
finite dimensional Lie group.

Moreover, the following has been known in the joint work with P.
de la Harpe [16]:

THEOREM. Let g be the Lie algebra of an infinite dimensional
Banach-Lie group G. Suppose g has mo proper closed finite codimen-
stonal ideal. Then the only possible smooth action of G on a finite
dimensional manifold is trivial.

The above theorem show that g has by no means a character of
simple Lie algebras. A Banach-Lie algebra g will be called solvable if
the descending series g=g,09, D08, D --- of derived algebras g, =
[84—1 Gu_i]” (—means the closure) finishes at a finite stage g, (i.e. g4z = 0).
g will be called almost solvable if there is a finite codimensional closed
ideal p of g such that o is solvable. The following will sharpen the
above theorem:

THEOREM C. If a connected infinite dimensional Banach-Lie group
G acts smoothly, effectively and transitively on a mon-compact manifold,
then G must be almost solvable.

The above theorem will be proved in 3°.

In 4°, several examples of Banach-Lie groups acting effectively,
smoothly and transitively on a manifold will be given.

The idea of the proof of both Theorems B and C is based on the
following simple fact: Since g is a Banach-Lie algebra, ad (u):g+g is a
bounded linear operator for any we€g. However since every weg can
be canonically identified with a smooth vector field on a manifold M,
ad (u) must have a character of unbounded operators because ad (u) is
a differential operator. Indeed, the character of unboundedness appears
in various way. For instance, if g contains x(d/0x), x*0/ox) and «*(9/ox)
then g contains 2™(d/0x) for all » =0 and [x(0/dx), ™(9/0x)] = (n — 1)x"(0/ox).
Thus, ad (x(9/0x)): g — g can not be bounded in any norm.

By the above theorems and the above idea of the proof, it seems
to be natural to conjecture that there exist few examples of infinite
dimensional Banach-Lie groups acting smoothly, effectively and transi-
tively on a finite dimensional manifold.

The main idea of making such examples is as follows: Though d/ox
is a differential operator, it is a bounded linear operator of E = {3} a,x™;
supn!|a,| < o} into itself, where the norm on E is defined by ||u|| =
supn!|a,|.
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1° Some remarks on Banach-Lie groups and Banach-Lie algebras.
In this section, the proof of Theorem A and some other remarks on
Banach-Lie groups will be given.

The first half of Theorem A is easy to prove. Indeed, let G be a
connected Banach-Lie group acting effectively and smoothly on a manifold
M and let o be the action. p: G+ (M) is then a monomorphism. For
any ueg, there is a one parameter subgroup {exp’ tu;tec R} of G gen-
erated by u defined by the unique solution of (d/dt)x, = w-2x,, z, = e,
where « - ¢ means the derivative of the right translation R,: G — G. Set
do(u) = (d/dt)|,—,o(exp’ tu). Then, do(u)e '(TM) such that exp tdo(u) =
o(exp’ tu). Thus, we see that g satisfies (x). dp:g+— I'(TM) is obviously
a Lie monomorphism. For the proof that g satisfies (xx), we have only
to note the following identity:

(1) Ad (exp dpo(u))do(w) = dp(Ad (exp’ uj’u) ,

which is proved by showing that exp’ (Ad (exp’ u)v) = exp’u-exp’v-
exp’ —u and p(exp’ (Ad (exp’ u(v)) = exp do(u) - exp dp(v) - exp — dp(u) =
exp (Ad (exp do(w))do(v)).

The second half of Theorem A is proved in the following

PRrOPOSITION 1.1. Let g be a Lie algebra consisting of C -vector
fields on M with the property (x). Suppose that g is a Bamnach-Lie
algebra under a stromger topology than the C~-topology on M. Then g
satisfies (xx) and enlargable.

ProorF. Let G be the group generated by {exp u; uw e€g}. G is a sub-
group of Z(M). On the other hand, since g is a Banach-Lie algebra,
there is a local Banach-Lie group V with g as the Lie algebra. For any
% €g, a local one parameter group exp’ tu is uniquely defined in V as
the solution of (d/dt)x, = u -x,, x, = ¢. By the inverse mapping theorem,
the exponential mapping exp’ is a real analytic diffeomorphism of a
neighborhood U’ of 0 in g onto a neighborhood V' of the identity e inV.

Define a mapping 0: V' — G by o(exp’ u) = expu. Then, p(exp’su -
exp'tu) = expsu-exptu. For exp'ueV’, define Ad(exp’u)v by
(d/ds)|,—, exp’ u - exp’ sv -exp’ —w. Since g is the tangent space at the
identity e of the Banach manifold V’, we get Ad (exp’ u)v €g, and hence
Ad (exp’ u)g = g. Now, note that Ad (exp’tu)v is a unique solution of
the equation

(2) (d/dtyw, = [u, w,] , Wy =7 .

On the other hand, (2) can be regarded as an equation with respect to
vector fields on M. The unique solution of (2) is given by Ad (exp tu)v.
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Thus, we get
(3) Ad (exp’ tu)v = Ad (exp tu)v , veg,uelU .

Since G is generated by {exp u;u € U'}, g satisfies (xx).

Next, we prove that o is a local homomorphism. At the first, we
have

(4) ((d/dt)(exp’ tu - exp’ v))(exp’ tu - exp’ v)™ = u .

Set exp’ v, = exp’ tu -exp’ v and 9, = (d/dt)v,. Since exp’ is differentiable,
we get

((d/dt) exp’ v,)(exp’ v,)™" = ((0/08),~, exp’ (v, + 89,))(exp’ v,)™"

= (0)99) -\ (/a0)[exp’ (O(v, + 55))(exp’ 9v) 140
( 5 ) = So(a/as)ls:OdLexp'0(wt+sv't)31)t eXp’ _0vtd0
— S‘Ad (exp’ 0v,)0,d0 ,

where dL, is the derivative of the left translation L,. By (3)~(5), we
have

(6) w = ‘:Ad (exp’ 6v,)5,d0 = S:Ad (exp 6v,)5,d6 .

On the other hand, the same computation as in (5) holds for vector
fields and hence

(T)  (@fdt) expv)(exp v)~'(w) = | (Ad (exp ov)s @), zeM.
Hence o(exp’ v,) = exp v, satisfies the equation
(8) (d/dt)o(exp’ v,) = u - p(exp’ v,;) , p(exp’ v(0)) = expw .

Thus, p(exp’ v,) = exp tw - exp v, hence p(exp’ u exp’ v) = exp u - eXp v.

Now, assume for a while that there is a sequence {v,} in U’ such
that limv, = 0 and p(exp’»,) = ¢ for every n. Then, {exptv,;tc R} is
a circle group contained in the group of diffeomorphisms on M. Since
{v,} converges to 0 in the C~-topology and exp v, = ¢, any neighborhood
of ¢ of (M) contains a compact subgroup. However, this contradicts
Theorem 2, [13] p. 208, namely there is no small compact subgroup in
(M). Thus, we see that there is a neighborhood V" of ¢ in V such
that o: V" +— G is a monomorphism.

To prove g is enlargable is to make G a Banach-Lie group. How-
ever, o(V"”) has a structure of local Banach-Lie group by identifying
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with V" through p, and G is generated by po(V”). Thus, by a standard
method similar to finite dimensional Lie groups, one can give uniquely
a structure of Banach-Lie group on G which is compatible with that on
o(V").

The above proposition completes the proof of Theorem A.

The following is known by Lemma 2.2 [12]:

LeMMA 1.2. Let g be a Lie algebra contained in I'(TM) and satis-
fying (*) and (xx) of Theorem A. Let G be the group generated by
{fexpu; ucg}l. Then, the orbit N=Gx) of a point xeM is a C=-
immersed submanifold of M such that T,N = g(y), where T,N 1is the
tangent space at y and g(y) = {u(y); w €g}. (For the countability axiom,
see [4] p. 96.)

COROLLARY 1.8. Let G be a connected Banach-Lie group acting
smoothly on a manifold M. Then, the action is transitive, 1f and only
1f it is ample.

PrOOF. Let p be the action of G. Set do(u) = (d/dt)|,—.0(exp’ tw).
Then, dp is a continuous Lie homomorphism of the Lie algebra g of G
into I'(TM) such that p(exp’ tu) = exptdo(u). Let § be the image of
dp. Then, g is a Banach-Lie algebra contained in I'(TM) and by Theo-
rem A, § satisfies (x) and (xx).

Since a connected Banach-Lie group G is generated by {exp u; u € g},
0(G) is generated by {exp do(u); w €g}. By the hypothesis, M is an orbit
of p(G). Thus, by Lemma 1.2, we get T, M = g(y) = do(g)(y). The con-
verse can be easily obtained by using Hahn-Banach’s theorem and the
implicit function theorem.

LEMMA 1.4. Let g be the Lie algebra of a comnected Banach-Lie
group G and § a finite codimensional closed Lie subalgebra of g. Then,
there is a unique Banach-Lie subgroup H of G with the Lie algebra ¥.
The closure H of H is also a Banach-Lie subgroup of G. If 9 is an
ideal, then H and H are normal subgroups of G. In particular, G/H
18 a connected (finite dimensional) Lie group and hence a separable
space.

PrRoOF. By Hahn-Banach’s theorem, there is a finite dimensional
subspace m of g such that g = H P m (direct sum). Let h= {9-9;9€G}
be the right invariant distribution on G. Since § is a subalgebra, § is
involutive. By Frobenius’ theorem, there exist a neighborhood U (resp.
V) of the origin of ) (resp. m) and a smooth diffeomorphism @ of UP V
onto a neighborhood W of the identity ¢ of G such that
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(i) the derivative (d®), of @ at the origin is the identity,

(ii) for each ve V, ®(U @ {v}) is an integral submanifold of f;

Note that we do not assume the second countability axiom on G.
Let H be the maximal integral submanifold of B through the identity.
H is a C~-Banach manifold and a group because H-h = H for any hec H.
For any u e, exp’ w is contained in H, and in @(U + {0}) for sufficiently
small u, because (d/dt)exp’ tu = u -exp’ tuef). Thus, the exponential
mapping exp’ is a C*-mapping and hence a C~-diffeomorphism of a con-
nected open neighborhood U’ of 0 of § onto an open neighborhood "
of e of H.

Now, by Lemma 2.1 [12], we have Ad(exp’w)j) =9 for any we).
Let U, be a star-shaped neighborhood of 0 of § such that U, c U’ and
(exp’ U)(exp' U)*c W. Let F:exp' U, X exp' U,—~W be the mapping de-
fined by F(g, h)=gh™*. Since (dF)n(u-g, v-h)=(w—Ad(g) Ad (k) v)gh™* eh
for any u,ve), g, heexp' U, we see that the image of F' is contained
in @(UP {0}), and hence F is a C~-mapping of exp’ U, X exp’ U, into
(U@ {0)). Therefore, the neighborhood U” in H has a structure of a
local Banach-Lie group.

Let H’ be the group generated by U’. H’ is then an open subset
of H and a Banach-Lie group with the Lie algebra Y. Indeed, it is
proved by the standard method similar to that in finite dimensional Lie
groups. Note the right translation R,: H+— H is smooth. Therefore H’
is also a closed subset of H. Since H is connected, we get H = H',
hence H is a Banach-Lie group. Remark that if G satisfies the second
countability axiom, then the above argument can be replaced by a
simpler one parallel to that of [4] p. 95.

Now, suppose H is not closed in G. Then, there exists a sequence
{#p}ney in m such that u, # 0, lim,..%u, =0 and ®(u,) e H. Taking a
subsequence if necessary, we assume that the sequence {u,/||.||]} con-
verges to an element w €m. By a little careful argument, we can choose
a C'-curve c¢(t) in m such that (d/dt)|,—.c(t) = v and that the image of
the curve contains infinitely many point of {u,}. Taking again a sub-
sequence, we may assume that for each % there is a value £, of the
parameter with ¢(¢,) = u, and @(c¢(t,))e H. Obviously, lim,..t¢, =0,
Since @(c¢(t,)) e H, we have Ad(@(c(t,))h) =Y for all neN, so that
(d/dt)]s=0 Ad (D(c(t)))h C D, because Y is closed. Since (d/dt)|,—, Ad (@(c(?)))v =
ad ((d®),w)v and (d®)u =wu, we have [u, )] ). Thus, )y =R-u PP is
a Banach-Lie subalgebra of g containing b as an ideal. Moreover, since
@(c(t,))* € H for any k, exp’ tu is contained in H. It is because of the
fact that for any C'-curve F(t) in G with F(0) = e, {F(t/k)*} converges
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to exp’ tF(0).

Let H, be the Banach-Lie subgroup with the Lie algebra Y. Then
it is not hard to see that H, = H. Note that codim Y < codim Y. If
H, is not closed in G, then one can make H, such that H, = H, and
codim Y, < codim §), by the same procedure as above. Since, codim f is
finite, the above procedure must stop at some stage H;,. Namely, we
have H,=H,=H, ,= --- = H. H, is obviously a Banach-Lie group.

If Y is an ideal, then by Lemma 2.1 [12] we see Ad (exp’ u)) = b for
any u€g. Since exp’ Ad (exp’ u)v = exp’ u -exp’ v-exp’ —u, the desired
results can be easily obtained.

REMARK 1. Let G be a connected Banach-Lie group and H a closed
Banach-Lie subgroup of finite codimension. Then it is trivial that G/H
is a manifold with or without the separability axiom. However, the
separability of G/H will be shown in the next section. So, G/H is in
fact a finite dimensional manifold.

COROLLARY 1.5. By the same motations as above, Y) is an ideal of
9,. If 9 is a proper maximal finite codimensional subalgebra which s
not an ideal of g, then H is closed in G.

LeEMMA 1.6. Let G be a connected Banach-Lie group with the Lie
algebra g. For any closed subalgebra %) of g, there is an immersed
Banach-Lie subgroup H of G having % as the Lie algebra. Moreover,
wf B is an ideal of g, then H is a mormal subgroup of G.

PrROOF. By a criterion of enlargability (cf. 0°), there is a simply
connected Banach-Lie group H with the Lie algebra §. Since there is
a continuous inclusion § g, there is a smooth homomorphism g of H
into G such that the kernel of @ is a discrete normal subgroup of H.
Thus, H = H/Ker § is the desired group. The induced monomorphism
0: H— @ is obviously an immersion.

Identifying H with o(H), we see that for every u €, exp’ tu is con-
tained in H. Suppose now that ) is an ideal of g. Then, Ad (exp’tu)h =5
for any u € g because Ad (exp’ tu)v is the unique solution of the equation
(2) and [u, )] <b. Thus, by the same reasoning as in Lemma 1.4, H is
a normal subgroup of G.

REMARK 2. Let G be a connected Banach-Lie group with the Lie
algebra g acting smoothly on a manifold M. Let p be the action. Then,
N = Ker p is a normal and closed subgroup of G and dp is a Lie homo-
morphism of g into I'(TM). The kernel n of dp is a closed ideal of g.
By Theorem A, the Banach-Lie algebra g/n is enlargable, and indeed
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G/N = p(G) is a Banach-Lie group with the Lie algebra g/n. On the
other hand, by 1.6, n generates an immersed, normal Banach-Lie sub-
group N’ of G. Since the Lie algebra of N’ is n and p(exp’tu) = e,
we see that N'c N. However, it is not clear whether N’ = the identity
component of N or not. The reason of this difficulty is that one can
not use the implicit function theorem. So, if n has a direct summand
in g (for instance the case of codimn < «) or if g is a Hilbert space,
then one can conclude N’ = N.

2° Proof of Theorem B and the separability of a factor space.
Let M be a compact manifold. Suppose G is a connected Banach-Lie
group acting smoothly, transitively and effectively on M. By 1.3 and
the implicit function theorem, the isotropy subgroup G, at x,e€ M is a
closed Banach-Lie subgroup of G, and M = G/G,. Thus, for the proof
of Theorem B, it is enough to show the following:

ProrosITION 2.1. Suppose G is a connected Banach-Lie group and
H a closed finite condimensional Banach-Lie subgroup of G. If the
Sfactor space G/H is compact, then N = (,ec 9Hg™ s a finite codimen-
stonal closed mormal Bamnach-Lie subgroup of G.

The above proposition will be proved in several steps below.

Let M = G/H. By the hypothesis, M is a compact C~-manifold on
which G acts smoothly and transitively. Let p be the action. We use
the same notations as in Remark 2 in the previous section. Since H D N,
we have only to show that dim g/n < - for the proof of 2.1.

The Banach-Lie algebra § = g/n is naturally identified with a sub-
algebra of I'(TM) and the inclusion mapping is continuous. Since M is
compact, there are u,, -+, u, €§ (k < =) such that {u,(x), - - -, u,(x)} spans
the tangent space T,M of M at every x. We set D = 3% ad (u,)’

LEMMA 2.2. D is a strongly elliptic differential operator of order
2 of I'(TM) wnto I'('TM). Moreover, DgC g and the mapping D:§+ g
s a bounded operator.

Proor. Obviously, Dgcg, and the mapping D:§r g is bounded.
Let (x,, ---, x,) be a C=-local coordinate system of M at x€ M. By this
coordinate system, every u; is written in the form wu; = >.», X¥d/ox,),
j=1~k, where X; are smooth functions in x, ---, #,. Thus, for any
vel'(TM) we have
(9) (Dv)(x) = Zn‘f {i‘i %X;Xf(az/axaax,,)vi + (lower order terms)} (0/ox;)

i= =

Thus, the symbol of D is given by
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(10) oDt = (36 ), eeTM— (0},

where T*M is the cotangent bundle, I: TM+ TM is the identity mapping
and <{¢ u;> means the natural pairing. Hence it is clear that ¢(D) =
o(D*), where D* is the formal adjoint operator of D with respect to
an arbitrarily fixed C~-riemannian metric on M. Let |&| be the length
of & Since {u,(x), ---, u,(x)} spans the tangent space T,M for every
x € M, there is a positive constant ¢ such that >k, <{§ u;)* = c|&].
Hence, {(¢(D)¢ —c|¢)X, X)> =0 for any XeTM, i.e. D is strongly
elliptiec.

Let TM° be the complexification of TM, and I'(TM°) the space of
all C~-sections of TM° with the C~-topology. Then, I'(TM°) is the com-
plexification of I'(TM), that is I'(TM°) = I'(TM)® C. The complexifica-
tion §° of g§ is naturally imbedded in I'(TM°), and the operator D can
be regarded as a differential operator of I'(TM°) into itself such that
D3 c§ and that D:§°+ 3 is bounded. The following proposition is
known in functional analysis: (For the proof, see the appendix of this
paper.)

PROPOSITION 2.3. Let E be a C>-complex, finite dimensional wvector
bundle over a compact riemannian manifold M and I'(E) the space of
the C=-sections of E with the C>-topology. Let D.I'(E)— I'(E) be a
strongly elliptic differential operator of order 2 such that o(D) = a(D*).
Then, there are countably many eigenvalues {\,},—,... such that the
following are satisfied:

(1) dimE,; < «, where E, are generalized eigemspaces, t.e. the
linear space of the elements ve I'(E) such that (D — \,)™v = 0 for some
integer m.

(2) limRex, = oo.

(8) The generalized eigenspaces are complete in I'(E), i.e. 3D E;,
18 dense in I'(E).

(4) Setting F, = Sizn B E3)~, we have N F. = {0}.

Now, let {\,}n=1,s,... be the eigenvalues of D. Let §, =g N F.. Since
the inclusion §°c I'(T'M") is continuous, the §, are closed finite codimen-
sional subspaces of the Banach space §° such that §¢ =§, 0§, --- 2§, D+~
and N 4§, = {0}. It is clear that D3, 3, for every m.

Set F, = §i/8ry, and F = >, P F, (arbitrarily finite sum). We define
a norm || || on F by the following manner: For any @ = 3, #4,, define
[|Z]] = 35 || 4| and || 4| = inf {|| %, ||; 4, € #,}). F is a normed linear space,
and D induces a linear operator D of F into itself.
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LEMMA 2.4. D: F F is a bounded linear operator.

PrOOF. There is a positive constant ¢ such that ||Dul| < cl|ull.

Thus, if 4 = >, 4, 4,¢<c F,, then
IDal| = 3|1 D%, )| < 3 inf {|| Dusll; up € 4} = 3¢l ] = cll@]] .

On the other hand, since dim F, < o, there is an integer vy, such
that (D — ) J)**F, = {0}, so that there is a non-trivial element w, € F,
such that Dw, = v,w,. Since lim), = o, Lemma 2.4 shows that F, = {0}
for sufficiently large %. Hence, §, = {0} for some =n. Therefore,
dim § < <, and un is a closed finite codimensional ideal of g. Hence by
Remark 2 in 1°, N is a normal Banach-Lie subgroup with the Lie alge-
bra n. This complete the proof of Proposition 2.1, and hence Theorem B.

By Theorem B, an infinite dimensional Banach-Lie group can act
only on a non-compact manifold. However, such a Banach-Lie group
seems to be severely restricted. The following was a main theorem of
[16].

PROPOSITION 2.5. Let G be a connected Banach-Lie group with the Lie
algebra g. Suppose V) is a proper finite codimensional closed maximal
subalgebra of g, Then, Y contains a finite codimensional ideal of g.

The above result was proved in several steps in [16] by using the
classification of infinite primitive Lie algebras. The theorem stated in
the introduction is an immediate conclusion from the above result.

Now, if an infinite dimensional Banach-Lie group G acts smoothly,
effectively and transitively on M, then the isotropy subgroup of G can
not be a maximal subgroup. Moreover, we have the following:

LEMMA 2.6. Let G be a connected Banach-Lie group and H a finite
codimensional closed and connected Banach-Lie subgroup of G. Sup-
pose the Lie algebra 9 of H is not maximal in the Lie algebra g of G.
Then, there is a closed and connected Banach-Lie subgroup H' such
that H 2 H and H contains a finite codimensional closed mormal
Banach-Lie subgroup N of H'. In particular, Nicx RHA™ is a finite
codimensional Banach-Lie subgroup of H'.

ProOF. Let Yy’ be a subalgebra of g such that g2 %” 29 and there
is no non-trivial subalgebra between Y’ and ). Since codim ) < o, §”
is a closed subspace of g. Let H” be the Banach-Lie subgroup of G
generated by Y. Since the inclusion H” ¢ G is continuous, H can be
regarded as a closed subgroup of H”. By Proposition 2.5, there is a closed
normal Banach-Lie subgroup N of H" contained in H and such that
dim H”/N” < . Let H' and N be the closures of H” and N” in G
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respectively. By Lemma 1.4, these are Banach-Lie subgroups of G.
Obviously, H' 2 H, HDO N and N is a normal subgroup of H'.

Now, N = Mucu hHR™* contains N. Then, N/N is a closed normal
subgroup of the finite dimensional Lie group H’/N. Thus, N/N is a Lie
group. Since the canonical projection =: H' — H'/N is smooth, we see
by the implicit function theorem that N = 7~ (N/N) is a Banach-Lie
subgroup of G.

COROLLARY 2.7. Notations and assumptions being as in the above
lemma, there is an increasing series H=G <G &G <SG =G
of closed and connected Banach-Lie subgroups satisfying the following:

(1) There is no non-trivial closed and connected Banach-Lie sub-
group between G,_, and G, for each 1 =1,2, ---, L.

(2) N;=Nyes,,, 9G:97" 15 a finite codimensional Banach-Lie sub-
group of G and a normal subgroup of G,.,.

Proof is easy by using the above lemma.

COROLLARY 2.8. Let G be a connected Bamnach-Lie group and H a
finite codimensional closed Banach-Lie subgroup. Then, G/H is a
(separable) smooth manifold.

Proor. G,/G,_, is a separable manifold, because G,;/N, acts transi-
tively on G,/G,_, and G;/N, is a finite dimensional Lie group and hence
a separable manifold. Hence the total space G/H is separable.

3° Almost solvable Banach-Lie groups. In this section, the proof
of Theorem C will be given.

A triple {G, H, K} of connected Banach-Lie groups with the Lie
algebras {g, 0, f} is provisionally said to be an AS-triple system if the
following are fulfilled:

(i) H2Xx2 K and they are finite codimensional closed Banach-Lie sub-
groups of G.

(ii) Set 1= N,.c Ad(¢)h). Then, g/n is almost solvable. (Cf. 0°)

(iii) Set 1’ = MNicx Ad (A)t. Then dim H/n' < oo.

By Corollary 2.7 combined with an induction, the proof of Theorem
C is reduced immediately to the following:

ProrosITION 3.1. Let {G, H, K} be an AS-triple system and let n”" =
N,.c Ad (9)t. Then g/v” s almost solvable.

The above proposition will be proved in several lemmas below. If
g is almost solvable, then we consider the class of all finite codimen-
sional closed solvable ideals of g, and take a maximal element .. Then,
. is a closed ideal of g and contains all solvable ideals of g. Indeed, let



BANACH-LIE GROUPS 235

7 Dbe a solvable ideal of g. Then, . + #/. = “[. N # is solvable and
++ # is a closed ideal of g, because . + .”#/. is closed in the finite
dimensional space g/.. Hence . + .7 is a finite codimensional closed
solvable ideal of g, so that . + . = .. The maximal element . is called
the radical of g. It is clear that g/. is a finite dimensional semi-simple
Lie algebra.

Now, to prove Proposition 3.1, we start with the following:

LEMMA 38.2. Let g be a Banach-Lie algebra and _# a closed ideal

of g. Then g is almost solvable, if and only if 7 and g/-# are almost
solvable.

PROOF. Let ., be the radical of % For any # €g/., ad (%) induces
a derivation A(#%) of /... Since * /., is semi-simple, there is 7€ . 7 /.,
such that A(#) = ad (¥). ¥ is uniquely determined by #%. Thus, there
is a Lie homomorphism 0: g/sy+— F [oy, 0(#) = ¥, such that o) =7 for
any ¥ €.#/.,,. Hence the exact sequence

0 F oyt Qlog— g/~ — 0
splits. Thus, g/, is almost solvable. Consider the exact sequence
0—.—g—8/—0.

The full inverse of the radical of g/., is also a finite codimensional solvable
ideal of g, hence g is almost solvable. The converse is easy to prove.

Now, let {G, H, K} be an AS-triple system with the Lie algebras
{g, b, f}. Consider the disjoint union U,z W/Ad (9)(r N 1'). By Lemma
1.6 Ad(gin=n for any geG. Hence Ad (¢g)(mtN1n') depends only on
gHeG/H. Thus V = U,pee,zt/Ad (g)(n N 1) makes sence and V is a
smooth finite dimensional vector bundle over G/H with the fibre n/nNn’
and the group of the automorphisms of n/m N as the transition fune-
tions. The fibre of V is a finite dimensional Lie algebra and hence the
space of the smooth sections I'(V) becomes a Lie algebra by the point-
wise Lie bracket product. Define a Lie homomorphism ¢:n+— I'(V) by
ow)xH) = w + Ad (x)(m N ') en/Ad (x)(m N 1').

Let V, be the subbundle given by the radicals of the fibers. V, is
then a smooth subbundle of V and there is a projection z: I'(V)—I'(V/V,).
We set 6.(w) = wo(w), wen. Letn” be the kernel of 6. Then, obviously
W = Nuee Ad (@)@ N W) = N, Ad (@)

Now, assume for a while that dim ¢.(t) < . Let n, be the kernel
of 6,. Since () cI'(V,) and the fibre of V, is solvable, we get that
o) = n/n” is solvable. Thus, n/n” is almost solvable. Since g/n is
assumed to be almost solvable, Lemma 3.2 shows that g/n” is almost
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solvable. Thus, for the proof of 8.1, we have only to show dim ¢.(n1) < <.

Let o, be the radical of n/n N and p; the full inverse of p, by the
natural projection of 1 onto m/mNn’. The factor bundle V/V, is then
given by the disjoint union U.peqn n/Ad (x)0;. Let Z be an open
neighborhood of ®H in G/H such that there exists a local smooth section
a: 7 +— G of the fibre bundle {G; H, G/H}. (The existence of a smooth
section is ensured by the implicit function theorem.) Now, for any
yHe 7z, Ad («(yH)) is an isomorphism of 1t onto itself, hence induces an
isomorphism A,;: /o, — n/Ad (y)p;. Thus, we get a local, smooth trivial-
ization 7: ZZ X n/p,+— V|V, defined by t(yH, w) = (yH, A,zw). Since the
A, are Lie algebra isomorphisms, a local section of V/V, on % can be
naturally identified with a smooth mapping of % into un/o,. The Lie
bracket product of I'(V/V,) is translated into the pointwise Lie bracket
product.

For any wen, we denote by p(w) the smooth mapping of % into
n/p, defined by pm(w)(yH) = A,z (w + Ad (y)p,). For any u €g, we denote
by X, the smooth vector field on G/H defined by u, ie. X,(yH)=
(d/dt)|,—oexptu -yH. For any ve), ad(v) leaves n and n' invariant,
hence induces a derivation of n/mNw. Since py/n N n is the radical of
nmN 1, ad (v) induces also a derivation d(v) of n/p,. Since n/o; is a
semi-simple Lie algebra, there is v’ e n/o, such that o(v) = ad (v'). Thus,
we get a Lie homomorphism ¢ of ) into n/o; such that &(v) ='. &
9 — 1/o; is of course a bounded linear mapping.

Lemma 3.3. pw)yH) = 44w+ Ad (1)) = Ad ((yH))"'w -+ 0, e 1/},
wen, yHez/. Moreover, there s a smooth mapping I\ g X Z —H
depending on the local section . such that for every fixed yH e Z,
M, yH): g— Y is a bounded linear operator and such that p((u, w))(yH) =
(=X p(w)(yH) + ad (¢(\(u, yH))p(w)(yH), weg, wen. (Note that the
second term does mot involve differentiation.)

PrRoOF. The first one is easy to obtain by definitions. The second
one is obtained by the following computation:

o, wDWH) = #(E|  Adexptww)wH) = L| pAd (exp tww)yH)
tle=o dtlt=o
= g—t - Ad (4(1/H)“1 exp tu - s(exp —tu «yH) « s(exp —tu-yH) Hw + Pé
_4d .
= 7¢ |, wiexp —tu - y H)

* %L:o{Ad («(yH)™" exp tu - o(exp —tu - yH) - (yH))w + 01}
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= (— X, m(w))(yH)
+ gz _{Ad ((yH)™ exp tu- o(exp —tu - yH)) Ad ((WH) S + 63} .
Since exp — tu - «(yH)H 3 s(exp — tu - yH), we have that (d/dt)|,_«(yH)™ X
exp tu - s(exp — tu - yH) is contained in ). We denote it by M\(u, yH).
M, yH):g— 9 is then a bounded linear operator, because «(yH)™* X
expu - «(exp — u - yH) is smooth with respect to v and yH. Therefore,

tu, wh(yH) = (— X, p(w))(yH) + d(\(u, yH))p(w)(yH)
= {— X, p(w) + ad (F(\(w, »)p(w)}(yH) .

Now, let I'(Z/, n/o;) be the Lie algebra of the smooth mappings of
7/ into n/p, with the pointwise Lie bracket product. p: n— I'(Z, 1n/o:)
is then a Lie homomorphism. Taking the complexification n°=nd1 —1n,
(w/p})° = n/p, @V —1n/p,, ¢ can be regarded as a complex Lie homomor-
phism of n° into I'(Z, (n/0y)°). Let (x,, + -+, x,) be a smooth local coordinate
system on %, and define a following filtration on g(n°): Let #, = pw°),
i, = {Wen,; jiz'w = 0}, where j:, means the s-th jet at xHeZ. Obvi-
ously, [i, &t]Cf,,. Set F),=1i/f,., and FF=>,., D F,. For everyuecg,
X, — ad (J(\(u, *))) can be regarded as a mapping of p(1°) into itself,
and induces a linear mapping X, of F into itself such that if X, (xH) =0,
then X, F,C F,_,. Indeed, if w = 3} w.2% w.<€ /)’ is an element
of F\, then X, w = 37, 3 aick @ W(0/0%,)x%, Where X, (xH) = 3 a,(8/0%,),
a,€R and z* = gz --- 2% and || =, + &, + -+ + ,.

LEMMA 3.4. There is a norm || || on F such that (1) F' is a normed
Lie algebra and (2) X.: F— F is a bounded linear operator for any
uEgQ.

PrOOF. Let my=n°and n,=p'(n,), k=1,2, 8, ---. Then w;Dn;D1;D---
is a filtration such that [, w;] Cn,,. Set F = /., and F' = >, P F;.
Since F, = F, by the natural way, F' is a normed Lie algebra by the
same norm as in the phrase just above Lemma 2.4. Note that ad (u):
n°+—n° is a bounded operator. Then, by the same reasoning as in the
proof of Lemma 2.4, we get that the operator X,: Fi— F is bounded.

LEMMA 8.5. Notations and assumptions being as above, we get F, =
F,= ... =F,= ... ={0}, t.e. F,= px°).

PROOF. Let 57 be a Cartan subalgebra of (n/0;)° and 5#7 @ 3,,.,C-e,
the root decomposition, where 4 is the root system and e, is an element
such that [k, e,] = r(h)e, for any he 57 and that h, =[e,e_] is an
element of 57 with »(h,) = *1.
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Now, assume that F), == {0} for some k¥ = 1. Then, there is a non-
trivial w e F}, such that u = 3 p,(@)h; + 3, csq.(x)e,, Where h,, ---, h; is
a basis of 57 and p,, ¢, are homogeneous polynomials of degree k.

Assume at first that the ¢, = 0 for any r€4. Then, there exists
1" €4 such that ad(e,)u # 0, because otherwise ad (u) = 0. ad(e,)u is
written in the form p(x)e,.. In what follows, we show that F, contains
a non-trivial element written in the form p(x)e,. Assume secondly that
in the expression of the above w there is 7 such that ¢, == 0. In this
case we may assume p, = --- = p, = 0 by applying ad (k). On the other
hand, ad (e, )u = 3.,.,q.(®)¢,, €,.,, Where ¢,, # 0 if and only if » + 7' €4
or = 0. (We use the convension ¢, = *h,.) Since 27’ ¢ 4, the number of
non-zero terms of ad (e,)u can be reduced by one by a suitable choice
of 7. Now, applying ad (k,) for some r, we may assume that the ¢,
components are zero. We repeat the above procedure for an appropriately
chosen series of ad (e,), ad (k,,), ad (e,,), ---. Then, consequently, we have
that there exists a non-trivial element u € F, written in the form p(x)e,.

Since {X,(xH), w € g} spans the tangent space of G/H at xH, we get
a non-trivial element e, for some j by applying X,, X,, --- (u,€g)
repeatedly.

Since x;¢, € F, and [F,, F\] = F, because of semi-simplicity, we get
x;h,, x;e_, € F, and hence 2*e,, x%h,, x%e_, € F), for every k = 1.

" Let weg be an - element such that X, (xH) = (d/0x;). Then
ad (x;h,) X, (x%,) = +k-xke,. On the other hand, ad (x;h)X,: F— F is a
bounded operator, and hence we get a contradiction.

Since *HeG/H is arbitrary, the above lemma shows that o.(w),
wen, must be a locally constant section of V/V,. Hence we have
dim 6.(n) < . This complete the proof of Proposition 3.1 and hence
Theorem C in the introduction. Moreover, the above argument shows
also that the transition function of V/V, must be reduced to a discrete
group.

4° B-triple systems and examples. In this section, we shall give
several examples of Banach-Lie groups acting effectively, smoothly and
transitively on finite dimensional manifolds. Taking Corollary 2.7 into
account, we call {G, H, K} a B-triple system, if G is a connected Banach-
Lie group and H, K are finite codimensional closed and connected Banach-
Lie subgroup such that H2 K and N = ,cc 9Hg™', N’ = Niex hKL™!
are finite codimensional Banach-Lie subgroups of G. A B-triple system
is an AS-triple system in the previous section. A B-triple system
{G, H, K} will be called to be finite type, if N”" =[),.c9Kg™" is a finite co-
dimensional Banach-Lie subgroup of G. Obviously, N"=[,.c 9(NNN")g™".
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If N” = {e}, then {G, H, K} will be called effective.

Let {G, H, K} be a B-triple system. Then, G acts smoothly and
transitively on G/K. By Corollary 2.8, G/K is a connected manifold.
Moreover G acts as fibre preserving diffeomorphisms of a smooth fibre
bundle {G/K; H/K, G/H} with the fibre H/K and the base space G/H.
The normal subgroup N acts as diffeomorphisms leaving each fibre in-
variant, and g(NN N')g~' is a finite codimensional normal Banach-Lie
subgroup of N acting trivially on the fibre gH/K of the bundle.

The kernel of the action of G on G/K is given by N”. Hence, G/N”
is a Banach-Lie group with the Lie algebra g/n’, where n” = ) Ad (g)t
and f is the Lie algebra of K (cf. Proposition 1.1 and Remark 2). There-
fore {G/N"”, H/IN”, K/N"} is an effective B-triple system.

Let {G, H, K} be a B-triple system. Note that g(NN N')g™* =
gh(N N N)h'g™* for any h € H, hence the group N/g(N N N’)g~* depends
only on the point gHeG/H. Let &% Dbe the disjoint wunion
Uszee/z NJg(NNN')g™'. Then, # 1is a smooth fibre bundle over G/H
with the fibore N/NN N’ and the automorphism group of N/NN N’ as
the transition functions. Each fibre of % is a finite dimensional Lie
group.

LEMMA 4.1. Let % X G/K be the fibrewise product of # and the
bundle {G/K; H/K, G/H}. Then there is a smooth fibre preserving map-
ping o of F X G/K onto G/K such that o gives the camowmical group
action on each fibre.

PrOOF. Let ng(INN N')g~! be a point of the fibre of # at gHe
G/H, and let ghK be a point of the fibre of G/K at gHe G/H. We define
omg(NN N"g™*, ghK) = ng(NNN")g~'ghK = nghK = gn'hK, n’ = g7'ng €
NCH. 1t is easy to see that o is a smooth action of N/g(NN N')g™*
on gH/K and hence p is smooth.

LEMMA 4.2. Let I'(# ) be the space of all smooth sections of ..
Then, by the fibrewise product I'(F ) is an infinite dimensional group.
There is a homomorphism o of N into I'(.# ) such that the kernel N"
of o is giwen by Nyee 9NN N')g™.

ProOOF. The first statement is easy to prove. For an element n € N,
ng(NN N')g™* can be regarded as an element of N/g(NN N')g™*. Hence
n defines a smooth section o(n) of # such that o(n)(gH) = ng(NN N")g~".
Obviously o(n) = ¢ if and only if ne N".

LEMMA 4.3. There is a homomorphism A of G into the group of
automorphism of I'(F) such that A(g)o(n) = a(gng™) for any n € N.
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PROOF. Let f be a section of .#. For every point 2H ¢ G/H, F(xH)
is an element of N/x(N NN")z™. So, we write F@H) = fxH)x(NN Nz,
f(xH)e N. Define A(g)f by (4(9)f)(yH) = 9f(¢7'yH)g7'y(NN N')y™. In
particular, (A(g)o(n))(yH) = gng™'y(N N N )y~ = o(gng™)(yH). It is easy
to see that A(gg’) = A(g)- A(g’) and A(g) is an automorphism.

Let 1, ’ be the Lie algebras of N, N’ respectively. Let V be the vector
bundle over G/H defined by the disjoint union U,zcq/z1/Ad (g)1t N 1)
and I'(V) the space of all smooth sections of V (cf. the previous section).
Each fibre of V is the Lie algebra of the fibre of & at the same base
point, and I'(V) is a Lie algebra by the fibrewise Lie bracket product.
We define the exponential mapping exp: I'(V)— I'(%) by (exp f)(xH) =
exp fieH), fe (V). The mapping ¢ defined in the previous section is
related to o as follows:

(11) d(w)(@H) = (d/dt)|,~,0(exp tw)(xH) ,
where exp in the right hand member is the exponential mapping of n
into N. o:n—I'(V) is a Lie homomorphism and the kernel n” of ¢ is
given by N,.c Ad(9)(mNn'). Moreover, we have expd(w) = o(exp w),
wen.

For every g€ G, define a mapping Mg): I'(V)—I'(V) by
(12) (M@)W)(wH )= (d/dt)|,-(A(g) exp tiW)(xH), @wel(V), zHeG/H.

Then, A(g) is an isomorphism of the Lie algebra I'(V) onto itself. For
every u g (the Lie algebra of G), define a mapping a(uw): I'(V)—I'(V) by

(13) (a(w)yw)(@H) = (d/dt)].—(Mexp tu)W)(=H) .
a(u) is then a derivation of I'(V).

LeEMMA 4.4. Notations being as above, we have the following iden-
titres:

(@) Mg)o(v) = 6(Ad (g)v), ven, geG.

(b) a(u)d(v) = d(ad (w)v), ven, ueg, where ad (w)v = [u, v].

ProOOF. Since Ad(g)n = n, the right hand member of (a) is will-
defined. By Lemma 4.3 and (11), we have

Mg)o(v) = (d/dt)|,-,A(g)o(exp tv) = (d/dt)|,-,0(g - exp tv - g™)
= (d/dt)|,—,0o(exp t Ad (g9)v) = 6(Ad (g)v) .
Taking the derivative of (a), we have a(u)d(v) = (d/dt)|,-,0(Ad (exp tu)v).
Since w~>¢(w)(xH) is a continuous linear mapping of un into n/Ad (x)(nNn')),
we have (d/dt)|,—,6(Ad (exp tu)v)(@H) = d((d/dt)|,—, Ad (exp tu)v)(xH) =
o(ad (w)v)(@H). Thus, we get the identity (b).
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LEMMA 4.5. For any uecg, a@):(V)—>IT(V) ts a differential
operator of order at most one. If a():I'(V)—I(V) is of order O,
then u €n.

ProOOF. This is done by an essentially same computation as in the
proof of Lemma 8.3. Here we shall do it by using an arbitrarily fixed
C~-connection on V. Let xH be an arbitrary point of G/H. The fibre
of V at xH is given by n/Ad (x)(m N w’). By Hahn-Banach theorem, there
is a finite dimensional linear subspace m of n such that n=m@
Ad(@)(nNn). m can be identified (as a linear space) with the fibre of
V at zH.

For any uweg, (exp — su)xH (s€[0, «)) is a smooth curve in G/H.
Let 7, be the parallel displacement along the above curve from the point
(exp — tu)eH to *xH. For any vem, w,(v) is an element of the fiber of
V at (exp — su)eH defined by v + Ad((exp — su)x)mNn'). We set
A(s)v = t,m,v. Then, A(s): m—m is a linear mapping such that A(0) = I,
and hence a linear isomorphism for sufficiently small s.

Let wel'(V). We set w(s) = A(s)"'z,W((exp — su)xH). Note that
w,w(s) = w((lexp — su)xH). Now, we have
((w)W)(xH) = (d/ds)|,~(Mexp su)W)(xH)

= (0/08)|,-o(0/0t) |;—o(A(exD su) exp tW)(xH)
= (0/08) |,—4(0/0t) |;—, €XD su - exp tW((exp — su)xH)+-exp — su
= (0/08)|,=4(0/0t) |,=, €XD su - exp tw(s) - exp — su - &(N N N')x™*
= (d/ds)],~,0(Ad (exp sw)w(s))(xH)
o([u, w(0)]) + (d/ds)|,—A(s) "'z, W((exp — su)xH)
= 6([u, W(xH)]) — ((d/d8) |, A(8))W(xH)
+ (7/ds)|,-W((exp — su)xH) ,
where //ds means the covariant derivative.

The last term contains a differentiation. If a(u) is of order 0, then

the last term must be zero for all WeI'(V). Thus, (exp — su)xH = 2 H

and hence expsue€f,.cxHx™'. Therefore, ueN,.c Ad () =n. The
converse is of course true.

PROPOSITION 4.6. Suppose {G, H, K} is a B-triple system such that
G/H s compact. Then, {G, H, K} is of finite type.

Il

Proor. Let {#&, ---, %} be a basis of g/n. Every %, can be regarded
as a smooth vector field on G/H. Since G/N acts transitively on G/H,
{#,(yH), - -+, W(yH)} spans the tangent space of G/H at every yH € G/H.
Let u; be an element of g such that u; + n = #%,. Consider the differential
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operator D = >\, a(uw,): I'(V)— L(V).

We fix an arbitrary riemannian structure on M = G/H and on the
bundle V. First of all, we shall prove that (D) = ¢(D*) and D is a
strongly elliptic differential operator of order 2.

Let (9, ---, 9,) be a local coordinate system on G/H. Taking a local

~

trivialization, @ can be written as an m-tuple of smooth functions

(wt(yu °t yn)’ ) wa('yu c Yy yn)’ ] wm(yu ] yn))
m=dimnnNn.

Let >, X%0/dy,) be the local expression of the vector field ;.
Then, by Lemma 4.5, D& = (D®),, +++, (DW)g *++, (DW),) is written in
the form
(14) (D®), = 3, bz X3 X¥3*/0y,09,)@. + lower order terms.

Ji=la 1
Thus, the symbol o(D) is given by o(D)¢é = >\, {é(u;(yH))}*I, where &
is a cotagent vector at yHe G/H and I: Vi— V is the identity mapping.
Therefore we see (D) = o(D*). Since G/H is assumed to be compact,
there is a positive constant ¢ such that >\, {&(u;(yH))}* = ¢|&|* for any
yH e G/H hence ‘D is strongly elliptic.

Thus, by Proposition 2.8 and by the same reasoning as in 2°, we get

that dim d(nt) < «. The kernel n”’ of ¢ is given by N,.c Ad (x)m N ).

COROLLARY 4.7. The conclusion (1) of Corollary 2.7 can be replaced
that G,.,/G,; are non-compact manifold for i = 1.

In what follows we shall give several examples of effective B-triple
systems.

Let G be a Banach-Lie group, possibly finite dimensional, and G, a
finite codimensional closed Banach-Lie subgroup of G. Let E be an
infinite dimensional Banach space and f a smooth representation of G on
E, where “smooth” means that the mapping f: G X E— E, (g, u)~ f(g)u,
is smooth. By Lemma 1.3.4 [17], f is a smooth mapping of G into
GL(E). We assume the following property:

®) Nyec 9G.g7* = {e} and there exists a finite codimensional f(G,)-
invariant closed subspaces E, of E such that (), f(9)E, = {0}.

Define the semi-direct product GoE as follows: For (g, u), (h, v)e
G X E, define a multiplication by (g, u)°(h, v) = (gh, w + f(g)v). This
makes GoF a Banach-Lie group. Similarly, G,oFE and G,-E, are closed
finite codimensional Banach-Lie subgroups of GoE. It is easy to see
that (g, 0)o(h, v)o (g7}, 0) = (ghg™, f(g)’U)- Hence {G-E, G,°E, G0°Eo} is
an effective B-triple system. Therefore, GoE acts effectively, smoothly
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on G/G, X E/E,.

Let g, g, be the Lie algebras of G, G, respectively. Let f’ be the
Lie homomorphism of g into gl(E') induced from f. Then, the Lie algebra
of GoE is g E with the bracket product [(¢, w), (¢, v)] = ([¢, ¢'], f'(®)v —
f'(t"w). By the assumption (P), we have f'(g,)E,C E, and E, contains
no non-trivial f’(g)-invariant subspace. It is clear that the condition
N..c F(9)E, = {0} is equivalent with that E, contains no non-trivial f'(g)-
invariant subspace.

ExAMPLE 1. G = the additive group of the complex 2-plane C?,
G, = {¢} and E is the Hilbert space given by the double infinite series
= D% . 0,8, such that 3> . |a, <, a,eC. Let E,={uck,;a,=0}.
Consider the bilateral shift ¢: E — E, o(e,) = e,,,. Define a representation
f:C*— GL(E) by f(&, t)=-exp(to + t'e"). It is easy to see that there
is no {o, 07'}-invariant subspace in E, and hence N;.cz f(¢, t")E, = {0}.
Thus, {C*- E, E, E,} is an effective B-triple system.

EXAMPLE 2. G = C (additive), G, = {e}, E = {u(z) = D2, a,2"; a,€C,
S olal’(n!)? < =}. The representation f of C on E is given by
(f)u)z) = u(z + t). Since f'(1) = (d/dz)u, it is clear that ||f/(Dul|l <
llu]l, where ||| = 3370 |a.[(n!)* and f(¢) = exptf'(1). Let E,= {ucE;
a, = 0}. Then there is no non-trivial f’(1)-invariant subspace in E,, and
hence {C-E, E, E,} is an effective B-triple system.

EXAMPLE 3. g = {3, a,(0/0x;) + >l bjw;(0/ox,); a,y b€ C}, g, =
{35« biw;(0/0x;); b} € Cland E={u =13 4120 As2"; Ax € C,SUD 0120 (0, 102 1| AL <
~}, where @ = (e, -+, -+ ,), x* = 2232 --- x3», Then, E is a Banach
space on which the nilpotent Lie algebra g acts by the usual way.
Obviously, g is a subalgebra of the Lie algebra gl(E) of the bounded
linear operators. Let E,= {uecE; A, =0}. E, is a g-invariant subspace
of E and E, contains no non-trivial g-invariant subspace. Let G and G,
be the Lie group generated by g, g, respectively. Then, {GoE, G,oE, G,0E,}
is an effective B-triple system.

EXAMPLE 4. ¢ = {a(9/dx) + b(x(d/ox) — (0/0y)); a, b€ C}, g, = {0}, E =
{f(x, ¥) = 2o fuw)a’; fi(y) = e aiy™, an € €, X, v laif(n!)* < oo} and
E,={feKE;a}=0}. Then, gcgl(F) and E, contains no non-trivial g-
invariant subspace. g is a two dimensional solvable Lie algebra. Let
G be the group generated by g. Then, {GoE, E, E;} is an effective B-
triple system.

REMARK. By the remark of p. 336 of [9], d/ox; E+> E must be
nilpotent. Therefore the finiteness of N is necessary in this case.
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5° Appendix. Let E be a C>-complex, finite dimensional vector
bundle over a closed C>-(real) riemannian manifold M and I'(E) the space
of the C~-sections of £ with the C~-topology. For u,ve€I'(E), the nota-
tion {u, v>, means the hermitian inner product given by

(1) 0% = | @), v@)du),

where dy(x) is a C~-volume element on M and <{u(zx), v(x)>) means the
hermitian inner product of the fiber of K.

Suppose we have a differential operator D of I'(X) into itself. Let
D* be the formal adjoint operator of D, namely the differential operator
satisfying {(Du, v), = {u, D*v), for any u, veI'(E). A complex number
X is called an eigenvalue of D, if there is weI'(E), v # 0, such that
Du = Mu. The generalized eigenspace E, of the eigenvalue A is the
linear space of the elements v e I'(F) such that (D — A)™» = 0 for some
positive integer m. Obviously, DE,C E,.

The goal of this section is the following:

PROPOSITION 5.1. Let D: I'(E)+— I'(E) be a differential operator of
order 2. Suppose the symbol o(D) satisfies a(D) = o(D*) and that there
18 a positive constant ¢ such that {(e(D)¢ — c|&HX, X)> =0 for any
element XeE and any cotangent vector £€T*M, &+ 0 with the same
base point of X, i.e. a(D)é — c|&|* is positive semi-definite. Then, there
are countably many eigenvalues {N,},—ys,... such that lim, . Rex, = oo,
dim E; < o and the generalized eigenspaces are complete in I'(E), i.e.
S @D E;, is dense in I'(E). Moreover, setting F#, = Xien® )7,
we have ) ., = {0}.

The above proposition is well-known if D = D* or M is a bounded
domain of a euclidean space R" (cf. [1] and [5, p. 1746]). Moreover,
since M has no boundary, the proof is much easier and straightforward
application of standard results of functional analysis. Indeed, the above
fact is well-known for the people who are familiar to both functional
analysis and differential grometry. Thus, in this section we will give
only a rough sketch of the proof.

We denote by V the riemannian connection on E. For any u,ve
I'(E), define a hermitian inner product {u, v>, by

k

(2) o= 3| (vu@), (Voe)de

8=0

where (V*u)(x) means the s-times covariant differentiation of  at x € M.
Denote by I'*(E) the completion of I'(E) by the norm ||ull, = {u, u)}2
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Thus, we get a series of separable Hilbert spaces
(3) I'EYDTI'(E)D ---DI'"(E)DI'**"(HE)D --

Obviously, I'**(E) is dense in I'*(¥), and by Rellich’s theorem combined
with partition of unity, the inclusions I'**(E)cC I'*(E) are compact op-
erators. The well-known Sobolev’s lemma is stated as follows in our
situation:

LEMMA 5.2 (Sobolev). Let m = dim M. If E=[n/2] + 1+ r, then
T'"(E) can be regarded as a subspace of I'"(E), the space of all Cr-sec-
tions of E with the Cr-topology. Moreover the inclusion s bounded.

COROLLARY 5.3. If | = [n/2] + 1, then the inclusions I'**'*CI'* are
of Hilbert-Schmidt class for every k.

PROOF. For every v e I'**/(E), we have v e I["*(F) by Sobolev’s lemma.
Thus, for an element X, e EQRQT*M --- Q T*M with a base point
~———————

8

x €M, the mapping v {(Vv)(x), X,> is a bounded linear mapping of
I'**Y(R) into C for every s < k. By Riesz’s theorem, there is an element
@,(x, X,) € '**'(E) such that {(Vv)(x), X,) = (v, ,(x, X,))r. Since (Vv)(x)
is continuous in x, |{(V*v)(x), X,y| is bounded if X, is restricted in the
unit sphere bundle of EQR T*MQ --- QT*M. Therefore, by the re-
sonance theorem ([21, p. 69]) there exists a finite constant K, such that
o, X)llps = K, for each x€ M and X, in the unit sphere bundle.

Let f, ---, f. be an orthonormal basis of E,QT.*" MK -+ R T *M.
Then |(Vo)(x) [P= 31, (V) (@), [1)* =201 <V, @u(®, [k Now, if {e,},—y.,...
is a complete orthonormal basis of I'**'(H), then
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This implies that the inclusion I'**'(E) C I'*(E) is of Hilbert-Schmidt class.

Now, let L: I'(E) — I'(E) be a differential operator of order 2 such
that the symbol o(L) satisfies |o(L)&| = c|&|® (elliptic) for any e T*M
(¢ > 0). By Garding’s inequality, we have

(5) Lwll, = (c/2)||wlliss — Dellller., wel'(E), k=0,
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where ¢ is the some constant as above and D, is a positive constant de-
pending on k.

Let I'"'(E) be the dual space of I'(E). Then, it is easy to see that
I'EYcT'"E)cI''(E) and I'(E) is dense in I'"''(E). The differential
operator L can be extended to an operator L_, defined on some domain
(L_,) into I'"Y(E), where in fact 2(L_)DI''(E). The following regu-
larlity lemma shows that the spactum of L does not depend on k.

LEMMA 5.4. If there is a complex number z, such that the resolvent
R(z,, L_,) induces an isomorphism of I''(E) onto I''(E), them any re-
solvent R(z, L_,) induces an isomorphism of I'*"Y(HE) onto I'*''(E) for
every k = 0. The spectral set of L_, consists of point spectra and the
generalized eigenspaces E, of L_, are contained in I'(E). There are
countably many point spectra (eigenvalues) {\,} of L_, such that
lim, . [N, | = oo, and if 3@ E,, is dense in I'"*(E), then so also is in
r'(m).

Proor. By the assumption, L — 2z, [: I'(E)+— I'(E) can be extended
to an isomorphism of I'‘(E) onto I""*(E). Since the inclusion I''(E)C
I°(F) is compact, the resolvent R(z, L_,): I'"“(&)+— I'"(&) is a compact
operator. Hence the spectral set consists of countably many point
spectra {\,} such that lim,_ . [\,| = « and dim E, < co.

Let o(L_,) be the resolvent set of L_,. Since a resolvent R(z, A) of
A = R(z, L_,) is an isomorphism of I""'(E) onto itself, AR(z, A): '+ 1"
is an isomorphism. On the other hand, using the identity

2l — A= (A" — DA = 2{(z, — (1/2))] — L_}A ,

we have AR(z, A) = 1/2)R(z, — 1/2, L_,). Thus, 2, — 1/ze€p(L_,) if and
only if zep(A), and R(z, — 1/z, L_,): I''(E)+— I''(E) is an isomorphism.
By the inequality (5), if {(I. — 2I)u,} and {u,} ane Cauchy sequences in
T'*(E) and I'**(E) respectively, then {u,} is a Cauchy sequence in I'***(E).
Therefore by induction we get R(z, L_,) induces an isomorphism of
I'*Y(E) onto I'*"*(K) for every k¥ =0, z€ p(L_,).

Since dim E, < o, we have R(z, L_,)*E,, = E,, for any ze€po(L_,)
and k= 0. Since R(z, L_,)E, cI**, we get E, C I'(E). All others are
easy to prove.

By the above lemma, we have only to consider the operator L_, for
the proof of Proposition 5.1. The following reduces the problem to

Hilbert-Schmidt class.

LEMMA 5.5. Notations and assumptions being as above, if the
generalised eigenspaces of L™ are complete in I'(E) for some positive
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integer m, then the generalized eigenspaces of L are complete in I'(H).

PrROOF. By the spectral mapping theorem ([5] p. 604), we have
o(L™) = o(L_,)™, where o(L) means the spectral set of L. For any
x€C — {0}, we denote by E,, F, the generalized eigenspaces of L_,, L™
respectively. As a matter of course E; = {0} if A ¢ o(L_,). Now for the
proof, it is enough to show that F}, = E, ;D E.,:D -+ D K, ;, where
@, +++, @, are the m-th roots of unity. Let y,=dim F},. v, is finite
because L™ is elliptic.

Note that L™ — A1 = [[™, (L_, — o,\I). Let p;j(z) = I1i.; (2 — @\)".
Since there is no common zero of ,(z), ---, P.(2), there are polynomials
q;(z) such that 1 = 3 q,(2)p;(2). Therefore v = > q,(L_,)p;(L-,)u for any
wel'(E). Set w;, = q(L_)p,(L_)u. It is easy to check that we F,, if
and only if w,€ E,;. This implies F;, = E, ;D Eop® -+ D Eo -

ProOOF OF THE FIRST HALF OF PROPOSITION 5.1. Set H = (D + D*)/2.
Then, H is an elliptic hermitian operator. By the assumption, we get
the following using Garding’s inequality:

(6) c"llullf — D"llulls = <Huy upo = ¢'||ull + D'[|ulli, wel'(H).

Thus, by Friedricks extension theorem, there is a positive constant a
such that H + al: I'(F)— I'(E) can be extended to an isomorphism of
I'(E) onto I''Y(E) and ¢ ‘||u||, = {(H + al)u, uy, < ¢||u]||, for some posi-
tive constant ¢: Namely {((H + al)u, u), gives an hermitian inner prod-
uct which is equivalent with (, ),.

By Lemma 5.4, the resolvent R(z, H_,) induces an isomorphism of
I'**(E) onto I'**'(E) for every k= 0. Since {Hu,u), is real, the re-
solvent R(a, H,): I"'(E)+ I'(E) is self-adjoint, where H,: &2/(H,) = I'*(E)
I'’(E) is the Friedrichs extension of H. Therefore, o(H,) C{x > —a}
and the eigenspaces of H is complete in I'(E). R(a, H,) is also the
restriction of R(a, H_,).

On the other hand, D:I'(E)+— I'(E) can be extended to bounded
linear operator D,: I'*(E)+— I"(&).

LEMMA 5.6. Ewery resolvent R(z, D,): I''(E)— I'(E) induces an iso-
morphism of I'“(E) onto I'***(E) for any k=0, and on any ray
{re’?; r = 0} with a fixed 0 such that ¢+ 1, R(z, D,) exists and satisfies
[|R(z, Dy)|lo < Co(1/2), z = re®, for sufficiently large r.

PrOOF. Set D= H + A. Then A is a differential operator of order <1
and A can be extended to a bounded linear operator A4, of I'(E) into
I'(E). Since H, self-adjoint, we get || R(z, H,)||,<1/Im z. Since there is a
positive constant C such that ||Au|;<C{H,+al)u, u),<C||(H,+aI)ullo||ul,
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we have
1A ll, = el|(H, + al)ull, + (C/2e)[|ul,

for any ¢ > 0. Thus, we get
| AR(z, H)ull, < {e + (ea + €|z] + C/2e)(1/|z] sin )} u ],
Therefore, if z is on a ray {»¢”; r = 0} with e¢* % +1, then
|| A,R(z, Hy)l|l, < {e(1 + 1/sin 8) + ((1/|2]) - (1/sin 0))(ea + C/2¢)} .

Take ¢ so that it may satisfy el + 1/sin6) < 1/2. Then for sufficiently
large z on the ray we have ||A,R(z, H,)|l, <1 and there is a constant
K, such that ||(I — A,R(z, H,))'||[, = K, Thus, we get the existence of
R(z, D,) for such z and ||R(z, Dy)||, < (1/|2])C, by using the identity

I — D, = (I— ARz, H))(zI — H), =z¢d(H,).

Moreover, since (I — A,R(z, H,))™* is an isomorphism of I™(H) onto
itself, we see that R(z, D,) induces an isomorphism of I'°(E) onto I'*(&).
Thus, by the same reasoning as in Lemma 5.4, we have that every re-
solvent induces an isomorphism of I'*(E) onto I'***(K) for every k = 0.

Now, by Corollary 5.8 and the equality R(z™, D) = [[™. R(zw,, D,),
there is a positive integer m such that the resolvent R(z, D) of DI is
of Hilbert-Schmidt class. By Lemma 5.6, we see that [|R(z, D], <
(1/|2z])K, for sufficiently large z on every ray such that e = 1, where
K, is a constant depending on 4.

Using the resolvent equation ([5] p. 600) and applying the com-
pleteness theorem ([5] p. 1041), we get the generalized eigenspaces are
complete in I°(E), and hence in I'(F) by Lemma 5.4. (See also the
proof of the next corollary.)

Let {A\,},—.,... be the eigenvalues of D. By the compactness of the
resolvent, we see that lim|\,| = «. However, since |arg \,| < w/4 for
sufficiently large n, we see that lim Re ), = «. This complete the proof
of the first half of Proposition 1.1.

The second half is given by the following:

COROLLARY 1.7. Let {N,}uzy1,... be the eigenvalues of D such that
M| S N = -+, Let &, be the closure of > . D E;, in I'(K). Then,
I'E)=E,QE,D - DE,_, D F, for any n =1, and N;-..#, = {0}.

PrOOF. Let @ be a complex number such that the resolvent R(a, D,)
exists. We set A = —R(a, D,), and p, = (A, — @)"'. By the resolvent
equation —R(y¢ '+a, D,)=2R(y, A)—pl, we have easily that {¢,},-,....U
{0} is the spectral set of A. Let E, be the generalized eigenspace of
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A of eigenvalue f,. Then, plainly, E, = E,, .
Let ¢, (resp.c;,) be a smooth simply closed curve in C such that the
interior of ¢, (resp.c,) contains the eigenvalue g, (resp. the eigenvalues

(this,). We set &, = (1/271) f _R(z, A)dz, &, = (1/2x0) f _R(z, A)dz. Then,

by Theorem 10 [5] p. 568, we have & =¢,, € =€, E4ém = Entyn =0
(n#m), ee; =¢;,=0 (j<n) and ¢ +¢& + +++ +¢,, + & = 1. Note
that ¢,/(E)=E, = E,. Hence, we get I'(E)=E,QE,D---DE,,_ D
e °(H).

Since A~! induces an isomorphism of I'***K) onto I'*(E) for any
k=0 and the spectral set does not depend on %k, ¢, and ¢, are also
projection operators on I'*(E) for all k. Thus, we get ['*(E)=E, @ :--- D
E;,_ ,@®e.l(E) for every k, and hence I'(E) = E; D --- © E,,_, D e l'(E).
Remark that ¢, I'(E) is A-invariant and hence D-invariant. Consider
the restriction D: e, I'(E) —¢,I'(E). Then, applying the first half of Prop-
osition 5.1, we have that ¢,I'(E) is the closure of 3..,@® E,, becuase
the same estimate of the resolvent holds for the restricted operator.

Let &, be the closure of &, in I'°(E). We have only to show
that .. = {0}. Moreover, it is enough to show the desired one for
the Hilbert-Schmidt operator A™, because the relation of generalized
eigenspaces of L™ and L_, given in the proof of Lemma 5.5 holds by
replacing L_, by A. Thus, we consider the Hilbert-Schmidt operator A™
in what follows.

Let N=N.%, and B= A™|N. Then, B: N— N is a quasi-nilpotent
Hilbert-Schmidt operator. Since the same estimate holds for the resolvent
of the restricted operator B, we have that ||R(z, B)|| = O(]z|™) for
sufficiently small z on any ray {re’;»r = 0} with e 1. Thus, by
Phragmen-Lindelof’s theorem, zR(z, B)u is a I'°(F)-valued entire func-
tion. Hence by Liouville’s theorem, ||zR(z, B)u||, is constant. Using
Schwarz’s theorem, we get R(z, Byu = v/z2, v € N.

On the other hand, if z is sufficiently large, then by Neumann series,
R(z, B) = I/z + B/?2* + B*/z* + ---. Therefore, we get Bu = 0. Since u
is an arbitrary element of N, we have A™N = {0}. Thus, N = 0 because
otherwise (D, — aI)™ can not be defined as an operator.
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